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We study the formation, longevity and breakdown of convective rings during impulsive
spin up in square and cylindrical containers using direct numerical simulations. The
rings, which are axisymmetric alternating regions of up- and downwelling flow that
can last for O(100) rotation times, were first demonstrated experimentally and arise
due to a balance between Coriolis and viscous effects. We study the formation of
these rings in the context of the Greenspan–Howard spin-up process, the disruption
of which modifies ring formation and evolution. We show that, unless imprinted
by boundary geometry, convective rings can only form when the surface providing
buoyancy forcing is a free-slip surface, thereby explaining an apparent disagreement
between experimental results in the literature. For Prandtl numbers from 1–5 we find
that the longest-lived rings occur for intermediate Prandtl numbers, with a Rossby
number dependence. Finally, we find that the constant evaporative heat-flux conditions
imposed in the experiments are essential in sustaining the rings and in maintaining
the vortices that form in consequence of the ring breakdown.

Key words: rotating flows, pattern formation

1. Introduction
The dynamical processes by which a fluid within a spinning container attains the

same angular velocity as the vessel is referred to as the ‘spin-up’ (or ‘spin-down’)
problem, and was unified in the theoretical treatment of Greenspan & Howard (1963)
(hereafter GH). Suppose that the vessel is a right solid of horizontal dimension L
containing an isothermal fluid of viscosity ν. At t = 0 the container is rotated about
its vertical axis with a constant angular velocity Ω . The fluid takes a finite amount
of time to ‘spin up’ to the angular velocity of the solid container. Clearly, were the
required transfer of angular momentum controlled solely by viscosity the spin-up
time would scale as τs

ν
∝ L2/ν. However, GH showed that τs =Ω

−1Re1/2, where the
Reynolds number is Re= L2Ω/ν, and hence τs

ν/τs ∝ Re1/2. Therefore, given that Re
is typically large, the time required for fluid spin up is much smaller than if the
process were controlled by viscosity alone.

† Email address for correspondence: john.wettlaufer@su.se
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When the surfaces of the container are heated, the interplay between buoyancy
and rotational forces complicates the dynamics considerably. For example, when
the container is heated from below, the long-term (τ � τs) state is characterized by
columnar vortices aligned in the direction of gravity, along which fluid buoyancy
is transported. Here, we study the spin up of a convectively unstable impulsively
rotated container of fluid to its final vortical state. In particular, we are interested in a
transient ring pattern that occurs during convective spin up. This ringed state consists
of alternating axisymmetric rings of up- and downwelling flow, which have been
observed experimentally by Boubnov & Golitsyn (1986), Vorobieff & Ecke (1998)
and Zhong, Patterson & Wettlaufer (2010).

The experiments of Boubnov & Golitsyn (1986) were performed in square and
circular cross-sectioned containers of water with open upper surfaces cooled by
evaporation. They measured the temperature of the free surface and estimated the
rate of evaporation, and hence the cooling rate, to be nearly steady. When the upper
surface was one of free slip, they observed the transient ringed state for a wide
range of rotation and cooling rates (varied by changing the mean temperature of the
water). However, for both square and circular cross-sections, when the top surface
was covered by a lid, and the bottom surface is heated, they found no ringed state.

In contrast to Boubnov & Golitsyn (1986), Vorobieff & Ecke (1998) held the
bottom surface at constant temperature and found the ringed state (albeit with
fewer rings) in a cylindrical container with a no-slip upper surface. Zhong et al.
(2010) combined particle image velocimetry with infrared thermometry in a square
cross-section container of depth H with an evaporating free-slip upper surface. They
quantified the ringed state as a transient balance between rotational and viscous forces
that exists for approximately one Ekman time, τE =

√
H2/Ων.

Here, we study the formation and breakdown of these transient convective rings
using numerical simulations in a variety of geometries. We find that the ringed state
is a generic feature of convective spin up under suitable boundary conditions. For
other boundary conditions, the rings take on the shape of the container, leading to
square ‘sheets’ of convection for square cross-sectioned geometries. We also find that
the Prandtl number plays an important role in the formation and stability of the rings.
Additionally, we find that the thermal boundary conditions used – Dirichlet as in
Vorobieff & Ecke (1998) and Neumann as in Boubnov & Golitsyn (1986) and Zhong
et al. (2010) – influence the rings’ stability and the dynamics of their breakdown.
Our results reconcile the seemingly contradictory observations of Boubnov & Golitsyn
(1986) and Vorobieff & Ecke (1998).

In § 2, we describe the set-up of the numerical simulations and the key differences
from the experiments. We then discuss the numerical methods used and the resolution
requirements for the simulations. The formation, longevity and breakdown of the
ringed state into the final vortical state are summarized in § 3, wherein we also
examine some special cases of ring formation in non-standard geometries, and
connect these to what is observed experimentally. Conclusions are drawn in § 4.

2. Problem set-up and numerical method
A schematic of the system under study is shown in figure 1. We consider a

container of width L and height H filled with a Boussinesq fluid of density ρ,
coefficient of thermal expansion α, viscosity ν and thermal diffusivity κ , at an initial
temperature T0 that is rotated about the vertical axis starting at t = 0. In a frame of
reference rotating with the container the Coriolis effect is present. The lateral surfaces
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FIGURE 1. The geometry of the problem. The container [−L/2, L/2] × [−L/2, L/2] ×
[0,H] is spun about the vertical z-axis with an angular velocity Ω starting at t= 0.

are thermally insulating and the top and bottom surfaces have either thermal Dirichlet
conditions or one of these horizontal surfaces has a Neumann boundary condition.
Other parameters in the problem include the acceleration due to gravity −gez (gravity
and the axis of rotation are both along the z-axis), and the aspect ratio A = L/H
(= 2 unless otherwise stated). The dimensional equations are

Du
Dt
=−
∇p
ρ
+ ν∇2u− 2Ωez × u+ gα(T − T0)ez − α(T − T0)Ω

2r, (2.1)

DT
Dt
= κ∇2T (2.2)

and

∇ · u= 0. (2.3)

In the rotating frame the initial velocity of the fluid is

u|t=0 =−Ω × r, (2.4)

and the initial temperature is θ = 0 in the entire container. This is different from the
fully developed convective state that is used as the initial condition in the laboratory
experiments of Boubnov & Golitsyn (1986) and Zhong et al. (2010) prior to spin up.

2.1. Boundary conditions
The boundary conditions (BCs) for velocity and temperature determine the nature
of the buoyancy forcing and the details of the spin-up process. In the cuboidal
geometry, the six bounding surfaces (the top and bottom surfaces, and the four lateral
boundaries) are impenetrable and thus have zero normal velocity. Each boundary
can have no-slip or free-slip velocity BCs and Dirichlet (T = const.) or Neumann
(∂T/∂n= const.) thermal BCs.

We consider here only cases where the lateral surfaces are insulating (i.e. have zero
heat flux) and have identical velocity BCs (free slip or no slip), and the thermal BCs
on the top and bottom surfaces are of the same type (either both Dirichlet or both
Neumann). Thus there are eight combinations of BCs. Of these, the majority of our
results are from the combinations listed (in their non-dimensionalized form) in table 1
in § 2.1 below. Other combinations are mentioned where relevant.

For simplicity we call all boundaries ‘surfaces’, so that, for instance, a ‘free-slip
surface’ is a boundary where the normal velocity and the tangential stress are both
zero.
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Classification of BCs Top surface BCs Bottom surface BCs Lateral surface BCs Rings
u θ u θ u θ

Type I (BG, ZPW) ∂u/∂n= 0 ∂θ/∂n= θ ′ u= 0 ∂θ/∂n= 0 u= 0 ∂θ/∂n= 0 Yes
Type II (VE, *) u= 0 θ =−1 u= 0 θ = 0 u= 0 ∂θ/∂n= 0 Yes
Type III ∂u/∂n= 0 θ =−1 u= 0 θ = 0 u= 0 ∂θ/∂n= 0 Yes
Type IV u= 0 θ =−1 u= 0 θ = 0 u= 0 ∂θ/∂n= 0 No
Type V ∂u/∂n= 0 θ = 0 u= 0 θ = 1 u= 0 ∂θ/∂n= 0 No

TABLE 1. Combinations of the BCs used for the results reported. Some other possible
combinations are discussed as special cases in § 3.5. BCs of Type I are as used by
Boubnov & Golitsyn (1986) (BG) and Zhong et al. (2010) (ZPW). Type II is the Vorobieff
& Ecke (1998) (VE) set-up with a cylindrical container. Comparing results from Type I
and Type III (§§ 3.1 and 3.4) elucidates the role of the thermal BCs in the dynamics. BCs
of Types IV and V produce no rings, instead producing square sheets of convection.

2.2. Non-dimensionalization

We scale time in the problem using the rotation rate, Ω−1, and the length using the
width of the container L (see figure 1). The choice of L instead of H for the length
scale ensures that the magnitude of the initial velocity is less than unity, thereby
facilitating numerical stability. These together define the velocity scale U = LΩ .
Assuming a temperature scale 1T (to be defined in the case of constant heat flux),
the governing equations (2.1)–(2.3) become

Du
Dt
=−∇p+

1
Re
∇

2u− 2ez × u+
1

Fr2
θez, (2.5)

Dθ
Dt
=

1
Re Pr

∇
2θ (2.6)

and

∇ · u= 0, (2.7)

where Pr = ν/κ is the Prandtl number, Re = ΩL2/ν is the Reynolds number and
Fr−2

= gα1T/Ω2L is the Froude number, which is a measure of the strength of
the buoyancy relative to other forces, and the centrifugal buoyancy term in (2.1) is
neglected. The initial velocity is u(t = 0) = −ez × r and the initial temperature is
θ(t= 0)= 0 everywhere in the container. The BCs are defined in § 2.1.

A constant heat flux q̇ implies a constant buoyancy flux B̃, given in terms of q̇ as

B̃=
gαq̇
ρCp

, (2.8)

where Cp is the heat capacity per unit mass of the fluid at constant pressure. The flux
Rossby number, which is a measure of the buoyancy flux, is

Rof =

√
B̃

Ω3L2
, (2.9)

the flux Rayleigh number Raf is

Raf =
B̃H4

νκ2
=

Rof
2Re3Pr2

A4
, (2.10)
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and the Nusselt number is

Nu=
〈

θ ′H
θ̄z=0 − θ̄z=H

〉
, (2.11)

where θ ′ is the constant temperature gradient imposed at z=H, the overbar ·̄ denotes
the spatial average across a given plane, and 〈·〉 denotes the time average. For all the
results reported here, the time average was taken over 300 < t < 600. The standard
Rayleigh number follows from the above definitions and is

Ra=
Raf

Nu
. (2.12)

The temperature scale 1T is defined as

1T =
q̇L

ρCpκθ ′
, (2.13)

and hence the Froude number can also be written as

Fr−2
=

Rof
2RePr
θ ′

. (2.14)

For very large Taylor numbers, Ta = 4Re2/A4, the container of fluid rotates like
a solid body, and for small Taylor numbers, the dynamics resembles non-rotating
Rayleigh–Bénard convection (Boubnov & Golitsyn 1986). The boundary between
these is defined by the critical Rayleigh number

Rac ∝ Ta2/3
∝ Re4/3, (2.15)

where the constant of proportionality depends on whether the top and bottom surfaces
obey free-slip or no-slip BCs (Boubnov & Golitsyn 1986).

2.3. Numerical method
The numerical simulations are performed with the finite volume code Megha-5, which
uses uniform grids and second-order central differences in space and second-order
Adams–Bashforth time stepping. The momentum equation is solved using the
projection operator (Chorin 1968) and the resulting Poisson equation for the pressure
is solved using cosine transforms with the PFFT Library of Pippig (2013). The scalar
equation is solved using a local upwind scheme (Herrmann, Blanquart & Raman
2006) that avoids Gibbs oscillations while retaining overall second-order accuracy.
Alternatively, the second-order scheme of Kurganov & Tadmor (2000) can also be
used. Megha-5 is based on an extensively validated earlier version (Prasanth 2014)
and has been used in studies of jets and plumes (Diwan et al. 2014), and cumulus
(Ravichandran & Narasimha 2020) and mammatus clouds (Ravichandran, Meiburg &
Govindarajan 2020).

The thickness of the thermal boundary layer adjacent to a surface is defined as the
distance at which the mean temperature of the volume would be reached starting at
the surface temperature with the slope from the first two gridpoints from the surface,
following the convention of Belmonte, Tilgner & Libchaber (1994) and Verzicco &
Sreenivasan (2008). We ensure that the thermal boundary layers at the top surface are
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Free slip No slip

No slip Free slip

(i)

(ii) (ii)

(iii) (iii)

(iv) (iv)

(a) (b)

FIGURE 2. Schematic vertical sections through the plane of symmetry of the flow during
convective spin up with (a) free-slip top boundary, and all other surfaces no slip; and
(b) all surfaces no slip. The arrows show flow directions (magnitudes not to scale). The
central dashed line is the axis of rotation (and the direction of gravity). The four labels
correspond to (i) flow towards the no-slip surface; (ii) centrifugally outwards flow at a
no-slip surface; (iii) flow rising vertically along the lateral boundaries; and (iv) return flow
towards the axis of rotation. This pattern and its mirror image are seen in (b).

resolved with at least 6 gridpoints for Reynolds numbers Re6 7.5× 103 (grid size of
2562
× 128, with a time step of 2.5 × 10−3), and up to 12 gridpoints (grid size of

5122
× 256, with a time step of 1.25 × 10−3) for Re > 104, as required in turbulent

Rayleigh–Bénard convection (see Scheel, Emran & Schumacher 2013, and references
therein). The results were found to be grid independent and we report those from the
lower resolution grid here. We have also verified that the choice of local-upwinding or
Kurganov–Tadmor discretization does not affect the results (the former is used here).

Simulations in the cylindrical geometry and the other geometries mentioned in § 3.5
are performed using the volume penalization method (Kevlahan & Ghidaglia 2001;
Schneider & Farge 2005), with insulating BCs for the simulations in the cylindrical
geometry applied following Kadoch et al. (2012). We have verified that our results
are independent of the penalization parameters used.

3. Results and discussion

We begin by summarizing the spin-up process in the absence of buoyancy forcing,
following GH. Consider the case where the top surface is one of free slip and
the bottom surface and the four lateral boundaries are no-slip surfaces, as shown
schematically in figure 2(a). The flow at the bottom surface is that due to a plate
impulsively rotated about an axis perpendicular to its plane (see e.g. chap. 5.2.4,
p. 119 of Schlichting & Gersten 2016). Fluid is centrifuged outwards from the
axis of rotation along the surface. Continuity drives fluid downward towards the
bottom surface. As the centrifuged fluid reaches the periphery of the container, it
ascends up the lateral surfaces, driven by a vorticity gradient that exists as a result
of the boundary layers on the lateral surfaces. Once this fluid reaches the upper free
surface, it is driven towards the axis, eventually becoming part of the downward flow.
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In this manner, fluid is driven from larger to smaller radii. Conservation of angular
momentum (excepting for small viscous losses) ensures that the fluid near the axis is
replaced with fluid that is rotating more rapidly. GH show that this process takes a
time O(Ω−1Re1/2)=O

√
(L2/νΩ).

3.1. Type I BCs
We first discuss results from simulations with Type I BCs (see table 1); the sides and
the bottom are all no-slip, thermally insulating surfaces and the upper free-slip surface
is driven with a constant heat flux. The dynamical time scale for the circulation shown
schematically in figure 2(a) is fast relative to the build up of negatively buoyant fluid
at the upper surface. As cold plumes emerge, they are sequentially forced towards
the axis of rotation as buoyancy and rotational forces balance, the oldest and more
central of which are deeper. A given plume evolves into an axisymmetric ring as
this quasi-steady balance is attained, thereby leading to a sequence of upwelling
and downwelling ring pairs. Up to three pairs are seen for such Re 6 104. The
rings eventually reach the bottom of the box, where they interact with the boundary
layer and are influenced by the shape of the container if a sufficiently long time
passes. As the system approaches solid-body rotation, the system must become
unstable and break up into cyclonic vortices, in which fluid descends surrounded by
regions of slower upwelling flow. While this generic process remains similar across
a wide parameter range, the ring and vortex numbers are a function of the Reynolds,
flux Rossby and Prandtl numbers. A sequence of images showing this evolution is
presented in figure 3, and Hovmöller plots showing the evolution of the azimuthally
averaged vertical velocity and temperature are shown in figure 4.

To exhibit the heat transport by the rings, we plot the cross-sectional area-averaged
dimensionless buoyancy flux, defined as

〈B〉(z, t)=
1

Fr2

∫ 1/2

−1/2

∫ 1/2

−1/2
dx dy(wθ), (3.1)

for a horizontal section at z = 0.455. The first two peaks of buoyancy flux seen in
figure 5 correspond to the formation of the first ring and the maximally ringed state
respectively.

In the limit of very small Rof (2.9), convection is strongly suppressed. For large
Rof , the heat flux dominates the effects of rotation. The dynamics of ring formation
is most prominent at intermediate values of Rof , as found by Boubnov & Golitsyn
(1986) and Zhong et al. (2010). As Rof increases, the time for the first ring to form
decreases and its radius increases.

The Prandtl number strongly influences the dynamics – particularly the stability of
the ringed state. For a given Re, as thermal dissipation decreases and Pr increases,
the rings become thinner. Thus, while the thermal effect increases the ring longevity
with Pr, the associated thinning of the rings enhances the across-ring shear, driving
the shear instability (note that the flow moves in opposite directions on either side of
a ring) and thereby reducing the ring longevity. Thus, the stability of the rings peaks
at an intermediate Prandtl number Pr∗. The parameter Φ measures deviations from
axisymmetry of a flow variable φ as

Φ =

∫ rmax

0
dr[φ(x, y, z0, t)− φ(r, z0, t)]2, (3.2)
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FIGURE 3. Ring formation in a representative case for Type I BCs. Shown are horizontal
cross-sections of the vertical velocity field at a plane z≈ 0.47 which is near the cooled
upper surface. The parameters of the problem are Re= 7500, Rof = 0.00442, Pr= 5. (See
figure 4 for a Hovmöller plot showing the time evolution and figure 15 for a sequence
of vertical cross-sections.) The evolution for these fields is available as a movie in the
supplementary material at https://doi.org/10.1017/jfm.2020.387.

where rmax=0.45, φ(r, t) is the average value at radius r at time t and z0=0.47. When
Φ 6Φb(t= tb), we can define the longevity of the ringed state as tb. Figure 6 shows
the variation of the lifetime of the ringed state with the system parameters. (Clearly
Φ is also zero if φ = 0 everywhere. Thus, a threshold for Φ is used.) It can be seen
that Pr∗ is a decreasing function of Re and Rof , as shown in figure 7.
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FIGURE 4. Hovmöller plots for (a) the temperature difference θ − θ̄ , and (b) the
azimuthally averaged vertical velocity w, where θ̄ is the average temperature in the plane
z = 0.46 where the plots are made, showing the evolution of the rings. The rings can
be seen to form around t = 40, move radially inwards and break down around t = 150
coinciding with the completion of spin up. Re=7500,Rof =0.00442,Pr=5, as in figure 3.
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FIGURE 5. The buoyancy flux at z=0.455 as a function of time, for Re=7500 and Pr=5.
The peaks in buoyancy flux, labelled (i) and (ii) in the figure, correspond to the time when
the first ring forms and (less precisely to) the time at which the ringed state is maximal
respectively. The two dotted vertical lines are at t= 130, approximately when spin up is
complete and the rings start to break down; and t= 300, when we begin calculations of
time averages. Increasing the Rossby number increases the buoyancy flux imposed at the
upper surface. The stages of ring formation (maximal state and breakdown) occur earlier
when the flux Rossby number is larger.
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FIGURE 6. The longevity of the ringed state for three different Reynolds numbers and
various flux Rossby numbers, showing the variation of Pr∗(Re, Rof ) for (a) Re = 5000,
(b) Re=7500, (c) Re=10 000. The legends show the values of Rof for which the lifetimes
are plotted. The legends for Re = 7500 and Re = 10 000 are shared. For Re = 5000 and
Rof = 0.0044, rings do not form for Pr 6 3.2.

4.0
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0.004 0.005 0.006 0.007

Re = 5000
Re = 7500
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Rof

FIGURE 7. The Prandtl number Pr∗(Re,Rof ) at which the rings are the longest lived. The
Pr∗ for Rof = 0.0064 appears to be the same for Re= 7500 and Re= 10 000 because of
limited resolution in Pr. See also figure 6.

The ringed state breaks down into columnar vortices at a time tbreakdown(Re,Rof ,Pr)
that follows the second buoyancy flux peak as seen in figures 5 and 17.

The steady state Nusselt number is calculated from (2.11) as a function of the
other parameters in the system. In figure 8 we show that the simulations collapse
to a single curve for different Re when plotted with scalings that emerge from two
different treatments of rotating convection. First, because Nu∝ Ra3Ta−2

∝ Ra3Re−4
=

Raf
3Nu−3Re−4 in geostrophic convection (Boubnov & Golitsyn 1990; King, Stellmach

& Aurnou 2012), one finds that

Nu∝ Raf
3/4Re−1, (3.3)
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FIGURE 8. (a) The Nusselt number as a function of the appropriately scaled flux Rayleigh
number (3.3). The line is Nu ∼ Raf

3/4Re−1. (b) The Nusselt number as a function of
Ra/Rac, where Rac is the critical Rayleigh number of (3.4), which is the dashed line. We
cannot fit power laws with this range of data, but we note the collapse of the simulation
data in these scalings with those of Julien et al. (2012) in (b) converging to the large
Ra/Rac behaviour for Ra/Rac & 4. See also figure 10(b).

which is shown in figure 8(a) along with the simulation results. Second, an alternate
scaling for the Nusselt number proposed by Julien et al. (2012) is

Nu∝ (Ra/Rac)
3/2, (3.4)

with Rac = 2.39Ta2/3 (Boubnov & Golitsyn 1990) which, as shown in figure 8(b),
captures a larger range of the simulation results. Given the small range of the
abscissa, we cannot justify fitting power laws, but another means of observing how
the simulation results compare to these scalings is using compensated plots as follows.
The appropriate compensated plot for (3.3) is NuReRaf

−3/4 versus Raf and for (3.4)
is NuRe4/5Raf

−3/5 versus Raf as shown in figures 9(a) and 9(b) respectively. Without
manipulation of the prefactor, the latter shows slopes approaching scaling over a wide
range of Re for Raf & 5 × 106. Clearly, this motivates simulations and experiments
for an expanded range of Raf . A consequence of the arguments used in deriving the
scaling in (3.3), which originate from Rossby’s interpretation of his experimental data
(Rossby 1969), is that the Nusselt number curve changes slope when the thermal
and Ekman boundary layers cross over and RaE3/2

=O(1). However, since the upper
boundary is one of free slip and has no Ekman layer, this argument of King et al.
(2012), first articulated by Rossby (1969), is not operative in this situation, as shown
in figure 10(a). The Prandtl number correction to (3.4) given by Julien et al. (2012)
is shown in 10(b). We note that our parameters are comparable to those at which the
Nusselt numbers would be expected to increase with rotation (Rossby 1969), were it
not for the fact that the upper surface is one of free slip (figure 2).
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FIGURE 9. (a) The Nusselt number compensated following (3.3) as a function of the flux
Rayleigh number. (b) The Nusselt number compensated following (3.4) as a function of
the flux Rayleigh number.
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FIGURE 10. (a) The compensated Nusselt number, as in figure 6(b) of King et al. (2012).
The absence of an Ekman layer, and thus the absence of a cross-over of the thermal and
Ekman boundary layers, is responsible for the lack of cross-over here, as opposed to that
found in figure 6(b) of King et al. (2012) and the deviation from scaling in figure 8(a).
(b) With the Prandtl number dependent prefactor to (3.4), as in equation (2) of Julien
et al. (2012). In both figures, the marker sizes from small to large correspond to Pr =
(1, 2, 2.5, 3.2, 4, 5) respectively, and increase ∝

√
Pr.

3.2. Type II and Type IV BCs
The results of § 3.1 are qualitatively similar to experiments of Boubnov & Golitsyn
(1986) and Zhong et al. (2010) because Type I BCs are similar to the experimental
BCs, which have free upper surfaces that are cooled by the evaporation of water.
Boubnov & Golitsyn (1986) comment that they observe no rings if the cooled top
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FIGURE 11. Ring formation for the Vorobieff–Ecke (Type II) BCs. Shown are horizontal
cross-sections of the vertical velocity field w at z = 0.47 at t = 30, 50, 70, 80. The
parameters of the problem are Re = 5000, Ro = 0.04, Pr = 5. The cylindrical geometry
is embedded in the Cartesian grid using the volume-penalization method (see § 2).

surface is one of no slip. Since Boubnov & Golitsyn (1986) report experiments in
both square cross-sectioned and cylindrical containers, it was presumed that they
meant this for both geometries. Vorobieff & Ecke (1998) perform experiments in
cylindrical containers and their rings eventually break up into vortices as in the
cylindrical geometry experiments of Boubnov & Golitsyn (1986), but they form
much further away from the axis of rotation. The first ring forms close to the outer
lateral surface.

We implement the cylindrical geometry using volume penalization, as discussed in
§ 2. A sequence of images showing the evolution for a particular case is shown in
figure 11, which may be compared with that in figure 3.

The role that the lateral boundaries play in the dynamics can be seen by comparing
simulations with Type II and Type IV BCs. The latter involve a square cross-sectioned
container with six no-slip boundaries. The evolution is similar to spin up in a closed
container, with radially outwards flow at the upper and lower surfaces (compare
figure 12 with figure 2b). Because these boundary layers eventually reach the lateral
surfaces, the container geometry creates alternating sheets of up- and downwelling
convection that take the form of square annuli. The foregoing argument implies
that ring formation with the no-slip top surface in the Vorobieff & Ecke (1998)
experiments is strongly influenced by the cylindrical shape of the container.
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FIGURE 12. Sheet-like convection for Type IV BCs (no-slip top and bottom surfaces).
Re= 5000,Ro= 0.04,Pr= 5. Cross-sections of the vertical velocity are drawn at z= 0.47,
at t= 20, 40, 60, 80.

3.3. Type V BCs
We examine the processes necessary for ring formation in terms of the nature of the
upper surface boundary conditions. Namely, if the upper surface is one of free slip,
but lacks buoyancy forcing. For example, when the no-slip bottom surface provides the
buoyancy forcing rings do not form, as can be seen in figure 13. This follows from
the mechanism described above; the warm fluid at the bottom surface is centrifuged
outwards and collects at the upper boundary at the periphery of the container, where
it remains, taking the shape of the container.

Thus, for containers that are not axisymmetric, the necessary and sufficient
condition for convective ring formation during impulsive spin up is that the surface
providing the buoyancy forcing be stress free. This criterion explains the apparent
disagreement between the experiments of Boubnov & Golitsyn (1986) and Vorobieff
& Ecke (1998).

3.4. Type III BCs: the influence of Dirichlet versus Neumann thermal BCs
The thermal BCs play an important role in the dynamics of convective ring formation.
Whereas rings form for both Dirichlet and Neumann thermal BCs, their formation
times, locations and lifetimes are markedly different. In addition, the columnar vortical
state is less well defined with Dirichlet than with Neumann BCs.
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FIGURE 13. Evolution of the square sheets of up- and downwelling in simulations with
Type V BCs for Re= 5000, Ro= 0.04, Pr = 5. The horizontal sections are drawn at z≈
0.025 at t= 20, 40, 60, 80 as in figure 12.

Since the temperature difference between the horizontal boundaries is prescribed
instead of the buoyancy flux, we use 1T to non-dimensionalize (2.2). Hence, the
non-dimensionalization of § 2.2 is modified, with the Rossby number defined as Ro=
gα1T/(Ω2L) (note that Ro= Fr−2; see (2.14)). The definitions of the Reynolds and
Prandtl numbers remain unchanged. The Rayleigh number is

Ra=
gα1TH3

νκ
=

Re2 Ro Pr
A3

, (3.5)

along with the Nusselt number, which may be defined as

Nu=

〈
(∂θ/∂z)z=0

A

〉
, (3.6)

with, as previously, · denoting the average across a given plane and 〈·〉 the time
average. The time averages are taken for 300< t< 600, as in (2.11).

Figure 14 shows the ring formation for the case Re = 7500, Pr = 5 and
Ro = 0.03125, where the evolution can be compared to that in figure 3 for Type
I BCs (Re = 7500, Pr = 5, Rof = 0.00442). However, the first ring forms earlier and
at a larger radius for Type III BCs, the difference being associated with the thermal
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FIGURE 14. Snapshots of the vertical velocity for Type III BCs at a horizontal section
z= 0.47 (same as in figure 3), for parameters Re= 7500,Pr= 5 (both as in figure 3) and
Ro= 0.03125.

boundary layers. Namely, for Type III BCs, the thickness of the thermal boundary
layer changes significantly with time; fluid from the bottom surface (θ = 0) is forced
towards the top surface (θ = 1) where the boundary layer grows, eventually becoming
thicker than the corresponding case with Type I BCs. In figure 15, we see that the
overall ring structure has a larger radius with Type III BCs and in figure 16 the
surfaces of constant temperature show that the first ring forms at a larger radius and
is thinner for Type III BCs. Moreover, figure 17 shows that the ratio of the maximum
buoyancy flux to the long-time average is much larger for Type III BCs than for Type
I BCs (figure 5). However, after the rings have broken up into vortices, the thicker
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FIGURE 15. A comparison of the flow evolution for Type I and Type III BCs. In each
half, the four figures are horizontal sections of the vertical velocity (a) and temperature
(b) and vertical sections of the vertical velocity (c) and temperature (d). The horizontal
sections are plotted at z= 0.47 (same as in figure 3). The parameters are Re= 7500,Pr=
5 (both as in figure 3) and Rof = 0.00442 (t = 60, Type I) and Ro = 0.03125 (t = 50,
Type III).

thermal boundary layers for Type III BCs leads to vortices that gather buoyancy from
a broader spatial extent and hence are more diffuse relative to those for Type I BCs
(compare figures 3 and 14).
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FIGURE 16. Isocontours of the temperature, drawn at a value θ∗ = 0.5〈θ〉free-surface for (a)
Type I and θ∗ = 0.8〈θ〉free-surface (b) Type III BCs. The parameters are Re= 7500, Pr = 5.
Rof = 0.00442 (t = 50) for the Type I BCs, and Ro= 0.03125 (t = 30). for the Type III
BCs. These parameters are the same as in figures 3 and 14.
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FIGURE 17. The buoyancy flux at z=0.455 as a function of time, for the same parameters
(Re= 7500, Pr = 5) as in figure 5, but with Type III BCs. The peaks of buoyancy flux,
labelled (i) and (ii) in the figure, correspond to the formation of the first ring and the
maximal ringed state. As with Type I BCs, the time at which the first ring forms decreases
for increasing Rossby number (see figure 5). However, the second peaks of the buoyancy
flux, corresponding to the maximally ringed state, occur much sooner here than in figure 5.
As in figure 5, the vertical dotted lines correspond to the completion of spin up at t≈ 130,
and the start of averaging for the 〈Nu〉 calculation respectively.

For geostrophic convection with Type III BCs, the Nusselt number should scale with
the Rayleigh number as

Nu∝ (Ra/Rac)
3
H⇒ Nu∝ Ra3Re−4, (3.7)

but this scaling is not seen in figure 18, as opposed to the collapse shown in
figure 8(b). The spread in the curve is due to insufficient averaging, and longer-time
averages follow the Nu∼ (Ra/Rac)

3/4 power law.
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FIGURE 18. (a) The Nusselt number versus the Rayleigh number for Type III BCs,
analogous to figure 8(a). Note that the Nusselt number does not scale like Ra3Re−4, but
instead only as (Ra3Re−4)1/4. This lower Nusselt number is responsible for the vortices
being less well defined. The spread of Nusselt number values for a given Reynolds number
is due to insufficient averaging (over 300 flow units; see figure 17), and decreases when
averaged over longer intervals, as shown in (b), where the Nusselt number is averaged
over 3000 flow units. As in figure 10, the marker sizes from small to large correspond to
Pr= (1, 2, 2.5, 3.2, 4, 5) respectively, and increase ∝

√
Pr.

We conclude this section by noting that the nature of the global heat transport
in non-rotating Rayleigh–Bénard convection is associated with the nature of the
boundary layer–core interaction, modulated by plumes. This is heuristically similar
to our findings, wherein the nature of the thermal boundary layers differs for Type I
and Type III BCs.

3.5. Special cases
As described in § 3.1, each step of the GH spin-up process plays a role in the
formation of convective rings. Thus, altering any of these alters the ring-formation
process. This is seen in the examples presented in §§ 3.5.1–3.5.3 below. Furthermore,
a case where the fluid is spun down instead of spun up is examined in § 3.5.4.

3.5.1. Free-slip lateral boundaries
The lateral boundaries play an important role in the spin-up process. GH observe

that the diffusion of vorticity from the lateral surfaces to the fluid results in the suction
of flow out of the boundary layer on the bottom surface into the boundary layers
on the lateral surfaces. It is therefore reasonable to ask what happens if these are
free-slip surfaces that do not support boundary layers when the no-slip bottom surface
continues to centrifuge fluid outwards?

To this end, figure 19 shows that while ring formation does occur, the ‘rings’ are no
longer axisymmetric as they were for the Type I BCs. The radially inward flow in the
bulk created by the boundary layers on the lateral surfaces is thus also responsible for
pushing the rings that form towards the centre, which thereby become axisymmetric.
When these boundary layers are absent, the rings reflect the shape of the container.
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FIGURE 19. The formation of convective ‘rings’ with free-slip lateral surfaces for the
same parameters as in figure 3. The horizontal sections of velocity (a) and temperature
(b) are plotted at the same location z = 0.47 as in figure 3, and the vertical sections
(c,d respectively) are plotted on planes passing through the axes. Note that the bottom
boundary is a no-slip surface.

3.5.2. Free-slip top and bottom boundaries
When the top or bottom surfaces obey the no-slip condition, they centrifuge fluid

outwards. As we have seen, this radially outward flow plays a crucial role in the
process of ring formation. We further illustrate this by making both the top and bottom
surfaces free slip (while the lateral surfaces are no slip). Rings form in this case, but at
larger radii than in the standard case. A representative snapshot is shown in figure 20.

3.5.3. All boundaries free slip
The examples presented thus far demonstrated the important role of the boundary

layers on the process of ring formation. Therefore, it should not be surprising that
if all the boundaries of the container are made free slip, the convective structures
that form only have a qualitative resemblance to rings. A representative snapshot from
the evolution of the flow is shown in figure 21, which should be compared with the
evolution in figures 3 and 19.

3.5.4. Convective spin down
Variations of the mechanism discussed here are also relevant in spin down: i.e. the

case of a rotating container of fluid undergoing a negative step change in angular
speed (at the same moment at which heating/cooling is switched on at one of its
boundaries). In this case the ratio of initial to final angular velocity (which is zero
in spin up) is also a parameter. We present here results when the container slows
abruptly from 2Ω to Ω . The fluid velocity at t= 0, in the frame of reference rotating
with the container, is thus exactly the negative of the fluid velocity in the spin-up case.
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FIGURE 20. The formation of convective rings with free-slip top and bottom surfaces for
the same parameters as in figures 3 and 19. Note that the lateral boundaries are here no-
slip surfaces. The plots are at the same locations as in, and labelled similarly to figure 19.
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FIGURE 21. The absence of ring formation when all the boundaries are free slip. The
parameters are the same as in figures 19 and 20, and the plots are labelled similarly.

All the other equations remain unchanged. We consider two cases: (a) with a cooled
top surface and (b) with a heated bottom surface. In both cases, the bottom boundary
is no-slip and the upper boundary is free slip.
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FIGURE 22. The formation of rings during top-cooled convective spin down. The other
BCs and parameters are the same as in figures 3 and 15, and the figures are plotted in a
similar way. The horizontal sections are at z= 0.47.

During spin down, the flow at the bottom surface is reversed: fluid moves radially
inwards along the no-slip lower surface and is pushed away from it in the +z direction
near the axis. Hence, in case (a) warm fluid impinges on the top boundary at the axis
and moves radially outwards. This leads to plumes forming at the top surface near the
periphery, with subsequent plumes forming closer to the axis, as shown in figure 22.
Note that there is no boundary layer on the free-slip upper surface. Thus, rings can
still form even though the flow is pushed radially outwards.

In case (b), the heating from the surface adds to the Ekman suction at the bottom
surface, with warm fluid forced upwards along the axis. This fluid is now at the
temperature of the bottom surface, and is pushing against a background of colder
fluid, creating an instability. The interface splits into rings between the top and bottom
surfaces, which break down into vortices as usual. A snapshot of this is shown in
figure 23.

4. Conclusion
In summary, we have performed a range of numerical experiments to study

the formation, longevity and breakdown of a quasi-steady ringed state during the
convective spin up of a Boussinesq fluid. We have studied the role of the GH spin-up
process on ring formation, and found that the centrifugal radially outwards flow at
the bottom surface, the reversal of the Ekman layer due to vorticity diffusion at the
side surfaces and the radially inward flow at the free-slip surface are all important
factors. We show that whereas disrupting any one of these disrupts ring formation,
and the rings take on the shape of the container, but disrupting all of these completely
suppresses ring formation. The ring-formation criteria we provide for convective spin
up explain the apparent disagreement in experiments regarding whether rings can
form with a solid upper surfaces.
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FIGURE 23. The formation of rings during convective spin down with a heated bottom
surface. The other BCs and parameters are the same as in figure 22. The horizontal
sections are at z= 0.23.

Because the rings arise due to a transient balance between convective and rotational
dynamics, our finding that the Prandtl number, which we varied from 1 to 5, plays
a key role in the formation and stability of the rings is intuitive. We found that the
ring lifetime is longest for intermediate Prandtl numbers, with a Rossby and Reynolds
number dependence. We have also described the role played by the thermal boundary
conditions on the stability of the ringed state and the heat flux in the system. In
the transient dynamics considered here, Dirichlet thermal boundary conditions lead to
thinner boundary layers and large heat fluxes initially, and lower Nusselt numbers in
the steady state, than corresponding cases with Neumann boundary conditions.

The ring-formation mechanism is general. In results to be reported comprehensively
elsewhere, we have observed rings in containers of elliptic cross-section, and in
containers of circular cross-section with the lateral walls tapering towards or away
from the cooled upper surface. Rings also form in containers with sloped bottom
boundaries, and are seen to drift in a direction perpendicular to the slope of the bottom
boundary due to a topographic β-effect. We note that recently Favier & Knobloch
(2020) have shown that the anticyclonic flow along the edges of a cylindrical container
(De Wit et al. 2020; Zhang et al. 2020) is another geometry-independent universal
feature of rotating Rayleigh–Bénard convection.

Finally, given the broad relevance of the basic processes we study here, whereby
Ekman layer suction drives the boundary layer fluid towards the lateral boundaries at
which it may achieve the same speed, a wide range of problems may be examined
within our general numerical framework through systematic manipulation of the
boundary conditions to a far greater extent than we have explored here. Indeed, the
generality is extended due to the direct mathematical connection between rotating
and stratified fluids (Veronis 1970), which are uniquely combined in transient rotating
convection. Classical problems that arise in this context include those in which
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a homogeneous or stratified column of fluid may spin up or spin down due to
topographic effects (Anderson & Killworth 1977) and topographic eddy (Huppert &
Bryan 1976), Rossby wave (Veronis 1966) and edge-wave generation (Rhines 1970).
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