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LP APPROXIMATION BY RECIPROCALS OF 
TRIGONOMETRIC AND ALGEBRAIC POLYNOMIALS 

BY 

RONALD A. DEVORE1, D. LEVIATAN AND XIANG MING YU2 

ABSTRACT. We give an estimate for the error of Lp approximation by re
ciprocals of polynomials. These estimates are the analogues of the Jackson 
and Ditzian - Totik estimates for polynomial approximation. 

1. Introduction. We are interested in estimating the error of approximation in the 
Lp norm by reciprocals of polynomials. This is a special case of rational approximation 
which occurs for example in the study of Padé approximation as the first column in 
the Padé table. Recently, Leviatan, Levin, and Saff [2] have estimated the error in Lp 

approximation of/ G Lp+\ in terms of the modulus off. Namely they show that the 
error of such approximation does not exceed Cuo^if, rTx)p+\ (see §2 for the definition 
of UJ *.) The purpose of the present paper is to show (§4) that u * (f,. )p+\ can be replaced 
by uj^if.^p and that this estimate holds for a l l / G Lp. The corresponding estimates 
for approximation by reciprocals of trigonometric polynomials are derived in §3. We 
begin in the next section with some remarks on algebraic and trigonometric polynomial 
approximation. 

2. Polynomial approximation. Error estimates for trigonometric polynomial ap
proximation can most easily be obtained by convolution operators. For example, sup
pose that An is a kernel with mean value 1 on [—7r, 7T] and consider the convolution 
operator 

(2.1) Ln(f):=±- f f{x + t)hn(t)dt 
Z7T J-n 

It is well known and quite simple to prove that if 

(2.2) r \t\A„(t)dt<Cn~l, 
J—IT 

then, we have 

(2.3) \\f-Ln(f)\\Lp(J)<Cuj(f,n-l)p 
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for each/ G LP(J ), 1 < p < oo (with Loo replaced by C in the case p = oo) and 

(2.4) w(f,t)p:= sup | | A A ( / \ . ) | | M T ) 

the L^ modulus of continuity off. Here and later, we use C to denote constants and 
subscripts to denote variables on which they depend (if there are any.) 

If A„ is an even trigonometric polynomial of degree < m then Ln is a convolution 
operator and Ln(f) is also a trigonometric polynomial whose degree does not exceed m. 
The best known examples of kernels of this type are the Jackson kernels 

(2.5) kn(t) := M O := dn [
sirlntl^] , r = l , 2 , . . . 

V sin tj 2 J 

with the constant dn chosen so that kn has mean value one on [—7r, TT]: J*n kn(t) dt — 2ir. 
Then, it is easy to see (see [3]) that dn & nlr~x and the moments of kn satisfy 

(2.6) r | t\jkn(t) dt < Crn-j, j = 0 , 1 , . . . , 2r - 2. 

From (2.6), it follows that the moment condition (2.2) is valid for r > 2. We shall 
also use the fact that the shifted kernels kn^r(t + 6n),6n := IT / 2n satisfy these moment 
conditions (2.6) and therefore (2.3) as well. 

From results on trigonometric polynomial approximation, it is possible to deduce es
timates for approximation by algebraic polynomials. There are two types of estimates. 
The simplest of these are in terms of the ordinary modulus of continuity off G Lp[—1,1], 
1 ^ p ^ oo. Finer results were recently given by Ditzian and Totik [1] in terms of a 
new modulus of continuity which has many important applications in approximation. 
Let (f(x) — Vl —x* and 

Ah fix) = (/(*+ M*)) ~f(x~ ^ W ) . x±y(x) e [-1, l] 
^ 10, otherwise. 

Then, following Ditzian and Totik, we define 

u*(f,t)p:= sup | | A ^ / V 
0<h^t 

Ditzian and Totik have shown that for each n there is an algebraic polynomial Pn of 
degree < n such that 

(2.7) \\f-Pn\\ir[-\A]<Cu*(f,±)p. 

It will be useful to recall their method of proof of (2.7). They first establish that uj^if,.) 
is equivalent to the K-functional 

(2.8) K(f, t)p := inf{ \\f - g\\Lp[-xM +1\\ ^ | | M - i , i ] + t2\\g'\\LA-U]} 
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where the infimum is taken over all absolutely continuous g. That is, they show 

(2.9) Ciu* (/\ t)p < K(f, t)p < C2uo * if, t)p. 

It follows from (2.9) that for each n — 1,2,... there is a/„ such that 

(2.10) | | / - / „ | | M - „ , + -n | | ^ | | M - u ] + ^ ||/„'||M-u] < c^(f,l-)p. 

Moreover, their proof shows that iff is nonnegative then/n can also be chosen to be 
nonnegative. 

The second main point in establishing (2.7) is to approximate fn. For this, we let 
gn(6 ) := fn(cos 6 ). Then gn is an even 2ir- periodic function. 

THEOREM 2.1. Iffn and gn are defined as above and ifLn is defined by (2.1) for some 
kernel An satisfying (2.2) (not necessarily a trigonometric polynomial), then 

||/n-£*(£«,arccosOllz^-U] ^ Cuj^if,-)^ l<p<oo. 

This theorem is established in §7.2 of [1]. While the analysis in [1] is stated for a 
trigonometric kernel, the proof is exactly the same for any An. 

Now to prove (2.7), it is enough to take for Ln any of the operators above with a 
trigonometric kernel of degree < Cn (for example the Jackson kernels.) This gives an 
even trigonometric polynomial Tn(0) = Ln(gn,Q). Then Pn(x) := 7n(arccos;c) satisfies 
(2.7). 

Another property of this construction is that Pn can be used to replace/„ in (2.10): 

(2.11) | | / - P „ | | M - , , , ] + ^||v/y„llM-'.i] + ^ l i n i l M - i . n < C w ^ ^ ) P -

This property follows from Theorem 7.3.1 of [ 1]. Although this theorem is stated for 
the polynomial Pn of best Lp approximation it holds with exactly the same proof for any 
Pn satisfying (2.7). We remark further that Theorem 7.3.1 estimates | | ^ ^ | | L P [ - I , I ] < 
Cnuj^if, ^)p but the same proof also give H^Hz^-M] ^ C^uj^if, ^)p. 

3. Approximation by Reciprocals of Trigonometric Polynomials. To prove re
sults about approximation by reciprocals of trigonometric polynomials, we shall use the 
modified kernels 

+ \^^W ) \ 
where 6n := TT/ (2n) and cn is a normalizing constant chosen so that 

[n \n(t)dt= 2TT. 
J—7T 

By our earlier remarks, the kernel Xn has the approximation properties of § 2. In addi
tion, the kernel Xn has the following important property not held by the Jackson kernels 

A„(0 := ,, [*«(' - Sn) + kn(t + 6n)] = cn 
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LEMMA 3.1. For s,t £ [—7r,7r) and n ^ 1 we have 

\n(s + t) 
(3.1) 

A„(5) 
C(l+n\t\y 

PROOF. We prove (3.1) for n ^ 2, the case n = 1 is straightforward. First we show 
that 

(3.2) Xn(s)^ C-cnn
4 \s\ ^ TT . 

In fact, for Isi ^ - , it follows that 

n(s-6„) 

2 (s-6n) 
it 2 

n(s-^n) 

2 (s+6n) 
TX 2 

Xn(s) ^ cn 

^ C • cnn
4 

where we used the inequalities 

(3.3) | sin;c| ^ min{l, |x|} |JC| ̂  TT 

(3.4) ^ sinjc x G , 
7T 7T 

2 2 

For ^ < | si ^ 7T, we have by (3.4) and the monotonicity of sinx, |JC| ^ | , that 

Sin l ^ ^ J I " S 1 ° I — 2 — J 

> 

7T 2n 

\s\ 
2^ 

Hence by (3.3) 

(3.5) 
\n(s) S cn 

sin4 £fà sin4 ^ 

^ C- cn\s\ 4 ^ C - cnn
4 

This concludes the proof of (3.2). 
We next note that 

(3.6) \n(s) ^ C - cnn , \s\ ^ — . 
n 
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Indeed, by (3.3) and (3.4) 

, / s i n " ^ \ 4 / s i n " ^ \ 4 l 

n(s-5n) \ 4 / n(s+6n) 

^Ccn m i n ^ ^ l , l - ^ l )^Ccnn\ 
2 / \ 2 

By (3.2) and (3.6) we have for \s\ ^ \ and all t G T 

41 

A„W ^ c. 

Thus (3.1) follows for I s\ ^ ^. 
Consider now the case J < \s\. Since 

. 2 W ( J - * „ ) . 2 n(s + 8n) sin + sin = 1 
2 2 

it follows that 
4n(s-8n) . 4 n(s + 6n) 1 

maxjsin — - , sin } ^ - . 
Therefore, we have 

, ^ i . f i i 1 
X„(s) è -c„ min < — j — — r T , — „ , c . > 

(3.7) 4 \ s i n 4 ^ s i n 4 ^ ] 

^ C - c l s l " 4 , 

where again we used (3.3) for the last inequality. Combining (3.2) and (3.7) we obtain 

(3.8) s C ( W J ) S CM 

A„(.s) 
which yields (3.1) for \t\ ^ f. 

We now consider the remaining case I rl < ~ and - < \s\. 
o l l 4 « I I 

If |s + f| ^ ^,then 
I I < - I I 7 F 

n 
and it follows by the left inequality in (3.8) that 

An(S + t) . . 4 . . 4 

x , , ^ C(/ i |5 | ) ^ C ( 1 + A Z | * | ) . 

If I < \s + f| è 7T then by (3.5) and (3.7) 

A„(j) 

s e n * . " 1 " 
4 

^ C(l + n|f|) 
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Finally i f7r< | . s + f | <7 r + J (since \t\ < | ) , then due to the periodicity of Xn(s) we 
have by (3.5) 

Xn(s + t) = A„(27T - | S + t\ ) 

I 1—4 

^ Ccn\27T - \ s + t\\ 

^ Ccn 

and combining with (3.7), we obtain 

K(s + 0 < c 

Xn(s) ~ ' 

Thus the proof of (3.1 ) is complete. • 
We are going to use the kernel Xn to average the function/ to be approximated. Let 

/ G LP(J), 1 ^ p < oo, be nonnegative and assume/ ^ 0. Define the averaged 
function 

f(x) =— f f(x + s)\n(s)ds . 

Then we have 

LEMMA 3.2. 7/"/ G LP(J), I ^ p ^ oo, and f are as above, then 

(0 ||/-/||MT)^Ca;(f,iv 

(3.9) (») w(f,t)p^ Cv(f,t)p, 

(III) sup „ ) ^ C(l + n|f|)4, |f| ^ TT. 

PROOF. Statement (i) follows from (2.3). Since Xn is positive and has mean value one, 
(ii) follows immediately from the identity A// = ^ 5-^ &h(f,x + t)Xn(i)dt. To prove 
(iii), we notice that since/ ^ 0 and nonnegative, it follows that/ > 0 on T so that the 
quotient is well defined. By (3.1) 

Xn(s)^ C(l+n\t\)4Xn(s-t). 

Thus 

f(x)=^- [V f(x + s)Xn(s)ds 
Z7T J-ir 
1 r« 

~ 2TT 

< 

< — H f(x + s)C(l + n\t\)4Xn(s-t)ds 
J—TX 

C(l + n\ t\ )4 r f(x + s)Xn(s - t)ds 

= C(l+n\t\)4f(x + t) 

and (iii) is proved. 
We are ready to prove the main result of this section. 
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THEOREM 3.3. Letf £ LP(J), 1 ^ p < oo, be nonnegative and assume f ^ 0. Then 
for each n ^ 1 //îere ejuste a trigonometric polynomial Tn of degree ^ n such that 

If- Tn 
^ Cu(f,-)p. n 

PROOF. Iff = c, c ^ 0, then we can take Tn := -c. Therefore we can assume that/ is 
not a constant. Let 

kn{t) = dn
[ ' 

sin tj 2 

where dn is the normalizing constant such that 

H kn(t)dt= 2TT . 
J—7T 

We shall use the convolution operator Ln(g) := ^ J-^ g(* + 0&n(0 ̂ - By (2.6), 

[* (l+n\t\)6kn(t)dt^ C. 
J —7T 

We define fe(x) = /(JC) + e, with e > 0 to be chosen later and let g(x) = f(x) be the 
averaged function. The function 

Tn(x) :=Ln(-,x) 

is well defined since g ^ e and is a trigonometric polynomial of degree < 3n. It follows 
from the positivity of the operator Ln that (see [2]) Ln(g)Ln(l/ g) > L„(l) = 1 and 
therefore 

(3.10) 

As in [2], we consider two sets, 

Tn(x) 
^ Ln(g) . 

El = 

Then by (3.10) 

(3.11) 

X G [—7T,7T) 
1 

1 Tn(x) M£l) 

'A • 

k-^n(g)||Lp(T) ^ O J ( # , ™)p 

where for the last inequality we used (2.3). 
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Forx E £2, we have 

0 ^ g(x) 
1 g(x) 

Tn(x) Tn(x) 
T„(x) -

1 /*7T 

Ï7T J-n 

1 " 

~g(x). 
1 

.g(x + t) 

1 " 

~gM. 
kn(f)dt 

1 r* 
In ng(x)-g(x+t)]^-ut)dt 

J-v Six + t) 
< 

g(x + t) 

^ /I kw - s ( * + °I C ( 1 + "l *\)4jcM dt 
2TT 

where for the last inequality we used the property (iii) of Lemma 3.2. The kernel An(t) := 
(1 + n\ t\ )4kn(t) satisfies (2.3) and therefore 

\g(x) -
1 

~Ux) lLp(E2) 

<Cu 

1 rir 

\2TT J-TT 

Kg, -)p 
n 

H \g(x + t)-g(x)\(l+n\t\)4kn(t)dt 
J—7T 

(3.12) 

Combining (3.11) and (3.12) with Lemma 3.2(i) and (ii) yields 

11/ - Tf \\LP(J) ^ | | / -ft \\LP(J) + ||/e -ft \\LP(J) + 

LP(J) 

ïc(e+.(f,l-)p). 

LpO) 

Thus the choice e — to (/, ^) (which is positive since/ is not a constant) concludes the 
proof of Theorem 3.3. • 

4. Approximation by Reciprocals of Algebraic Polynomials. We prove in this 
section the following improvement of the result of Leviatan, Levin and Saff [2]. 

THEOREM 4.1. Let f E Lp[—1,1], 1 = /? = oo, be nonnegative and assume f ^ 0. 
Then for each n ^ 1 there exists an algebraic polynomial Pn of degree ^ n such that 

(4.1) V-
1 

^ Cu^(f9-)p. 

Let/„ be the nonnegative function which satisfies (2.10). We shall follow the con
struction of the previous section by setting gn(6 ) := fn(cos 9 ) and letting gn(9 ) be the 
averaged function of gn (using the same n for averaging). Note that gn E LP(J). Now 
writing fn(x) = gn(0) where x = cos0 we observe that by virtue of the evenness of 
\n{t),fn{x) is an algebraic polynomial of degree ^ 2n. We summarize the properties of 
/„ in the following: 
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LEMMA 4.2. Withfn andfn defined as above, we have 

(4.2) 

(4.3) 

(4.4) 

||/„ -f„\\p ^ Cu>*(f, l
n)P 

\\<pfX^Cncj*(f,l-)p n 

| | / X ^ Cn2LO*(f, -)p . 

PROOF. Since Xn(t) is a kernel satisfying the properties of § 2,fn is one of the polyno
mials Pn which satisfy (2.11). • 

We are ready now to prove Theorem 4.1. 
Proof of Theorem 4.1. Again, we may assume that/ ^ c We follow the ideas of the 

proof of Theorem 3.3. We let ge(0 ) = gn(6 ) + e where gn(6 ) = fn(cos 0 ) and let 

Pn(x) := Ln( — , arccosx) 

Again we define 

*G l - U ] : 
Pn(x) 

> ge (arccos x) 

and £2 = [—1,1] \ E\. Then, we have 

1 

(4.5) 
Pn(x) 

ge(arccos;c) 

i /-7T 

2-7T J-ir 

LP{EX) 

ge (arccos x +1) — ge (arccos x) kn(t)dt 
Lp[-l,l] 

Notice that the Lp norm is with respect to x. Similarly, 

1 

(4.6) Pn(x) 
- ge (arccos x) 

LP(E2) 

< /
" 7T I \ A 

lg€(arccosx + t) — ge (arccos x) (1 + n\ t\ ) kn(t) dt 
. . - 7 T ' ' 

U - U J 

In other words, we have 

1 11 

P J M - I , I ] 

ge(arccosx + 0 — gt (arccos x) (l +n\t\)kn{f)dt 

% + c 

^ [ - 1 , 1 ] 

Now the kernel An(t) := (1 + n\ t\ )4kn(t) satisfies 

ln \t\An(t)dt<C/n 
J—it 
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and therefore by Theorem 2.1, we have 

(4.7) \fn + e 
Pn 

^ Cu*(f,-)p. 

Finally choosing e = UJ^ (f, ~^j we get by (4.2) and (4.7), 

V- Pn M-1,1] 

= ll/-/«lk[-i,i] + e + ]fn + e-
Pn ^[-1,1] 

and our proof is complete. 
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