FREE PRODUCTS OF LOCALLY IHDICABLE GROUPS WITH A SINGLE RELATOR

Benjamin Baumslag

Abstract

The method of proof of Magnus introduced in 1930 is adapted to prove the following theorem of Howie. If A and B are groups for which every finitely generated subgroup has an infinite cyclic image, and if one adds an additional relation (with obvious exceptions), then in the resultant group both A and B appear isomorphically.

We recall that a group is said to be locally indicable if every finitely generated subgroup has an infinite cyclic homomorphic image. For convenience, if R is an element of a group $G, G / R$ will denote G / N where N is the normal closure of R in G.

THEOREM 1. Let A and B be locally indicable groups and let $G=(A * B) / R$, where R is a cyclically reduced word of length at least 2. Then the canonical maps $\mathrm{A} \rightarrow \mathrm{G}, \mathrm{B} \rightarrow \mathrm{G}$ are injective.

This theorem, which is due to Howie [2] (see also references in his paper to the work of Brodskii and Short), is a generalisation of the Freiheitsatz of [3]. It is the object of this note to prove Theorem 1 using combinatorial methods like those of Magnus [3], in the style of [1].

Proof of Theorem 1. We argue by induction on the length λ of R. Let A_{0} (respectively B_{0}) denote the subgroup of A (respectively B) generated by those elements which appear in R. Then R regarded as a word in $A_{0}{ }^{*} B_{0}$ is cyclically reduced of length λ. Let $G_{0}=A_{0}{ }^{*} B_{0} / R$. Received 5 January 1984

[^0]If we can show that the canonical maps of A_{0} and B_{0} into G_{0} are injective, it will follow that

$$
G \cong A \quad A_{0}^{*} \quad \mathrm{G}_{0} \quad{ }^{*}{ }^{*}{ }_{0} \quad{ }^{B}{ }_{0}
$$

so that the canonical maps of A and B into G will also be injective. Hence we may assume, without loss of generality, that $A=A_{0}$ and $B=B_{0}$. In particular, if $\lambda=2$ (the initial case of the induction), then A and B are infinite cyclic groups and the result holds. Since $A=A_{0}$ and $B=B_{0}$, both are finitely generated, and hence each has an infinite cyclic image. By symmetry, it suffices to show that the canonical map of A into G is injective.

Case 1. $\quad B=\langle b\rangle \quad$ is infinite cyclic.
Let $D=\langle d\rangle$ be infinite cyclic. Then there is an epimorphism of A onto D with kernel N say and with $A / N=\langle a N\rangle$. This epimorphism induces a homomorphism of $A * B$ onto $D * B$, and suppose that under this homomorphism R is mapped to R_{1}.

Subcase A. Suppose that d occurs with zero exponent sum in R_{1}.
Thus R lies in the normal closure in $A * B$ of $N U B$. Put $b_{i}=a^{-i} b a^{i}$ and write R in terms of the b_{i} and the elements of N. At least two of the b_{i} must be involved in expressing R, since R is of length at least 4 and some $a^{r} n$ (r a non-zero integer and $n \in N$) must occur in R by our assumption that $A=A_{0}$.

Let s be the least suffix of $a b_{i}$ appearing in R and let t be largest. Let

$$
\begin{gathered}
K=N *\left\langle b_{s}\right\rangle *\left\langle b_{s+1}\right\rangle * \ldots *\left\langle b_{t}\right\rangle, K_{0}=N *\left\langle b_{s}\right\rangle *\left\langle b_{s+1}\right\rangle * \ldots *\left\langle b_{t-1}\right\rangle \\
\text { and } K_{1}=N *\left(b_{s+1}\right\rangle *\left\langle b_{s+2}\right\rangle * \ldots *\left\langle b_{t}\right\rangle .
\end{gathered}
$$

R is of length smaller than λ as a word in the free product $K_{0} *\left\langle b_{t}\right\rangle$. Hence by the induction hypothesis, K_{0} is embedded in $\bar{K}=K / R$. Similarly, R as a word in the free product $\left\langle b_{s}\right\rangle * K_{1}$ is of length less than λ and so K_{1} is embedded in \bar{K}. Thus G is the HNN

Free products

403
extension of \bar{K} with free element a and associated subgroups K_{0} and K_{1}, with a taking b_{i} to $b_{i+1}(s \leqslant i<t)$, and acting on the elements of N by conjugation in A. Thus N and hence A is embedded in G.

Subcase B. Suppose d appears with non-zero exponent sum δ in R_{1} and b appears with non-zero exponent sum B.

Adjoin a β-th root \hat{a} of a to obtain the group \hat{A} and a β-th root \hat{d} of d to obtain the infinite cyclic group \hat{D}. Then \hat{A} is again locally indicable (as can be shown using the subgroup theorem for a free product with an amalgamation) and there is an obvious homomorphism $\alpha: \hat{A} \rightarrow \hat{D}$ which takes \hat{a} to \hat{d} and a to d. Let $\hat{b}=\hat{b} a^{\delta}$ and $B=\langle\hat{b}\rangle$. Then it is easy to check that $\hat{A} * B=\hat{A} * \hat{B}$ by using the homomorphism definition of a free product. It is also clear that in the image of R under the homomorphism induced by α from $\hat{A} * \hat{B}$ into $\hat{D} * \hat{B}$, that \hat{d} appears with zero exponent sum. We can then apply subcase A.

Case 2. B arbitrary.
Then there exists an epimorphism ϕ of B onto an infinite cyclic group $C=(C)$. This induces a homomorphism of $A * B$ onto A * . Let R_{2} be the image of R under this map. If c appears with non-zero exponent sum in R_{2}, then if the length of R_{2} is 1 , then $A * C / R_{2}$ is the free product of A and a finite cyclic group and hence A is embedded in it, which implies the required result.

Otherwise if R_{2} is of length at least 2 , then we can use Case 1 to establish that A is embedded in $A * C / R_{2}$, and hence the result.

So we are left with the case that c appears with zero exponent sum in R_{2} which is itself of length at least two. This is the case dealt with in the last five paragraphs of page 173 of [2]; we repeat this argument for completeness.

Let K be the kernel of ϕ and let b be a pre-image of c under ϕ. Then R lies in the normal closure of A and K which has the form $L=\left({ }^{*} A_{i} \mid i\right.$ in the integers $) * K$, where $A_{i}=b^{-i} A b^{i}$.

Since $B=B_{0}$ it follows that at least two of the groups A_{i} are involved in R. Suppose s is smallest index such that A_{s} is involved in R, and t is the largest such index.

Define $K_{0}=A_{s+1} * \ldots * A_{t}{ }^{*} K$ and $K_{1}=A_{s}{ }^{*} \ldots{ }^{*} A_{t-1}{ }^{*} K$. Then R belongs to $L_{0}=A_{s}{ }^{*} K_{0}=A_{t}{ }^{*} K_{1}$, and all the groups $A_{s}, A_{t}, K_{0}, K_{1}$ are locally indicable. Let $G_{2}=L_{0} / R$.

Let λ_{2} denote the length of some cyclically reduced conjugate of R regarded as a word in $A_{S}{ }^{*} K_{0}$. Then $\lambda_{2} \leqslant \lambda_{1} \leqslant \lambda$. If $\lambda_{2}=\lambda$, then $s=t=0$, and R belongs to $A * K$ which contradicts $B=B_{0}$. If $\lambda_{2} \leqslant 1$, then R is conjugate in $A_{S}{ }^{*} K_{0}$ to an element of A or K_{0}. The first contradicts the fact that $\lambda \geqslant 2$, the second the choice of s. Hence $2 \leqslant \lambda_{2}<\lambda$.

By the inductive hypothesis, the canonical maps of A_{s} and K_{0} into G_{2} are injective. The result now follows since G is the HNN extension of G_{2} with b conjugating K_{1} onto K_{0}.

References

[1] B. Baumslag and S.J. Pride, "An extension of the Freiheitsatz", Math. Proc. Combridge Phiz. Soc. 89 (1981), 35-41.
W. Magnus, "Ueber diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitsatz)", J. reine angew. Math. 163 (1930), 141-165.

Department of Mathematics,
Imperial College of Science \& Technology,
Queen's Gate,
London SW7 2BZ
England

[^0]: Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 $\$ 22.00+0.00$

