FREE PRODUCTS OF LOCALLY INDICABLE GROUPS WITH A SINGLE RELATOR

BENJAMIN BAUMSLAG

The method of proof of Magnus introduced in 1930 is adapted to prove the following theorem of Howie. If A and B are groups for which every finitely generated subgroup has an infinite cyclic image, and if one adds an additional relation (with obvious exceptions), then in the resultant group both A and B appear isomorphically.

We recall that a group is said to be <u>locally indicable</u> if every finitely generated subgroup has an infinite cyclic homomorphic image. For convenience, if R is an element of a group G, G/R will denote G/N where N is the normal closure of R in G.

THEOREM 1. Let A and B be locally indicable groups and let G = (A*B)/R, where R is a cyclically reduced word of length at least 2. Then the canonical maps $A \rightarrow G$, $B \rightarrow G$ are injective.

This theorem, which is due to Howie [2] (see also references in his paper to the work of Brodskii and Short), is a generalisation of the Freiheitsatz of [3]. It is the object of this note to prove Theorem 1 using combinatorial methods like those of Magnus [3], in the style of [1].

Proof of Theorem 1. We argue by induction on the length λ of R. Let A_0 (respectively B_0) denote the subgroup of A (respectively B) generated by those elements which appear in R. Then R regarded as a word in $A_0^*B_0$ is cyclically reduced of length λ . Let $G_0 = A_0^*B_0/R$. Received 5 January 1984

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00

If we can show that the canonical maps of A_0 and B_0 into G_0 are injective, it will follow that

 $G \cong A \stackrel{*}{\xrightarrow{}} G \stackrel{G}{\xrightarrow{}} A \stackrel{*}{\xrightarrow{}} G \stackrel{G}{\xrightarrow{}} B \stackrel{*}{\xrightarrow{}} B \stackrel{G}{\xrightarrow{}} O \stackrel{*}{\xrightarrow{}} B \stackrel{G}{\xrightarrow{}} O \stackrel{*}{\xrightarrow{}} O \stackrel{G}{\xrightarrow{}} O \stackrel{*}{\xrightarrow{}} O \stackrel{G}{\xrightarrow{}} O \stackrel{*}{\xrightarrow{}} O \stackrel{G}{\xrightarrow{}} O \stackrel{F}{\xrightarrow{}} O \stackrel{F}{\xrightarrow{}}$

so that the canonical maps of A and B into G will also be injective. Hence we may assume, without loss of generality, that $A = A_0$ and $B = B_0$. In particular, if $\lambda = 2$ (the initial case of the induction), then A and B are infinite cyclic groups and the result holds. Since $A = A_0$ and $B = B_0$, both are finitely generated, and hence each has an infinite cyclic image. By symmetry, it suffices to show that the canonical map of A into G is injective.

Case 1. $B = \langle b \rangle$ is infinite cyclic.

Let $D = \langle d \rangle$ be infinite cyclic. Then there is an epimorphism of A onto D with kernel N say and with A/N = (aN). This epimorphism induces a homomorphism of A*B onto D*B, and suppose that under this homomorphism R is mapped to R₁.

Subcase A. Suppose that d occurs with zero exponent sum in R_1 . Thus R lies in the normal closure in A*B of NUB. Put $b_i = a^{-i}ba^i$ and write R in terms of the b_i and the elements of N. At least two of the b_i must be involved in expressing R, since R is of length at least 4 and some a^r n (r a non-zero integer and n \in N) must occur in R by our assumption that $A = A_0$.

Let s be the least suffix of a ${\rm b}_{\underline{i}}$ appearing in R and let t be largest. Let

$$K = N*\langle b_{s} \rangle * \langle b_{s+1} \rangle * \dots * \langle b_{t} \rangle , K_{0} = N*\langle b_{s} \rangle * \langle b_{s+1} \rangle * \dots * \langle b_{t-1} \rangle$$

and
$$K_{1} = N*\langle b_{s+1} \rangle * \langle b_{s+2} \rangle * \dots * \langle b_{t} \rangle.$$

R is of length smaller than λ as a word in the free product $K_0^{*(b_t)}$. Hence by the induction hypothesis, K_0 is embedded in $\overline{K} = K/R$. Similarly, R as a word in the free product $\langle b_s \rangle^* K_1$ is of length less than λ and so K_1 is embedded in \overline{K} . Thus G is the HNN

https://doi.org/10.1017/S000497270002164X Published online by Cambridge University Press

Free products

extension of \bar{K} with free element a and associated subgroups K_0 and K_1 , with a taking b_i to b_{i+1} (s $\leq i < t$), and acting on the elements of N by conjugation in A. Thus N and hence A is embedded in G.

Subcase B. Suppose d appears with non-zero exponent sum δ in R_1 and b appears with non-zero exponent sum $\beta.$

Adjoin a β -th root \hat{a} of a to obtain the group \hat{A} and a β -th root \hat{d} of d to obtain the infinite cyclic group \hat{D} . Then \hat{A} is again locally indicable (as can be shown using the subgroup theorem for a free product with an amalgamation) and there is an obvious homomorphism $\alpha: \hat{A} \rightarrow \hat{D}$ which takes \hat{a} to \hat{d} and a to d. Let $\hat{b} = \hat{b}a^{\hat{0}}$ and $B = \langle \hat{b} \rangle$. Then it is easy to check that $\hat{A} * B = \hat{A} * \hat{B}$ by using the homomorphism definition of a free product. It is also clear that in the image of R under the homomorphism induced by α from $\hat{A} * \hat{B}$ into $\hat{D} * \hat{B}$, that \hat{d} appears with zero exponent sum. We can then apply subcase A.

Case 2. B arbitrary.

Then there exists an epimorphism ϕ of B onto an infinite cyclic group C = (c). This induces a homomorphism of A * B onto A * C. Let R₂ be the image of R under this map. If c appears with non-zero exponent sum in R₂, then if the length of R₂ is 1, then A * C/R₂ is the free product of A and a finite cyclic group and hence A is embedded in it, which implies the required result.

Otherwise if R_2 is of length at least 2, then we can use Case 1 to establish that A is embedded in A * C/R₂, and hence the result.

So we are left with the case that c appears with zero exponent sum in R_2 which is itself of length at least two. This is the case dealt with in the last five paragraphs of page 173 of [2]; we repeat this argument for completeness.

Let K be the kernel of ϕ and let b be a pre-image of c under ϕ . Then R lies in the normal closure of A and K which has the form $L = (*A_i | i \text{ in the integers}) * K$, where $A_i = b^{-i}Ab^i$.

Since $B = B_0$ it follows that at least two of the groups A_i are involved in R. Suppose s is smallest index such that A_s is involved in R, and t is the largest such index.

Define $K_0 = A_{s+1} * \dots * A_t * K$ and $K_1 = A_s * \dots * A_{t-1} * K$. Then R belongs to $L_0 = A_s * K_0 = A_t * K_1$, and all the groups $A_s * A_t * K_0 * K_1$ are locally indicable. Let $G_2 = L_0 / R$.

Let λ_2 denote the length of some cyclically reduced conjugate of R regarded as a word in $A_s * K_0$. Then $\lambda_2 \leq \lambda_1 \leq \lambda$. If $\lambda_2 = \lambda$, then s = t = 0, and R belongs to A*K which contradicts $B = B_0$. If $\lambda_2 \leq 1$, then R is conjugate in $A_s * K_0$ to an element of A_s or K_0 . The first contradicts the fact that $\lambda \geq 2$, the second the choice of s. Hence $2 \leq \lambda_2 < \lambda$.

By the inductive hypothesis, the canonical maps of A_s and K_0 into G_2 are injective. The result now follows since G is the HNN extension of G_2 with b conjugating K_1 onto K_0 .

References

- B. Baumslag and S.J. Pride, "An extension of the Freiheitsatz", Math. Proc. Combridge Phil. Soc. 89 (1981), 35-41.
- [2] J. Howie, "On pairs of 2-complexes and systems of equations over groups", J. reine angewandte Math. 324 (1981), 165-174.
- [3] W. Magnus, "Ueber diskontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitsatz)", J. reine angew. Math. 163 (1930), 141-165.

Department of Mathematics, Imperial College of Science & Technology, Queen's Gate, London SW7 2BZ England

404