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ON THE KOTTWITZ-SHELSTAD NORMALIZATION OF
TRANSFER FACTORS FOR AUTOMORPHIC
INDUCTION FOR GL,

KAORU HIRAGA axp ATSUSHI ICHINO

To the memory of Professor Hiroshi Saito

Abstract. Automorphic induction for GL, is a case of endoscopic transfer, and
its character identity was established by Henniart and Herb, up to a constant of
proportionality. We determine this constant in terms of the Kottwitz-Shelstad
normalization of transfer factors, which involves certain e-factors.
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Introduction

Let F' be a nonarchimedean local field of characteristic zero. Let G = GLy,,
and let
H-= RGSE/F GLm1 X X RQSE/F GLmT,
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98 K. HIRAGA AND A. ICHINO

where F is a cyclic extension of F' of degree d and (mq+---+m,)d =n. Then
H is a twisted endoscopic group of G. Let G = G(F'), and let H = H(F).
By a result of Waldspurger [20, corollaire 1.7], we have a map

Tran$ : {virtual characters of H} — {w-twisted virtual characters of G’}

determined by matching orbital integrals. Here w is a character of F'* of
order d associated to E/F by class field theory.

Automorphic induction for GL,, asserts that for each irreducible tem-
pered admissible representation wgy of H, there exist an irreducible tem-
pered admissible representation m of G and a constant ¢ € C* such that
T®w =7 and

(0.1) Tran$ (trace(mp)) = c- trace(m o Ay,).

Here A, : ™ ® w — 7 is an intertwining operator. This was established by
Henniart and Herb [7] when r =1, and it is given by the composition of
the parabolic induction from H to GLyy,+...om, (F) with the automorphic
induction from GLyy, 4..ym, (F) to G in general. Henniart and Lemaire [§],
[9], [10] extended the fundamental lemma and the automorphic induction
to the case of positive characteristic. Also, the automorphic induction has
been extended to the case of inner forms of GL,, in [11].

The purpose of this paper is to determine the constant ¢ for automorphic
induction for GL,, in the case of characteristic zero. To be precise, Tran%
depends on a transfer factor A which is well defined up to a scalar. Also,
A, is well defined up to a scalar. In particular, we first need to normalize A
and A, to determine the constant c. Following Kottwitz and Shelstad [13],
we can take A and A, which depend only on an F-splitting spl; of G and
a nontrivial character ¢ of F' since G is quasi-split. Hence, c is well defined.

For n =2, Labesse and Langlands [14] proved that ¢ = 1. For arbitrary n,
Henniart and Lemaire [9] proved that ¢ does not depend on the represen-
tations and that ¢ =1 if F/F is unramified. In this paper, we will prove
that

c=1

in general (see Theorem 1.4). We remark that the transfer factor A involves
a certain e-factor which depends on the twisted endoscopic group H.

This paper is organized as follows. In Section 1, we recall the definition
of Tran$, and state the main theorem. We prove standard reductions in
Sections 24 and recall a result of Henniart and Lemaire [9] on the product
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formula for the constant ¢ in Section 5. These imply that we may assume
that £/F is tamely ramified, H = Resg/p Gy, and 7y = 1. To prove that
¢ =1 in this case, we will compute the two sides of (0.1) explicitly. In Section
6, we construct the intertwining operator A, by using a result of Shahidi
[17]. In Section 7, we compute the twisted character trace(m(f¢) o A,) for
a certain f¢ € C°(G). Since 7y = 1, it remains to compute the twisted
orbital integral for f& and the transfer factor A. Following Waldspurger
[19], we compute the twisted orbital integral and prove descent to topological
unipotent elements in Section 8. In Section 9, we compute the transfer factor
A explicitly. Using these and the fundamental lemma [19], we finish the proof
of the main theorem in Section 10.

NOTATION. Let F' be a nonarchimedean local field of characteristic zero.
We fix an algebraic closure F of F. Let I' = Gal(F/F) be the absolute Galois
group of F', and let Wg be the Weil group of F'. Let 0 = o be the maximal
compact subring of F, let p = pr be the maximal ideal of o, let w = wpg
be a generator of p, and let ¢ = gr be the cardinality of o/p. The valuation
ordr and the absolute value |-| on F' are normalized so that ordpw =1
and || =q~!. We extend |- | to the absolute value on F.

If G is a connected reductive algebraic group defined over F, let G =
G(F) be the group of rational points of G, let Ggc be the simply connected
cover of the derived group of G, and let G be the Langlands dual group
of G. If T is a maximal torus of G, let Ty, be the preimage of T in Ggc,
and let

Detv) = [ laty) -1

a€R(G,T)
for v € T, where R(G,T) is the set of roots of T in G.

§1. Statement of the main theorem

Let G = GL,,. Let spl; = (Bo, To, {Xa}) be an F-splitting of G, and let
1 be a nontrivial character of F'. Then spl; and ¢ determine a character
x of Uy, where Uy is the unipotent radical of By and

x(exp(zXa)) = ¢(z)

for z € F and a simple root « of Ty in Bg. We call (Bg,x) a Whittaker
datum for G.

Letac Hl(WF,Z(G’)), where Z(G’) is the center of G. Let (H,H,s,£) be
an endoscopic datum for (G, 1,a) (see [13, Section 2.1]).
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Since G is quasi-split over F, we have the absolute transfer factor Ay
(see [15, Section 3.7], [13, Section 5.3]). Recall that Ay is a function on

{G-regular semisimple elements in H}

x {regular semisimple elements in G}

given by the product of five terms:
Ao=Ar-An - Aq, - Aq, - Ary.

To be precise, we implicitly fix an F-splitting sply = (Bu,0, Th0,{Ya}) of
H and a T-splitting sply = (B, 7T,{Xs}) (resp., sply = (Bu, T, {Va})) of
G (resp., H). Moreover, by replacing (H,H,s,£) by an endoscopic datum
(H,H,Int(g)(s),Int(g) o &) with some g € G if necessary, we assume that
&(By) C B and that &(Ty) =T . However, A depends only on spl. Fol-
lowing [13, Section 5.3], we define a normalized transfer factor A = Ag g

by
A=¢e(V,9)- Ao,
where
(1.1) V=X*(To)®C— X*(Tup)®C

is a virtual representation of I" of dimension zero and ¢(V,) is the local
constant as in [18, (3.6)]. Then A depends only on the Whittaker datum
(Bo, x) associated to spl; and 1.

REMARK 1.1. By [11, Proposition A.2], the transfer factor given by Hen-
niart and Herb [7] agrees with A if E/F is unramified, and it agrees with
A up to a scalar in general.

Let w be the character of F’* associated to a. We write w(g) = w(det g)
for g € G. Fix Haar measures dg and dh on G and H, respectively. For a
regular semisimple element v € G such that G, C kerw and f¢ € CX(G),
put

Wi 4G G 1.9
I, f7) = w(g) (9™ v9) o
G\G
where G, is the centralizer of v in G and dt is a Haar measure on G.,.
Similarly, for a G-regular semisimple element vz € H and f7 € C®(H),

put
dh
Tom M= [ e g
Hop \H u
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where H,,, is the centralizer of vy in H and du is a Haar measure on H,,, . If
g is a norm of «y, then we have H,, = G, C kerw, and we take compatible
measures dt and du.

By a result of Waldspurger [20, corollaire 1.7], for each f¢ € C2°(G) there
exists ff € C°(H) such that

TOve, 1) =3 Alyr, )2 (4, f9)
Y

for all G-regular semisimple elements v € H. Here the sum is taken over
a set of representatives for the conjugacy classes of v € G whose norm is
vi. We say that f¢ and f¥ have matching orbital integrals. For a virtual
character 6 of H, we define an w-invariant distribution Tran% () on G by

Tran{} (0)(f€) = 0(f™)

for f¢ € C°(@G). Here we say that a distribution D on G is w-invariant if

D(Ad(g)(f%)) =w(g) ' D(f%)

for all g € G and f¢ € C(G).

On the other hand, by a result of Henniart and Herb [7, Theorem 1.3],
for each irreducible tempered admissible representation 7w of H there exist
an irreducible tempered admissible representation 7 of G on a space V,; and
a constant ¢ € C* such that 7 ® w = 7 and such that

(1.2) Trang(J(ﬂ'H)) =c-JY(m).

Here J(rg, f7) = trace(rg(f7)) for fH € C*(H), and J¥(m, f%) =
trace(m(f%) o Ay) for f& € C®(G), where A, : Vi — Vy is an isomorphism
such that

Ay o (m@w)(g) =7(g) oAy

for all g € G. We remark that J“(m) and J(7wy) depend on dg and dh, but
the constant ¢ does not depend on the choice of Haar measures. Also, J“ ()
depends on the choice of A,. Since 7 is generic, we can normalize A, so
that

Ao A, = A,

where \:V; — C is a Whittaker functional with respect to x.
We now recall a result of Henniart and Lemaire [9].

https://doi.org/10.1017/50027763000010606 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000010606

102 K. HIRAGA AND A. ICHINO

THEOREM 1.2 [9, théoreme 4.11]. The constant ¢ does not depend on 7.
Moreover, c=1 if E/F is unramified.

REMARK 1.3. Henniart [6, théoréme 2| proved an analogous result for
F=R.

Our main result is as follows.

THEOREM 1.4. We have
c=1.

REMARK 1.5. Arthur and Clozel [1] proved an analogous result for base
change for GL,. Also, assuming certain properties of tempered L-packets,
Waldspurger [21, lemme 4.8] proved an analogous result for special orthog-
onal groups.

82. Reduction to the standard L-group structures

We retain the notation of Section 1. Let (H,H,s,&) be an endoscopic
datum for (G, 1,a).

Let v € G be a regular semisimple element. Let v € H be a G-regular
semisimple element. Assume that vy is the image of . Let T (resp., Tpx)
be the centralizer of v (resp., vg) in G (resp., H). Let ig: Tg o — To be
the dual of ¢1: T — Ty. We choose an admissible embedding

Ty —— T
Int(h_l)i ilnt(g_l)

io
Thro —— To

such that i(yy) =, where h € Hsc(F) and g € Ggc(F).
Let A be the transfer factor associated to (H,H, s,&).

LEMMA 2.1. If A’ is the transfer factor associated to an endoscopic datum
(H,H,s,&) with s € G, then

A =A.
Proof. By [11, Section 10], we have
ses- (Z(I:I)F)O.

Hence, the image of s’ in 7T0(T 81;1) is equal to that of s. This completes the
proof. O
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Recall that H is a split extension
1—H—H— Wp — 1.

Let “H = H x Wy denote the L-group of H with an action of I' on H
determined by Spl Since the derived group of H is simply connected,
the identity map H—H gives rise to an L-isomorphism H — L H (see [13,
Lemma 2.2.A]). This isomorphism is well defined up to a 1-cocycle of Wr
in Z(H).

We now take H = LH. If b is a 1-cocycle of W in Z(H), let wy, be the
character of H associated to b. Let &, : “H < “G be the L-embedding given
by

&(h x w) =&(b(w)h x w)
for he H and w € Wp. Let A, be the transfer factor associated to an
endoscopic datum (H,TH,s,&,). Let ¢, be the constant for (H,%H,s,&,)
given by (1.2).

LEMMA 2.2. We have

Ap(ve, ) =wo(vm) - Alym,7)-

Proof. 1t is easy to see that Ay, Ay, Ay, , Ary, and (V1) do not depend
on b. Let &7 : 2T — LG, and let &py, : YTy — U'H be as in [15, Section 2.6].
We use the same y-data to compute the transfer factor Ay. In particular,

&1 and &1, do not depend on b. Let £ o &, = a - &, where a is a 1-cocycle
of Wr in 7. Then we have

§polry =(§0b)-a-&r.

Thus, we obtain

Aty b (Va5 7) = wo(va) - Arir, (Ve Y)-
This completes the proof. 0
LEMMA 2.3. The constant ¢, does not depend on b.

Proof. Let ¢y be a tempered Langlands parameter for H. Put ¢p; =
b=!. ¢y. Let 7y (resp., THyp) be the irreducible tempered admissible rep-
resentation of H associated to ¢g (resp., ¢mp). By [3, Lemma VII.2.1], we
have

J (i psver) = wp(ve) ™t J(Tr,vH).
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Hence, we have
Tran%b (J(Tmp)) = Tran$ (J(mm))

by Lemma 2.2. Here Tranf[’b is the transfer for (H,"H,s,&). Since &, o
by =Eo ¢y, the assertion follows. i

Let m = (myq, ..., m,) be a partition of n/d, and let (Hp, * Hm, Sm, &m) be
an endoscopic datum for (G, 1,a) defined in [11, Section 10]. To prove Theo-
rem 1.4, we may assume that (H,H,s,&) = (Hm, “Hm, Sm,&m) by Lemmas
2.1 and 2.3.

For convenience, we recall the definition of (Hp,”Hm, Sm,&m). Let ¢ =
e2™V=1/n et g be the unique 1-cocycle of Wg in Z (G) representing a. Let
E be the cyclic extension of F' of degree d associated to kera by class field
theory. Let o be the generator of Gal(E/F) such that a(c) = ¢"/?. We fix
an element w, € Wp in the preimage of o.

For each integer m, let H,, = Resg/p GLp, let H,, = GL,,(C)?, and let
LH,, = f[m X Wr. Here Wg acts on I—Afm trivially, and o acts on fIm by

(glv' "7gd) — (gd7g17' .. 7gd—1)‘

We take the standard splittings sply —and spl i, of H,, and flm, respec-
tively. For x € C*, put

sm(z) = diag(x - 1m,C”/dx N P ,C(d_l)”/dm - 1,,) € GLe(C).
We define a homomorphism &, o : ' H,;, — GL,4(C) by
Emo((g1,---,94) x w) = diag(g1, ..., 9a)
for (g1,...,94) € H,, and w € Wg, and

1,
§m’0(1 X wo') =

1m

Let Hyy =H,,, X - x Hy, |, let Hy = Hypy, X - X Hyy, , and let LHy, =
Hy x Wge. Put

S = diag(sm, (21), ..., Sm, (zr)) € GL,(C),
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where we choose z1,...,z, € C* such that
{xia Cn/dxi’ “e 7C(d_1)n/d$i} N {xja Cn/dxja s 7C(d_1)n/dxj} =0
if 5 # j. We define a homomorphism &y, : “Hy, — “G by
§m((h1, ceey hr) X w) = diag({ml,g(hl X w), e 7£mr,0(hr X w)) X w

for (h1,...,hy) € Hp, and w € W, Note that the equivalence class of (Hyy,
L Hpm, $m,&m) does not depend on the choice of z1,...,z,.

83. Reduction to the standard Whittaker data

We retain the notation of Section 1. Let (B, x) be the Whittaker datum
for G associated to spl; and 1, where spl; is an F-splitting of G and ¢ is a
nontrivial character of F'. Let m be a partition of n/d, and let (H,H, s,£) =
(Hm, “Hum, 5m,&m) be the endoscopic datum for (G,1,a) defined in Sec-
tion 2.

Let t € Ty, and let sply; = Int(f)(sply). Let A’ be the transfer factor with
respect to sply; and 1.

LEMMA 3.1. We have
A =w(dett) - A.

Proof. By replacing spl; by its Gsc-conjugate if necessary, we may
assume that spl; is the standard splitting of G. Let Ty be a maximal
torus of Hy, which is maximally split. We choose an admissible embedding
Ty — G, and let T be its image. We identify Ty with T. Then we have

an exact sequence

1—>Tsc—>Tﬂ>Gm—>1

and its dual R R
1+—Toq+—T+—C*+— 1.

These induce long exact sequences

o — HY(F,T) — HY(F, Gy) —> HY(F, Tse) — HY(F,T) —» - -
and

e H (W, T) ¢— H (Wp, C*) 2 HO (W, Toa)
— HWp,T) — -
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It is easy to see that
S(the image of sy, in Tad) =a.
Hence, we have
(3.1) (6(x), $m) = w(x)
for x € F'*, where
()t HY(F, Tse) x mo(T1) — C*

is the Tate-Nakayama pairing.

For g€ G, let g=z-§ € Ggc(F), where we choose z € F’* such that
detg = z=™. Then we have Int(g) = Int(g) and 2z~ € F*. Let z be the
element in H'(F, Z(Ggc)) induced by

for 7 € I'. We remark that the 1-cocycle of I' as in [13, p. 33| is given by

7+ g~ 17(g), which is the inverse of ours. We can define (z, sy,) by using the

natural homomorphism H*(F, Z(Ggc)) — H(F, Tsc). Since 6(z") is equal
to the image of z in H'(F, Ty.), (3.1) implies that

(3.2) (Z,5m) = w(2") =w(det§) L.

Hence, the lemma follows from [13, Section 5.3] and (3.2). U
LEMMA 3.2. The constant ¢ given by (1.2) does not depend on (B, X).

Proof. Let (B{, x') be another Whittaker datum for G associated to spl;
and ¢, where sply; is an F-splitting of G and ¢ is a nontrivial character
of F. By [13, Section 5.3], A’ does not depend on the choice of spli; and v’
giving rise to the same (B(, x’). By replacing sply; and ¢ if necessary, we
may assume that 1)’ = 1. Moreover, by replacing sply; by its Gsc-conjugate
if necessary, we may assume that sply, = Int(f)(sply) for some t € Ty. By
Lemma 3.1, we have

Tran’ ¢ (J(7r)) = w(dett) - Tran$ (J(mr))

for an irreducible tempered admissible representation 7y of H, where Tran’ fl

is the transfer with respect to (B, x’).
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On the other hand, let 7 be the irreducible tempered admissible represen-
tation of G such that T @ w = 7. Let A : V; — C be a Whittaker functional
with respect to . Since x/(u) = x(Int(t~)u) for u € Uy, the map X : V; — C
given by N = Mo (t7!) is a Whittaker functional with respect to x’. Thus,
we obtain

Al =w(dett) - A,

where A/, : V; — V. is the intertwining operator with respect to A’. This
yields the lemma. O

§4. Reduction to Levi subgroups

Let G = GL,, and let a € H'(Wp, Z(G)). Let ¢ be a nontrivial character
of F. Let (H,"H,s,¢) be an endoscopic datum for (G,1,a). We fix an
F-splitting splg = (Bg, To,{Xa}) (resp., sply = (Buo, Two,{Ya})) of G
(resp., H) and a I'-splitting spls = (B,T,{Xa}) (resp., sply = (Bu, TH,
{Va})) of G (resp., H). We may assume that the image of Wg in G under &
is bounded. Moreover, we may assume that £(Bg) C B and that £(Tg) =T .

We first prove descent to Levi subgroups of H. Let L be a Levi sub-
group of H, and let “L be the Levi subgroup of “H associated to L.
Let (L,"L,sp,&1) be the endoscopic datum for (G,1,a), where s; = s - 2
with some z € £(Z(L)°) such that the connected centralizer of sy in G
is £(IA}), and &1 = |z, We take the F-splitting spl; of L and the I'-
splitting spl; of L given by spl; = (BuoNL,Tho,{Ya}aesw)) and spl; =
(B N L, Ty, {Vataes)), respectively. Here S(L) is the set of simple roots
of Troin BgoNL. Let Ag i and Ag 1, be the transfer factors with respect
to spl; and v as in Section 1.

LEMMA 4.1. Let v € G be a regular semisimple element. Let yg € L be a
G-regular semisimple element. If vy is the image of v with respect to the
endoscopic datum (L,*L,sr,€r) for (G,1,a), then we have

Ac,r(va,v) = Aq,ua(VH,7Y) - Drlvm)

Proof. Assume that g is the image of v with respect to L. Let T
(resp., Tp) be the centralizer of 7 (resp., yg) in G (resp., L). Let ig:
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Tpo— To be the dual of €1 : T — Ty. We choose an admissible embed-
ding
Ty _t T

Int(hl)l llnt(gl)

20
Thro —— To

with respect to L such that i(yy) =+, where h € Lgc(F) and g € Gsc(F).
We identify h with its image in Hgc(F) and regard i as an admissible
embedding with respect to H. We can take a-data {a,} and x-data {xa}
so that aq =1 and x, =1 for a € R(H, Ty) — R(L, Tx) since such an « is
asymmetric (see [15, Section 2.1]).

By deﬁnition, we have AG,L,I (’YH,’}/) = AG,HJ (’}/H, ’7) and AG,L,Hh (’yH, ’7)
= Ag,mn (va,y) = 1. Since xo =1 for a € R(H,Ty) — R(L, Tp), we have

Ac.ru(vm:v) = Ac,uu(vm,7)-
Let =L or H. Let &7 and &7, be as in [15, Section 2.6] with respect to

e. By definition, we have &&= ¢l Let n(wy, (o)) be as in [15, Section 2.6]

with respect to e. Then we have wf, (o) € UL, Thp) = Q(L, Tr), so that
n(w%H (0)) = n(w:,HH (o)) by the definition of spl;. Let rp and Sp/po
in [15, Section 2.6] with respect to e, where py and p are gauges as in [15,

be as

p. 235] and [15, p. 238], respectively. To be precise, we identify R(e,Tfr)
with R(e,Tr0) = R(8,Tx), where R(s,Tyr) is the set of coroots of Ty in #,
and we take gauges p§ on R(e, T ) so that the restriction of p& to R(L, Ty)

is equal to p§. If « € R(H, Ty) — R(L, Tp), then o does not contribute to

Tfo since xo =1, and « does not contribute to sf/po since « is asymmetric.

Indeed, we have po(7~'(a)) = po(a) and p(r~!(a)) = p(a) for 7 € T and

a€ R(H,Ty)— R(L, Tg). Hence, we have rﬁo = rpHo and sﬁ/po = sgpo. Thus,
we obtain §%H = {gﬁH, and hence Acg 11, (VH,7Y) = Ac,H,111, (VH,7). This
completes the proof. 0

Let ¢1, be a tempered Langlands parameter for L. Let ¢y be the com-
position of ¢, with the embedding “L ¢ “H. Put ¢g = &1, 0 ¢r. Let 7,
7wy, mg be the irreducible tempered admissible representations of L, H, G
associated to ¢, ¢, ¢, respectively. As in (1.2), we define ¢y, and cy by
Tran$ (J(r1)) = cr, - J¥(ng) and Tran$(J (ng)) = cg - J¥(7q), respectively.

LEMMA 4.2. We have
Cr, =CH.
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Proof. By [11, Lemma 8.8] and Lemma 4.1, we have Tran%(J(rz)) =
Tran$(J(mgr)). This completes the proof. [

We next prove descent to Levi subgroups of G. Let M be a Levi sub-
group of G, and let “M be the Levi subgroup of LG associated to M.
Assume that ¢(PH) c “M. We may regard (H,“H,s,¢) as an endoscopic
datum for (M, 1,a). We take the F-splitting spl;; of M and the I'-splitting
spl,, of M given by sply; = (Bo "M, Ty, {Xa}aesow)) and sply = (BN
M, T, {Xa}aesaw)), respectively. Here S(M) is the set of simple roots of T
in Bo N M. Let Ag g (resp., Ayr,m) be the transfer factor with respect to
spl; and v (resp., sply,; and ) as in Section 1.

LEMMA 4.3. Let v € M be a G-reqular semisimple element. Let v € H
be a G-reqular semisimple element. If vy is the image of v with respect to

the endoscopic datum (H,“H,s,&) for (M, 1,a), then we have

Anra(va,y) = Ac,u(VE,7Y) -

Proof. Assume that g is the image of v with respect to M. Let T
(resp., Tg) be the centralizer of v (resp., yg) in M (resp., H). Let ig :
Ty — To be the dual of £ : T — Tp. We choose an admissible embedding

with respect to M such that i(yg) = v, where h € Hgc(F) and gy €

Mg (F'). We regard i as an admissible embedding with respect to G by
using the image gg of gy in Gsc(F). We can take a-data {a,} and x-data
{Xa} so that aq, =1 and x, =1 for a« € R(G,T) — R(M, T) since such an
« is asymmetric (see [15, Section 2.1]).

By definition, we have Aps g, (Ya,7Y) = Ag,m 1 (Ya,y) = 1. Since
Xa =1fora € R(G,T)—R(M,T), wehave Ay g 11(ve,Y) = Ac,au(vw,7)-

Let e =M or G. Let T, (resp., T¢ ) be the preimage of T (resp., To) in
esc. Let m(ors) = (o )n(wrs (0)) and A(TS,) € HY(F, Tg,) be as in [15,
Section 2.3]. Then the image of wpwm (o) = Int(g3,/0(9m)) € Q(Msc, THL.)

0,sc
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in Q(GSC,T&C) is equal to wya (o) = Int(g;'o(g9c)), so that the image of
n(wpm (o)) in Gse(F) is equal to n(wpg (o)) by the definition of sply,.
Since aq =1 for a € R(G,T) — R(M, T), the image of (o) in TS(F)
is equal to z(opg). Hence, the image of m(opu) in Gsc(F) is equal to
m(oqg), so that the image of MTM) in HY(F,TS) is equal to A(TS). Let
s3. € mo((T'/Z(%))") be the image of s € T under

T—1T, 7 7/2(6) T/Z(M)

| |

mo((T/Z(G)") —— mo((T/Z(M)")

In particular, the image of s$ in m((T/Z(M))") is equal to s¥. Thus, we
obtain

AM,H,I(’YH/Y) = <)\(TS](\:/[),S§\~/[> = <)‘(TSCC;)7Sg> = AG,H,I(’YH/Y)'

Let 7 and &7, be as in [15, Section 2.6] with respect to e. By definition,
we have 5%[ = §qu Let n(wy(0)) be as in [15, Section 2.6] with respect

to e. Then the image of wh () € Q(M, To) = Q(M,T) in G, T) is equal
to wf (), so that n(wd!(0)) = n(wf(s)) by the definition of sply,. Let

7y, and s;/po be as in [15, Section 2.6] with respect to e. To be precise,

we take gauges p§ on R(e,T) so that the restriction of p§ to R(M,T) is
equal to p}!. If a € R(G,T) — R(M, T), then o does not contribute to &

Po

since xo =1, and o does not contribute to sf/po since « is asymmetric.
M _ .G M _ G i eM _ ¢G

Hence, we have r,; =7, and Spipo = s.p no” Thus, we obtain {7 = &7 and

A g, (Ye, ) = A, 1, (Ve, ). This completes the proof. 1

Let ¢ be a tempered Langlands parameter for H. Put ¢g =& o0 ¢g. We
may regard ¢¢ as a tempered Langlands parameter ¢, for M. Let 7y,
T, TG be the irreducible tempered admissible representations of H, M, G
associated to ¢, O, G, respectively.

Let Ug be the unipotent radical of Bg, and let x be the generic character
associated to spls and . Put x™ = x|y,nar- Then x is the generic char-
acter associated to sply, and 1. Let AM : V. = — V. = be the intertwining
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operator such that AM o (my; ® w) = mpr 0 AM and AM o AM = A\M | where
MV, — C is a Whittaker functional with respect to M.

We now construct the intertwining operator .Ag Vi — Vi, explicitly.
We may assume that

M= {diag(gl,...,gr) lg1 € GLpy,. .., 00 € GLmT},

where mj + - - - +m, =n. We can take the standard splittings spl, and spl,,
of G and M, respectively. Then we have ng = Ind%(ms), where P = MN is
the standard parabolic subgroup of G and the space V, consists of locally
constant Vr, -valued functions ® on G such that

®(mng) = 6/° (m)mpr(m)@(g)

forme M, née N, g€ G. Here dp is the modulus character of P. We define
AS by
(AS®)(9) = w(g) AL ®(9)

for ® € V;, and g € G. Then we have AS o (1¢ @ w) =75 0 AS.

LEMMA 4.4. We have
Ao AG = \C,

where \© : Vrg = C is a Whittaker functional with respect to x.

Proof. By [16, Proposition 3.1], we may assume that the Whittaker func-
tional A is given by

AC (@) = / M (@ (uwou) X () ot

for ® € V,, where

1,
wp =
1mr
and
1, * *
U = *
1m1
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Since myr ® w =y, the order of w divides my,...,m,, so that w(wgy) = 1.
Hence, we have

A (ACD) = / A (AG @ (wou')) x (u') du’

!

= // MM (AM w(wou!) @ (wou')) x (u') du’

= // M (A%(I)(wou’))x(u’) du’

= [ A @) X

=% (®). 0
As in (1.2), we define cp; and cg by Tran? (J(rg)) = car - J*(mar) and
Tran$(J(rg)) = cq - J*(7@), respectively.
LEMMA 4.5. We have
M = Cq-

Proof. By [11, Lemma 8.6] and Lemmas 4.3 and 4.4, Tranj? (J(rg)) =
ey - J¥ () implies that

Trang(J(ﬂ'H)) =cyp - JY(mq).
This completes the proof. 0

§5. Reduction to tamely ramified cyclic extensions

Let E be a cyclic extension of F' of degree d. We first refine a result of
Henniart [4, lemme 3.6], [5, Section 3].

LEMMA 5.1. There exist a cyclic extension E of a number field F of degree
d and a place vy of F such that
e vy is inert in E, and B, /Fy, is isomorphic to E/F;
o £, /F, is tamely ramified if v # vy is a nonarchimedean place of F and w
s a place of E lying above v; and
o [, =ZC if v is an archimedean place of F.

Proof. We first recall the Grunwald-Wang theorem, from which the lemma
follows. Let F be a number field. For each positive integer r, fix a primitive
2"th root of unity &, such that {3“ =& Putn, =&+ &1 Note that 1y = 0.
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Let s > 2 be the integer such that ns € F but 7541 ¢ F. Let Sy be the set of
places v of F lying above 2 such that —1, 2+ ns, —(2 + 7s) are not square
in [F,,. Let S be a finite set of places of F, and let d be a positive integer.
We say that we are in the special case if

o —1,2+ms, —(2+mns) are not square in I,

° 2s+1 |d,

e SpCS.

For v € S, let w, be a character of F; of order dividing d. Assume that
(5.1) I w@+n)¥?=1

vESy

if we are in the special case. Then, by the Grunwald-Wang theorem, there
exists a character w of A]? JF* of order dividing d such that w, =w, for
v € S (see [2, Chapter X, Section 2, Theorem 5]).

Let p be the residual characteristic of F. Fix a character w of F'* of order
d associated to E/F by class field theory.

We first assume that p # 2. By the weak approximation theorem and
Krasner’s lemma, we can take a number field F and a place vy of F so that
Fy, =2 F and F, = C if v is an archimedean place of F. Let S, be the set of
archimedean places of F, and let S’ the set of nonarchimedean places v of F
such that the residual characteristic of F,, divides 2d. Put S = S, US’U{wp}.
Then we have Sy C S and vy ¢ Sy. We take

{w if v =1y,
Wy =
1 if v# .
Then (5.1) holds, and hence there exists a character w of Ay /F* of order
d such that w, =w, for v € S. Let E be the cyclic extension of F of degree
d associated to w by class field theory. By construction, v is inert in E,
Eyy/Fy, is isomorphic to E/F, and E,, = F, for v € S — {vg}. Here w is a
place of E lying above v. If v ¢ S, then the residual characteristic of F,, does
not divide d, so that E,,/F, is tamely ramified.
We next assume that p =2. We modify the argument above as follows.
Let F' be the unramified extension of Q2 of degree [F': Q2]. Since Q2(&,)
is a totally ramified extension of Qo of degree 2"~1, we have 7, ¢ Fifr>3.
Also, —1, 2, —2 are not square in F. Recall that 2 is split in Q(v/=1).

By the weak approximation theorem and Krasner’s lemma, we can take an
extension F of Q(v/—7) and two places vy, v; of F so that F,, & F, F,, 2 F,
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and F, 2 C if v is an archimedean place of F. In particular, s =2 and
v1 € Sp. Put S =S5 US"U{vp}. Then we have Sy C S. Moreover, we are in
the special case if and only if 8 | d.

For v € S, we choose a character w, of F} as follows. Fix an unramified
character & of F'* of order d. Note that &(2)%2 = —1 if d is even. If we are

in the special case, vg € Sp, and w(2)%2 = —1, we take

w if v=1y,
wy =<4 w ifv=uwq,
if v §é {Uo,Ul}.

w if v =y,
Wy =
1 if v# .
Then (5.1) holds if we are in the special case. Indeed, if we are in the special
case and vy € Sy, then we have

IT wo@+m)%2 = w(2)? - w, ()% = 1.
vES)

=

Otherwise, we take

Hence, there exists a character w of AIF JF* of order d such that w, =w,
for v € S. Let E be the cyclic extension of F of degree d associated to w
by class field theory. By construction, if we are in the special case, vy € Sp,
and w(2)¥? = —1, then vy is inert in E and E,, /F,, is unramified. This
completes the proof. 0

Let w be a character of F'* of order d associated to E/F by class field
theory. Fix a character w of Ay /F* of order d associated to E/F by class
field theory such that w,, =w. Let G = GLg, and let H = Resg/p Gp,. We
fix an F-splitting spl; of G and a nontrivial character ¢ of Ar/F. For each
place v of F, spl; and % induce an F,-splitting spl; of GL,; and a nontrivial
character of 1, of F,, respectively.

We now recall a special case of a result of Henniart and Lemaire [9] on
the product formula for the constant.

PROPOSITION 5.2 [9, section 4.6]. Let wg be a unitary character of E*.
Then there exists a unitary character g = @, Hp, of AE JE* such that

My =7 and
H cy=1
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for a sufficiently large finite set S of places of F which contains vy. Here
¢y € C* is the constant for Iy, given by (1.2).

§6. Intertwining operators

To prove Theorem 1.4, we may assume that

F is a tamely ramified cyclic extension of F' of degree d,
G = GLyg,

(H,H,5,6§) = (Resg/p G, “Hpm, S, &m) with m = (1),
splg; is standard,

1 is of order zero, and

Tg=1
by Theorem 1.2, Proposition 5.2, and Lemmas 2.1, 2.3, 3.2, 4.2, 4.5, and
5.1. The rest of this paper is devoted to the proof of Theorem 1.4 under
this assumption. In this section, we construct the intertwining operator A,
explicitly.

Let e and f be the ramification index and the residual degree of E/F,
respectively. Note that d = ef. Fix a character w of F'* of order d associated
to E/F by class field theory. Then w is trivial on 1+ p and the restriction
of w to 0 is of order e.

Recall that By = ToUjy is the standard Borel subgroup of G, where T
is the subgroup of diagonal matrices and

U(): {’LL: (ui,j) e G | U5 = 1, Ui 5 =0 lf’L>]}
The generic character x of Uy associated to spls; and v is given by
x(u) =(ura + -+ ug-1.4)

for u € Uy.
Let u be the character of Ty defined by

p=18w'® WV Vewew™ . .guwll It g...gu!
®w2@—1®“'®wef—1'
For s = (s1,...,584) € C?, we put
ps = puf - %
where [t|® = [t1]°t -+ - |tg|%¢ for t = diag(t1,...,tq) € Tp. Let

T = Indg0 (1s)
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be the principal series representation of G on the space Vs of locally constant
functions ® such that

,(tug) = 84 () 11s(t)s(g)

for t € Ty, ue Uy, g € G. Here dp, is the modulus character of By, and G
acts on Vy by right translation. Let

g : Vo —C

be the Whittaker functional given by

where
0 0 1
0 10
wo = .
1 0 0

and du is the Haar measure on Uy such that vol(Ug(0)) = 1. We write
T = T, V=", A= Ao

Then 7 is the automorphic induction of the trivial representation of H.
Let i/ be the character of Ty defined by

Ml:w®we+1®'“®we(f—1)+1®_“®we—1®w26—1®“.®wef—1®we
®...®w5(f—1)®1'

Note that ' = pw. For s € C, we put u, = p'| - |°. We define a principal

series representation 7/, = Ind$ (1) of G on the space V/ and a Whittaker

0

functional
NV —C
similarly. We write
7’ =, V=V, N =X
We define an isomorphism
AV — V'
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as vector spaces by
A(®)(g) = ®(9)w(9g)
for ® € V and g € G. Here we write w(g) =w(detg) for g € G.
LEMMA 6.1. We have
Ao(m@w)=7"0A.
Proof. Let ® €V, and let g,¢' € G. Then we have
A((r@w)(g)®)(9) = A(r(g")®)(9)w(g') = m(g")2(g)w(g)w(g")
= (99" )w(gg')

and
7' (g)A(®)(g) = A(®)(99") = ®(99")w(gg)- 1
LEMMA 6.2. We have

NoA=w(—1)Hd=D/2. ),

Proof. Let ® € V. Then we have

N(A®)) = A(®) (wou) x(u) du

Ug

— / O (wou)w(wou) x (u) du
Uo

:w(wo)/U O (wou)x(u) du

=w(wp) - \(P). 0
Let P be the standard parabolic subgroup of G with Levi factor

={(% 5)

L= {diag(gl,lf) eL | g1 € GLd_f},
Ly = {diag(14_f,92) € L | g2 € GLy}.

g1 GGLd,f,gg S GLf}.

Let
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For ¢+ =1,2, put
L;
W;,i = IndBOmLi (M;,i)a

where 1 ; = pi| oz, We write 7} = m ; and p} = pig ;. Note that
™y = Ind§ (m) ; @ 5 5)
and that
pi=wew e gul Mg  gulegw g . @w'
11 —0f®- - Qw1 g1,

For s = (s1,...,84) € C%, put 8’ = (Sg—f11,---8d:S1,---,84—f). For ¥, €
V! and g € G, put

1
m@yo=[ w7 ) dn
Mya—(F) d—f

_ (0 lay
w_<1f 0>

and dz is the Haar measure on M 4_ ¢(F') such that vol(My 4 ¢(0)) = 1. This
integral is absolutely convergent for Re(s;) > Re(s2) > --- > Re(sq) > 0,
has a meromorphic continuation to C%, and defines an intertwining operator

where

Ms : Vs/ — VS/.
Then we have Mo 7wl = 7y o M. By [17, Theorem 5.1], we have
)\; - ’Y(O, 7T‘IS.71 X ﬁ;72,¢) . )\S/ OMg,

where 7! , is the contragredient representation of 7/, ,. We remark that 7
is unramified.
We define a normalized intertwining operator

NV —V

N =1lim (0,7} | X 7 5, 9) M.
s—0 ’ ’
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Then we have

(6.1) Norn'=moN
and
(6.2) N=XoN.

We define an isomorphism
A,V —V
as vector spaces by
Ay =w(—1)441/2 Ao AL
By Lemma 6.1 and (6.1), we have
Ayo(m@w)=moA,.

LEMMA 6.3. We have
Ao A, =M.

Proof. By Lemma 6.2 and (6.2), we have
Ao Ay =w(—DHD2 N0 N o A=w(-1)Ud=1/2. N o A=A 0
87. Calculation of a twisted character

We retain the notation of Section 6. In this section, we compute the
twisted character J¥ (7, f&) for a certain f& € C®(G).
Let K = GLg4(0). Let I be the parahoric subgroup of G given by

IZ{QEK’gZ‘JEMf(p) ifi>j}.

Here we write g = (¢i,j)1<i,j<e With g; j € M¢(F'). We take a Haar measure
dg on G so that vol(K) = 1.
Put

k(g) = w(ga2)w?(gs3) - W (Gese)

for g =(gij)1<ij<e € I with g; j € M¢(F). Here we write w(g;;) = w(det g; ;)
for g; s € GL¢(F'). Since w is trivial on 1+p, x is a character of I. Note that
r(g) =1 if g € I is topologically unipotent. We define f& € C°(G) so that
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e supp f¢=n"11,
o [Cntg)=r""w(g) - vol(I)" for g €1,

where
_( 0 lay
= <W'1f 0 )

Note that f& does not depend on the choice of .

LEMMA 7.1. We have

F9(g1992) = k7 g)n™ w0 (92) F9(9)
forge G and g1,92 € 1.

Proof. Since nIn~! =1, it suffices to show that
K g =k g)

for g € I. We write ngn~! = (g;j)lgmge €I for g =(gi;)i<ij<e € I. Then
we have

r Gi+1,i+1 it 1 < 1< €,
91,1 ifi=e.

Hence, we have

w—e+2( —e+1(

K w  ngn ) =w  (gs,3) - Gee)w T (g11)

w N g22) w  (gee)w  (g11)
=w H(g22)w 2(g33) W T (gee)

K (9)- i

Let
VE={0, €V, | 0s(99") = Ps(9)r(g’) for all g€ G, ¢’ € I'}.

We define V and Vi similarly. We write V* = Vi, V* = V*  and
VhhEw — V*O/»HW'

LEMMA 7.2. We have

dim(c ‘/SH = dim(c ‘/Sm‘) = dim(c V;/’Kw =1.
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Proof. We only consider V. We have an Iwasawa decomposition G =
ByK. Let P’ be the standard parabolic subgroup of G with Levi factor

L' = {diag(gl,h se. 7ge,e) | Gii € GLf}

Let Q and € be the Weyl groups of G and L/, respectively. We take per-
mutation matrices in G and L’ as representatives of elements in Q and ',
respectively. Then we have a Bruhat decomposition

K= ][] BonKw'IL
w €Q/QY
Let ®; € V such that supp®,; C Bow'I. Since w® is unramified, the
restriction of ug to Ty N K is given by

10 QLW QWX Qe R - @wt L.

f f f
Hence, we have
e—1 f '
D, (w't) = Oy(w'tw ™! -w') = H le(tw’(if+j)) By (w')
i=0 j=1

for t =diag(t1,...,tq) € ToN K. If &, € VF, then we have
e—1 f ‘
<I>S(w't) = @S(w/) . H sz(tif_;,_j)

i=0 j=1

for t = diag(t1,...,tq) € To N K. Since the restriction of w to 0™ is of order

e, ®5(w') =0 unless w’ € . 0
We define
(I)I; c VSH’ (I)/;w c V:w, (pls,nw c Vsl,nw
so that
supp @4 = By, (1) =1,

supp @ = Bow I, o (w ) =1,
supp @ = By, PLrY(1) = 1.
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v <1f 0 )

We write ®" = ®f, " = Piv, P = <I>8'W.

Here

LEMMA 7.3. We have
A(PF) = ",

Proof. We have A(®") € V/*** and

A(@™)(1) =d"(1)w(1) = 1. ]
LEMMA 7.4. We have

M, (q)/nw)_q (e—1)f2 (an

Proof. We have M(®5"™) € V5 and

M@ w™) = / o (w <10f . )w_1> dx
My a—f(F) d—f

oo (2 )
My a—y(F) 1y

<1d_f 0 ) € Bol

xT lf

if and only if x € Myq_¢(p), this integral is equal to vol(Myq4_¢(p)) =
g =1, 0

Since

Let
f-le—1
ME/F ) =[] [[e/2,0, )
=0 j=1

denote the Langlands A-factor.

LEMMA 7.5. We have

ME/F,)! =w(-){e DD E/F )~
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Proof. Note that w®(—1) =1. If f is even, then we have

f/2 le—1

NE/F)= ] [Ie/2,0 ", ¢)e(1/2,0 077 )

=0 j=1

f/2—1efl

— H Hwie+j(_1)

i=0 j=1
e—1

- ij(_l)fﬂ

j=1
= w(=1)leDef/4,

In particular, A\(E/F,v) ==+1. If f is odd, then we have
f—le—1

MNE/Fp)? =] [Te(/2,0 ", 9)e(1/2,0Y =077 4)

=0 j=1

—le—1

_ H H wze-i—]

=0 j=1
e—1

_ ij(_
j=1
e—1

— ij(_
j=1

:w(_l)(e—l)e/Q. D
LEMMA 7.6. We have
N—(q)/,m) _ q—(e—l)f2/2w<_1)((6—1)6/2)[(f+1)/2])\(E/F7w)—l PP

Proof. We have
—le—1f-1

(0, 7] X 75,9 H H H'y (0,w™ i . ke ).

i=0 j=1k=0
Since w is of order ef, we have
f—1 f—1
L1700 wke 4p) = T (0,0, )

=0 =0
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for fixed j, k. Hence, we have

f—le—1

(0,7 x 75, 9) = [ [ [ (0,07, )

i=0 j=1

Let 0<i< f—1,and let 1 <j <e— 1. Since 9 is of order zero and w'*J
is ramified with conductor 1, we have

Y(0,w' I 1h) = (0w p) = g2 £(1/2,w ).

Thus, we obtain

f—le—1

(0,74 x 7, ) = g« DT [[e(1/2.0 7, w)f =g~V 2N(E/F,p)!.
i=0 j=1
Hence, the lemma follows from Lemmas 7.4 and 7.5. 0

LEMMA 7.7. We have
W(fG)(I)mJ _ q(e—l)f2/2w(w)—d(f—1)/2 . Pr

Proof. By Lemma 7.1, we have 7(f%)®" € V* and
fG (I)nw / fG (I)nw
=/]fG(n‘lg)<I>”“(77‘19) dg
=[S )" (") - vol(I).
We have f¢(n=1) =vol(I)~! and

@Hw(nfl) = P ((w 1f 0 f> w1> _ q(ef1)f2/2w(w)7ef(f71)/2'

0 1,
Il
PROPOSITION 7.8. We have
1 if e and f are odd,
a w(w)d/2 if e is odd and f is even,
E/F,
T %) = ME[F )™ w(—l)e(f_l)/4 if e is even and f is odd,

w(=1)4w(@)¥?  ife and f are even.
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Proof. By Lemma 7.1, we have Im(7(f%) 0 A,,) C V*. Since dimc V" =
by Lemma 7.2, we have
Jo(m, [9)=C

where C € C is a constant such that 7(f%)A,(®*) = C - ®*. It remains to
compute C = 7(f%).A,(®%)(1). By Lemmas 7.3, 7.6, and 7.7, we have

T(f9)Au(@)(1)
= (=DM PR(FON(A@)(1)
= w(=1) DN (@) (1)
= g~ (D2, (=D /24 (e=De/D+D2 N\ (B F )t (£9)D59(1)
= w(—1) W=D/ 2+ (e=Ve/DF+D/2 ()= =D2\(E ) F,p) 71 0"(1)
— (= 1Y@ 24 (e De/FHD/2 gy ()~ -D/2) (/)1

Since w¢(—1) =1, we have

1 if e and f are odd,
o 1)d(d /2 _ 1 if e is odd and f is even,
w(=1)¢/? if e is even and f is odd,
1 if e and f are even
and
1 if e and f are odd,
w(—l)(e(e_l)/Q)[(f"'l)/Q] _ 1 if e is odd and f is even,
w(=1)eU+D/4 if e is even and f is odd,
w(—1)ef/4 if e and f are even.

Since w¥(w) =1, we have w(w) U ~1/2 =1 if f is odd. If f is even, then
w(w@)¥? = +1, so that w(w) U —1/2 = (w)??. This completes the proof.
il

§8. Calculation of a twisted orbital integral

We retain the notation of Sections 6 and 7. In this section, we compute
the twisted orbital integral J* (v, f&) for f& € C>°(G) defined in Section 7.
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For each 0 <17 < d, let £; ¢ be the lattice of F? given by

Lig=0D - DoBpd---dp.
d—i i

For each integer i = jd+ k with 0 <k <d, let £; ¢ = wjﬁk,(;. Then we have
I={9€G|gLisc C L for all i}.
Fix an isomorphism ¢ : E — F¢ as vector spaces over F such that
o) = Lir.c
for all . Let « : H— G be the embedding induced by ¢. Then we have
LH)NT=1(oF).

We identify H with the image in G and suppress ¢ from the notation.

Let v € G be a regular semisimple element, and let T be the centralizer
of v in G. Then J* (v, f&) = 0 unless v is conjugate to an element in H. If
~v € H is G-regular, then T = H.

LEMMA 8.1. Lety € H be a G-reqular semisimple element. If J* (v, f¢) #
0, then we have
ordgpy=—1.

Proof. Then, since supp f& = n~'I, we have J¥(y,f¢) = 0 unless
ordpdety=—f. O

Let v € H be a G-regular semisimple element such that ordgv= —1. By
[12] and [19, section VII.1], there exist d,7" € E* such that

° v=067,
vV El+pp,
e 0 is F(§)/F-cuspidal (see [19, section VI.2]).

Put F' = F(0). Note that F’ does not depend on the choice of §, +'.
LEMMA 8.2. We have ordg § = —1. Moreover, E/F’ is unramified.

Proof. Let € be the ramification index of E/F’. Then we have
ordgy =ordgd = ¢ ordp 4.

Hence, ¢/ = 1. []
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Note that the ramification index of F’/F is e. Let f’ be the residual degree
of F'/F. Put d =d/ef’. Let G’ = Respr)p GLg, and let K' = GLg (05).
We take a Haar measure dg’ on G’ so that vol(K’) = 1. Fix an isomorphism
¢ F'Y — F? such that ¢ (Licr) = Lip ¢ for all i. Let ¢ : G' — G be the
embedding induced by ¢’. Then we have

(GYNT =K', UGNy T =1(6K).

For simplicity, we will suppress ¢ from the notation. We may also regard H
as a subgroup of G’ via ¢ and ¢'.

LEMMA 8.3. Let g € G such that g~'~vg € n~'1. Then we have
geG'l.

Proof. The lemma follows from [19, lemme VI.3]. 0

LEMMA 8.4. We have supp f¢ NG’ = 6K'. Thus, let g € G’ such that
g g€ K'. Then we have

FC (g7 vg) = £9(6).

Proof. The first assertion is obvious. Since v/ € 1 +pg, g 'y g € K' is

topologically unipotent, and hence s 'w=!(g714'g) = 1. Thus, we obtain

£ vg) = FC (697 g) = FE(0) st w g™ g) = FE(9). 0

Let w’'=woNp//p be an unramified character of I of order d’ associ-
ated to E/F’ by class field theory. Let 15 € C°(G’) be the characteristic
function of K’. Put

Jw/(,ylle/) :/ w'(g')IK/(g’_lvlg’) dg/.
T\G'

Note that T is also the centralizer of 7/ in G'.

LEMMA 8.5. Let v € H be a G-regular semisimple element such that
ordpy=—1. Let 6, € H as above. Then we have

J“(v, f€) = vol(1) fC(5) - J¥'(+/, 1 k).
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Proof. The lemma follows from [19, lemme VI.4] with slight modifica-
tions. We include the proof for the sake of completeness.
Note that

w(9)f¢ (g vg) =w(g)r(g)r'w  (9) fC (v) = FC ()

for g € I. By Lemma 8.3, we have
Ty, f9) =Y vol(T\TgDw(1(9)) f (9™ v9)-

gerl’

Here I' is a set of representatives of equivalence classes of G’ for the equiv-
alence g1 ~ g9 if and only if g1 € T'go1. Then I is also a set of representatives
of T\G'/K'. As in the proof of [19, lemme VI4], we have
vol(T\TgI) = vol(I)vol(T\TgK') and w(i(g)) = w'(g) for g € I'. By
Lemma 8.4, f¢ (g~ yg) =0 for g € I" unless g~'+'g € K’, and hence

T, f9) = vol(I) Y vol(T\TgK')w'(9) f% (9 v9) 1k (97 "9)
gerl’

=vol(I)f(8) Y vol(T\TgK ")’ (9)1 (g~ g)
gerl’

=vol(I) f(8) - J* (7, 1) 0
§9. Calculation of the transfer factor

Let G = GLg, and let H = Resg,p Gy, where E is a tamely ramified cyclic
extension of I’ of degree d. Let (H,H,s,£) = (Resg/p G, "Hpn, Sy &m) be
the endoscopic datum for (G,1,a) with m = (1) as in Section 2. In this
section, we compute the transfer factor A(~,:(7)) for G-regular semisimple
elements v € H, where « : H— G is the embedding defined in Section 8.

Let e and f be the ramification index and the residual degree of E/F,
respectively. Let w be the character of F'* of order d associated to a. Let o
be the generator of Gal(E/F) as in [11, Section 10]. Let ng be the unramified
quadratic character of EX. If d is even, let oy = 0%?, and let E, be the
subfield of E corresponding to the subgroup {1,04} of Gal(E/F). Let wy =
woNg, ,r be the quadratic character of E7 corresponding to E/E, by
class field theory. If e is odd and f is even, then F/F, is unramified and
the restriction of ng to E is wy.

We fix a primitive (qf —1)th root of unity ¢ in E. We choose wg and wp
so that wf = wpr(® with some integer a. If e is odd and f is even, then we
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may assume that wg € E; since the ramification index of E/F is e and
E/E, is unramified. Then we have

wE if e is odd and f is even,

U+(WE):{

—wpg if e is even.
We take {w¢7 |0 <i<e,0<j< f} as a basis of op over op. Put
a= (7N ¢ ) e EY

and

Vi, o, wp - 1, 1) € B

U= (wy
We may assume that the embedding ¢+ : H — G is given by

x-UT=70-1(x)

for x € H. Put

Then we have
gu(x)g " = diag(z,0(x),0%(z),...,0% (x))

forx € H.
We will compute det g.

LEMMA 9.1. Let x; = diag(z(j_1)f41, T(i—1)f+2:-- - » Tiy)- Then we have

1, 1 1
X1 X9 Xe f
2 2 2
det | X1 X2 0 Xe | = H H (Tjprk — Tifvk)-
: : - : k=10<i<j<e—1
Xti—l X; 1 Xg—l
Proof. See the Vandermonde determinant. 0
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Put

u=| . |ecLpB).
(D)
Since o/ (i) = i, we have g = ¢'¢", where ¢’ = (9; ;)1<i,j<e, With
gz/',j = diag(a(iil)f(wE)eija J(iil)f+1(wE)eija ey Jif*l(wE)eij) € Mf(E)7
and ¢” = diag(u,u,...,u). We have

/
detg' _ (_1)(e—l)ef/2 H H (O-Jf—‘rk—l(wE) o o_zf-‘rk—l(wE))
k=1 0<i<j<e—1

_ ﬁ (O_z'erkfl(wE) _ O.jf+k:71(wE))

and

det g’ = ((_1)(f*1)f/2 H (0.]?1(() _ Uifl(g)))e

1<i<j<f

=( II " Q-o'@)"

1<i<j<f
Hence, we have

f
detg:H H (Jif+k_1(wE) —ij+k_1(wE))

k=1 0<i<j<e—1

(I " H0-e1))

1<i<j<f

We define h € GL4(FE) so that

(9.1) hl= . :
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where

L L »
bisrk= 1] (™ H@r)— o (wp))
0<i<j

< I (") —o* 1)~

1<i<k

for 0<j<e—1,1<k<f. Then we have det h = 1; that is, h € Ggc(F)
and

h=lu(x)h = diag(z,o(z), o(z),..., ad_l(a:))

for x € H.
Let Ty =H, and let T = ((Tg). We choose an admissible embedding
Ty — T induced by ¢. Then we have

(9.2) Anr, (’y, L(y)) =1.

Let a; j be the root of T in G corresponding to the coroot t”t]_]1 of T in G.
Here t;; is the cocharacter of T given by t;;(2) = diag(1,...,1,2,1,...,1) for
K3

z € C*. Then ¢ ; is symmetric (resp., asymmetric) if and only if |i —j| = d/2
(resp., |t — j| # d/2). We choose a-data {as} and x-data {x.} as follows.
For simplicity, we write a; ; = aq, ; and Xij = Xa, ;-

We require that o(a; ;) = ai+1,;4+1 and a;; = —a; j. Put

- V(o (wg) —wg) ifk=1,
A U P O

where

Note that of (v) = .
LEMMA 9.2. We have

o™ ay ) = —a1.ar0

for 1 <i<d/2+1. In particular, {a1,;} determines a-data {as} uniquely.
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Proof. Note that ¢ =1 mod f if and only if d4+ 2 —¢=1mod f. Let
i=jf+k.If k=1, then we have

o1 ay) = 09 (ayj141) = v(wE — 0 (wp))

= —a1d—jf+1 = —a1,d+2—i-
If k#1, then we have d+2—i=(d—jf—f)+(f+2—k) and
o ay;) = ot g jpn) = C— o TFHO) = —araqo-. O

Put x1, =1 for 1 <i<d/2+1.If d is even, let x; q/241 be a character of
E* whose restriction to E is w. Note that x; g/041 004 = X;;/QH' If e is
odd and f is even, then we can take x1 /211 =7g. Then {x1,} determines
x-data {xq} uniquely.

LEMMA 9.3. If e and f are odd, then we have

Arr (7, ¢(7) A, (7, (7)) =1

If e is odd and f is even, then we have

Arr(7y,¢(7)) Aur, (7, ¢(7)) =ne(y — o4 (7).

If e is even and f is odd, then we have

At (7,0(7)) A, (7, ¢(7)) = w(=1) D/ <%;1(7)) '

If e and f are even, then we have

At (% L(’Y))AHI2 (’y, L('y)) =wy (2WE’17(;;;L((5)_ 5 ) _

Proof. We only consider the case when d is even. By [11, Appendix A],
we have

(6 v) — 1 -1 _ 1
Art(7,6(7)) = X1.d/211 (M) = X1d/2 1(%)

a1,d/2+1 a1,d/24+1
and
A, (v,0(7)) = X1,d/2+1(7>_1-
Since 0+(a1’d/2+1) = _a’l,d/Q—‘rl) we have
-1 —1
or(v) " =y y—oil(y
An (7, (7)) Ar, (7,6(7)) = X1,4/241 (ﬂT) =Wt (szl))
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Note that w (zoy(x)) =1 for x € E*.
If e is odd, then f is even and

a1aj211 = 1 e—1)f/24+5/241 =07 2(C) — C € 0,
so that
X1,d/2+1(@1,d/2+1) = NE (Uf/Q(C) -¢) =1

Assume that e is even. Then we have

Qa1,d/24+1 = Alef /241 = V(Uef/z(wE) - WE) = 2wg -V
and

X1,4/241(—@E) = X1,4/2+1 (04 (wE)) = X1,d/2+1(W;;1)-
Since o*(¢) — ( € E and

wi(0(2)) =w(Np, /r(0(@))) =0 (Npg, /r(@) =wi(2)
for x € EX, we have

wi(0'(Q) = ¢) =wi (67" () = ) =ws (C—T(Q))
= w(=1)"wy (6770 = Q).
If f is odd, then we have
wiw)= [ w@©O-0" ]  wid'©-¢"
1<i<(f—1)/2 (f41)/2<i<f-1

:w(—l)d(f_l)/4 H w+(ai(() _C)*Z

1<i<(f-1)/2
= w(—1)4—D/A

= w(—1) =D/,
If f is even, then we have

wi@) = J[ wi(@(©)—¢)

1<i<f/2—1

[ we©-9

f/241<i<f—1

N CL (o e
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—w(-)V2 T @ (6= e (00 - ¢)
1<i<f/2-1
o~ (5712(¢) - Q)
=wy (e7%(¢) = ¢).
This completes the proof. i

LEMMA 9.4. We have
Ap (77 [’(’7)) =1
Proof. Let h € Ggc(E) be given by (9.1). Let m(or) = z(or)n(wr(o))
be as in [15, Section 2.3]. Then we have

. -1 -1 ~1
xz(op) = dlag( H 1,07 9,07 35 - - - ,al,d)

15i<d
and
atwr@)= (0 5)
Hence, we have
o(by) - T [Lheicqni o(ba) -
m(or)o(h™) = (o) —o(b) 0@ | —aiéa(él)-a(ﬁ)
—U(bdfl).~ o= 1(7) _al—’}lg(bdgl) ()

Leti=jf+k>2with0<j<e—1,1<k<f.If k=1, then we have

—a1,0(bim1) = =ay ;0 (b-1)145)
= v Y (wp — Ujf(wE))—l H (0D () — Ujf(wE))—l
0<i<j—1
< I (' -9~
1<i<f
_ H (0 (wg) _O"jf(WE))_l
0<i<j
=bjf+1
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If k# 1, then we have

—aiila(bi_l) =— aiglf+k0(bjf+k—1)
:(C o O_kfl(é-))_l H (O'ierkil(WE) _ O-.jf‘i’kfl(wE))—l
0<i<j
< I (@@=
1<i<k—1
= I @ @) — o (@p)
0<i<j
< I (") =" )™
1<i<k
=UYjf+k
=b;.
Since
H ali = vl H (aif(wE) —wE) . ( H (Uk_l(C) - C))e
2<i<d 1<i<e—1 1<k<f
=yt H (a’f(wE) wE)
1<i<e
and

o (wp) —wp) - [ (61 -¢)"

1<i<f

- 10
<i<e
H o' (wp) —wp) ",
1<i<

we have

H aLi-U(bd) =1 :bl.

2<i<d

Thus, we obtain
m(or)o(h™!)=h7",

so that the 1-cocycle A(Tg.) as in [15, Section 2.3] is trivial. This yields the
lemma. []
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PRroOPOSITION 9.5. If e and f are odd, then we have

Ay, (7)) =ME/F4) " A (v, 4(7))-

If e is odd and f is even, then we have

A(v,u(m) =ME/F ) ey —0+(9) - Awv (7,¢(7)).-
If e is even and f is odd, then we have
A1) = AE/F ) o =1 U (22 A (ra()
Wg

If e and f are even, then we have

Al ) =MEB/F )™ e (QWEY(;;;((S)— ¢) > Ay (7, ¢(7))-

Proof. Let V be the virtual representation of I' given by (1.1). Then we
have

e(V,¥) = ME/F, )~
Hence, the proposition follows from (9.2) and Lemmas 9.3 and 9.4. 0

§10. Proof of Theorem 1.4

In this section, we finish the proof of Theorem 1.4. We may keep the
assumption of Section 6.

We fix a primitive (¢/ — 1)th root of unity ¢ in £ and choose wg, wr as
in Section 9. Let ¢+ : H — G be the embedding defined in Section 9.

Let v € H be a G-regular semisimple element such that ordgy=—1. As
in Section 8, we write v = 4’ so that ¢ is F(§)/F-cuspidal and v € 1 +pp.
Put F' = F(¢), and put ¢’ = wgd. By Lemma 8.2, E/F’ is unramified and
8" € 0. We may assume that ¢’ is a root of unity in E.

Let G’ =Resp//p GLg/, where d' =d/ef" and f’ is the residual degree of
F'/F. Let // : H— G’ be the embedding as in Section 9. By Proposition 9.5,
we have

Acraiv(y,d ()
if d’ is odd,

ne(y — o+ () - Acmv (Y, (7))
if d’ is even.

(10.1)  Agu(¥./() =

Note that + is G'-regular.
Let F” C E be the unramified extension of F' of degree f. Then §' € F".
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LEMMA 10.1. Assume that e is odd and that f is even. Then d' is even
if and only if &' € E.

Proof. Since E/F is cyclic, d' is even if and only if F’ C E,. Since F' =
F(9) and wg € E,, the assertion follows. [

LEMMA 10.2. Assume that e is even. Then d' is odd and §' € E .

Proof. We have F" C Ey since e is even. Hence, E/E, is ramified, so
that d’ must be odd since F/F’ is unramified. [

LEMMA 10.3. We have

Ac,u (v:1(7) =ME/F9) - Ag a (v, (7))
1 if e and f are odd,

w(wp)? if e is odd and f 1is even,
w(=1)eU=D/4 . (8 if e is even and f is odd,
wi(af2(Q) =€) -wy (&) ife and f are even.

Proof. By [19, lemme VIL.3], we have

Ac,av(v,L(7) = Ac mv (Y, V().

By Proposition 9.5, (10.1), and Lemmas 10.1 and 10.2, it suffices to show
that

e (v — o4 (7)) = w(wp)¥?

y ne(y —o4 (7)) ifeisodd, fiseven, and &' € Ey,
1 if e is odd, f is even, and ¢’ ¢ E

and that

b (1228 — o ()

—1
2wE

if e is even.
We first assume that e is odd and f is even. Then we have

ne(y—or(v) =ne(@g') ne(0'y — o (6'Y)).

Since n% =1 and e is odd, we have

ne(@wy') =ne(we)® =ne(wr®).
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Since ng is unramified, we have ng(¢*) = 1. Hence, we have

ne(wy') =ne(wr) =w(Ng, /p(wr)) = w(wy
It §' € £, then we have
(0 = 0:(8'Y)) =ne() -np (v — 0+ () =ne (' —o1(7))-
If o' ¢ E, then o (") # ¢, so that
0"y —0.(0")=0"—0.(0")#Z0 mod pp.

Hence, we have 6"y —04.(0"y') € 0, so that ng(6'y — o (8'7)) =1.
We next assume that e is even. Then we have

y=or(7) _ @' & (Y +os(y) _ I 401 (Y)) .

2w§1 2@51 2

Since E/F is tamely ramified and e is even, we have 21 ¢, so that (' +
0+(7"))/2€1+pEg, . Hence, we have

Let f¢ € C®°(G) be as in Section 7. By [19] and [20], there exists f¥ €
C>®(H) such that f¢ and f¥ have matching orbital integrals. Then f is
determined by

1) = Ac,u (v,e()) - T (v, £9)

for G-regular semisimple elements v € H. By Lemma 8.1, f(y) =0 unless
ordgy=—1.

LEMMA 10.4. Let v € H be a G-regular semisimple element such that that
ordgy=—1. Then we have

1 if e and f are odd,
w(wp)¥? if e is odd and f is even,
w(—=1)et/=1/4 if e is even and f is odd,
wy(al/2(¢)=¢) ife and f are even.

1) =ME/Fy)~ %

https://doi.org/10.1017/50027763000010606 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000010606

ON THE KOTTWITZ-SHELSTAD NORMALIZATION 139

Proof. By the definition of ¢, we have

g1, 0
Hwe) =1 ( 61 1d—f>

with some g1 € GL¢(op) and
1(8') = diag(q',q',...,9")
with some g’ € GL¢(0r) such that det g’ = NF///F((S’). Hence, we have
FE(8) = 1E(@p'd') = vol(1) ™" - w(Npw p(8) T2,
If e is odd, then we have
w(NF///F(é’))_e(e+1)/2 W (NF”/F((S/))—(eH)/Q 1
If e is even, then we have
w(Npyp(8) 2 = (N, e ()T =i (8) ) =w i ().
By Lemmas 8.5 and 10.3, we have

Acr (7,1(7)) - I (7, f€)
- )‘(E/Fvw)_l ' AG’,H (’Yla [’/(’7/)) ’ Jw, (7/7 1K’)
1 if e and f are odd,
w(wp)¥? if e is odd and f is even,
w(—=1)et/=D/4 if e is even and f is odd,
wy(af/2(¢) = ¢) if e and f are even.

By the fundamental lemma [19, théoreme VIIIL.5], we have
Ag (v /() - T (Y k) = 1.
This completes the proof. 0

Thus, we obtain

1 if e and f are odd,
w(wp)¥? if e is odd and f is even,
w(=1)et/=D/4 if e is even and f is odd,

wy(of2(¢) = ¢) if e and f are even,

J(rg, fAY = MNE/F,) 7! x
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where g = 1. By Proposition 7.8 and Lemma 10.5 below, we have

T (m, f9) = I (mm, f1).

Hence, we have c=1.
To finish the proof of Theorem 1.4, it remains to prove the following
lemma.

LEMMA 10.5. Assume that e and f are even. Then we have
A=) () = (67/2(¢) — ).

Proof. Note that 21 ¢ since E/F is tamely ramified and e is even. By
Lemma 10.6 below, we have w}, = wpr(® with an odd integer a.
We first show that
w(wp)¥? = —1.

The quadratic character wi =woNg, /g of E7 associated to E/E, satisfies
the following:

b w+(<) :_17
hd w+(—w2):1,
e w, is trivial on 1+ pg, .

Note that F” C F} and o4 (wg) = —wg. Hence, we have

w(wp)? =w (wp)

=wy(wg( )

— s (D7 ()¢ )
= (1) ()"

— (=1 (-1

=1

We next show that

1 if ¢ =1 mod 4,
w(-D*"={1  ifg=3mod4 and f=0mod 4,
—1 if ¢g=3 mod4 and f =2 mod 4.
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Note that, if ¢ =3 mod 4, then e =2 mod 4 since e | (¢ — 1). Assume that

q =1 mod 4. Then a primitive fourth root of unity C(qf_l)/4 belongs to F'.
Since (—1)¢//4 = (¢(@'=1D/4)4/2 | we have

w(—1)ef 4 = (¢ D/ = (—1)@ -D/4,

Since f is even, (¢f —1)/4 is even, so that w(—1)*//* =1. Assume that
g =3 mod 4. Tt suffices to show that w(—1) = —1. Let {' = C(qf_l)/(q_l) be
a primitive (¢ — 1)th root of unity in F. Then w({’) is a primitive eth root
of unity in C* since the restriction of w to o} is of order e. Since e | (¢ —1)
and (¢ —1)/2 is odd, we have

Hence, we have

We finally show that

—1 if ¢g=1 mod 4,
w+(af/2(C)—C): —1 if g=3mod 4 and f =0 mod 4,
1 if g=3 mod 4 and f =2 mod 4.

Put 3 =ol/2(¢) - C e 07, Then we have of/2(8) = =B, and hence

(@’2)‘1”2_1 =1 mod ppr. Let r be the order of 52 in (opn/ppr)*. Then we
have 7 | (¢//? —1). Since 21¢, we have ¢//2(3) # 8 mod pp~. Hence, 2r is
the order of § in (opn/ppr)* and 2rf (¢f/2 —1). Let b be an integer such
that (b,2r) =1 and = Cb(qf_l)/Q’” mod ppr. Then we have

T=1)/2r F-1)/2r F-1)/2r £/2
wi(B) = wy (¢U0TD/2r) = (—)M’ /2 = (q)@f =D/ (@D,
Note that b, (¢f/? — 1)/r are odd and

2r r 2

Hence, w, () =1 if and only if 4| (¢//2 +1). This yields the assertion. []
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LEMMA 10.6. Let F' be a nonarchimedean local field of characteristic zero.
Let f be a positive integer. We fix a primitive (¢f — 1)th root of unity ¢
in F. Let F" = F(C) be the unramified extension of F' of degree f. Let e be
a positive integer such that e | (¢ —1).

Let wg be a root of

X —wp(?,

where wr is a uniformizer of F' and a is an integer such that

f—1
<a, 4 ,e) =1.
qg—1
Then E = F"(wg) is a tamely ramified cyclic extension of F with rami-

fication index e and residual degree f. Conversely, any such E is of this
form.

Proof. If E is a tamely ramified cyclic extension of ' with ramification
index e and residual degree f, then there exist a uniformizer wp of F' and
an integer a such that £ = F"(wg), where wg is a root of X¢ — wp(?.

Conversely, let E = F"(wg), where wg is a root of X¢ — wp(?, wp is a
uniformizer of F, and a is an integer. For each 0 < i <e — 1,
wECa(q_l)/e”(qf_l)/e is a root of X¢ — wpr(®. Hence, there exists an auto-
morphism ¢ of E over F' given by

o(¢)=¢",
o(wp) = wpcaD/etila ~1)/e

Note that any extension to F of the Frobenius automorphism of F” over F'
is of this form.

Let n be the order of ¢. Since ¢ is an extension of the Frobenius auto-
morphism of F” over F, we have f|n. We have

Uf(wE) = wE(Ca(q_l)/e'”(qf_1)/5)1+q+-~~+qf*1
= wE(Ca(Q*l)/eJr’i(qf71)/6)(qf,1)/(q71)

= g (¢orie’ D/ a=)y (@ ~1)/e

We have (¢ala=D/etila’=)/ey(@’ =1)/(a=1) ¢ F* since its order divides q — 1.
Hence, we have

Ujf(wE) = wE(CaH(qf—l)/(q—l))j(qf—l)/e
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for all j, so that n =e¢f if and only if

F-1
<a+iq ,e)zl.
qg—1

Hence, there exists 0 <i < e — 1 such that o is of order ef if and only if

f—1
(a,q 7e):l.
qg—1

This completes the proof. 0

This completes the proof of Theorem 1.4.
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