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Marcinkiewicz Commutators with Lipschitz
Functions in Non-homogeneous Spaces

Jiang Zhou and Bolin Ma

Abstract. Under the assumption that µ is a nondoubling measure, we study certain commutators gen-

erated by the Lipschitz function and the Marcinkiewicz integral whose kernel satisfies a Hörmander-

type condition. We establish the boundedness of these commutators on the Lebesgue spaces, Lipschitz

spaces, and Hardy spaces. Our results are extensions of known theorems in the doubling case.

1 Introduction

As an analogue of the classical Littlewood–Paley g function, in 1938 Marcinkiewicz

[13] introduced the operator

M( f )(x) =
(

∫ 2π

0

|F(x + t) + F(x − t) − 2F(x)|2

t3
dt
) 1/2

, x ∈ [0, 2π],

where F(x) =
∫ x

0
f (t) dt. This operator is now called the Marcinkiewicz integral.

Zygmund proved that the operator M is bounded on the Lebesgue space Lp([0, 2π])

for p ∈ (1,∞). Stein [17] generalized the above Marcinkiewicz integral to the fol-

lowing higher-dimensional case. Let Ω be homogeneous of degree zero in R
d for

d ≥ 2, integrable and have mean value zero on the unit sphere Sd−1. The higher-

dimensional Marcinkiewicz integral is then defined by

MΩ( f )(x) =
(

∫ ∞

0

∣

∣

∣

∫

|x−y|≤t

Ω(x − y)

|x − y|d−1
f (y) dy

∣

∣

∣

2 dt

t3

) 1/2

, x ∈ R
d.

The Marcinkiewicz integral and its related topics are important in harmonic anal-

ysis and are still the focus of active research. The reader can refer to [1–4, 23] and

the references therein. Particularly, we want to mention the work by Torchinsky and

Wang [18], where they introduced the commutator generated by the Marcinkiewicz

integral MΩ and the classical BMO(R
d) function and established its Lp(R

d)-bound-

edness for all p ∈ (1,∞) if Ω ∈ Lipα(Sd−1) for some α ∈ (0, 1]. It is also worth men-

tioning that another commutator generated by the Marcinkiewicz integral MΩ and

the Lipschitz function was recently studied by Mo and Lu (see [15]) when Ω is ho-

mogeneous of degree zero and satisfies the cancellation condition, and they obtained

its boundedness from Lp(R
d) into Ls(R

d) for 1 < p < n/β and 1/s = 1/p − β/n.
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On the other hand, in recent years, harmonic analysis on spaces of nondoubling

measure has become a very active research topic. Among a long list of research pa-

pers, one of them [9] is on the Marcinkiewicz integral related to the nondoubling

measure µ, where µ is a positive Radon measure on R
d that only satisfies the growth

condition that for all x ∈ R
d and all r > 0,

(1.1) µ(B(x, r)) ≤ C0 rn,

where C0 and n are some positive constants and 0 < n ≤ d, and B(x, r) is the

open ball centred at x and having radius r. In [9], Hu, Lin, and Yang established its

boundedness, respectively, from the Lebesgue space L1(µ) to the weak Lebesgue space

L1,∞(µ), from the Hardy space H1(µ) to L1(µ), and from the Lebesgue space L∞(µ)

to the space RBLO(µ). Also, they obtained the boundedness of the Marcinkiewicz

integral in the Lebesgue space Lp(µ) with p ∈ (1,∞). Moreover, they also obtained

the boundedness of the commutator generated by the RBMO(µ) function and the

Marcinkiewicz integral with kernel satisfying certain slightly stronger Hörmander-

type condition (2.1), respectively, from Lp(µ) with p ∈ (1,∞) to itself, from the

space L log L(µ) to L1,∞(µ) and from H1(µ) to L1,∞(µ).

We recall that µ is said to be a doubling measure if there is a positive constant

C such that for any x ∈ supp(µ) and r > 0, µ(B(x, 2r)) ≤ Cµ(B(x, r)), and that

the doubling condition is a key assumption in the classical theory of harmonic anal-

ysis. Recently, many classical results concerning the theory of Calderón–Zygmund

operators and function spaces have been proved still valid if the Lebesgue measure is

substituted by a measure µ as in (1.1); see [5,7,10,14,19,20,22] and their references.

We mention that the analysis on non-homogeneous spaces played an essential role in

solving the long-standing open Painlevé problem by Tolsa [22].

Let K be a locally integrable function on R
d × R

d \ {(x, y) : x = y}. Assume that

there exists a constant C > 0 such that for all x, y ∈ R
d with x 6= y,

|K(x, y)| ≤ C|x − y|−(n−1),(1.2)
∫

|x−y|≥2|y−y ′|

[

|K(x, y) − K(x, y ′)| + |K(y, x) − K(y ′, x)|
]

×
1

|x − y|
dµ(x) ≤ C

(1.3)

for any y, y ′ ∈ R
d. The Marcinkiewicz integral M( f ) associated with the above

kernel K and the measure µ as in (1.1) is defined by

(1.4) M( f )(x) =
(

∫ ∞

0

∣

∣

∣

∫

|x−y|≤t

K(x, y) f (y) dµ(y)
∣

∣

∣

2 dt

t3

) 1/2

, x ∈ R
d.

Throughout this paper, we always assume that M is bounded on L2(µ). Obviously,

if µ is the d-dimensional Lebesgue measure in R
d with d ≥ 2, and K(x, y) =

Ω(x − y)/|x − y|d−1 with Ω homogeneous of degree zero and Ω ∈ Lipβ(Sd−1) for

some β ∈ (0, 1]
∫

Sd−1 Ω= 0, then it is easy to verify that K satisfies (1.2) and (1.3),
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and M in (1.4) is just the Marcinkiewicz integral MΩ introduced by Stein [17]. Thus,

M in (1.4) is a natural generalization of the classical Marcinkiewicz integral in the

current setting.

By a cube Q ⊂ R
d we mean a closed cube whose sides are parallel to the coordinate

axes, and we denote its centre and its side length by xQ and ℓ(Q), respectively. For

α > 1,let αQ denote the cube with the same centre as Q and ℓ(αQ) = αℓ(Q).

Given two cubes Q ⊂ R in R
d, set

SQ, R = 1 +

NQ,R
∑

k=1

µ(2kQ)

[ℓ(2kQ)]n
,

where NQ,R is the smallest positive integer k such that ℓ(2kQ) ≥ ℓ(R). The number

of SQ,R first appeared in [19], where some useful properties of SQ,R could be found.

Now we define multilinear commutators generated by Marcinkiewicz integral and

Lipschitz functions. First we recall the following definition of Lipschitz functions [5].

Definition 1.1 Let β > 0 and b be a µ-locally integrable function on R
d. We say b

belongs to the space Lipβ(µ) if there is a constant C > 0 such that

(1.5) |b(x) − b(y)| ≤ C|x − y|β

for µ−almost every x and y in the support of µ. The minimal constant C in (1.5) is

the Lipβ(µ) norm of b and is denoted simply by ‖b‖Lip(β)
.

Let M be the Marcinkiewicz integral operators as in (1.4), m ∈ N and bi ∈
Lipβi(µ), i = 1, 2, . . . ,m. The multilinear commutator M~b is formally defined for

x ∈ R
d by

(1.6) M~b( f )(x) =
(

∫ ∞

0

∣

∣

∣

∫

|x−y|≤t

m
∏

i=1

[bi(x) − bi(y)]K(x, y) f (y) dµ(y)
∣

∣

∣

2 dt

t3

) 1/2

.

In what follows, if m = 1 and~b = b, then we denote M~b simply by Mb. When

b1 = · · · = bm, M~b is the higher commutator of the Marcinkiewicz integrals denoted

by M
m
b . In this paper, we will study the behaviours of the multilinear commutator

defined by (1.6) on the Lebesgue space and the Hardy space.

In Section 2, we focus on the boundedness on Lebesgue spaces. Meng and Yang

[14] obtained the (Lp(µ), Lq(µ)) boundedness of multilinear commutators defined

by Calderón–Zygmund operators and Lipschitz functions for 1 < p < n/(
∑m

i=1 βi)

and 1/q = 1/p−(
∑m

i=1 βi)/n and as well as their weak type (L1(µ), Ln/(n−
∑m

i=1 βi )(µ))

boundedness where 0 <
∑m

i=1 βi < n. When m = 1, they also considered the

boundedness in the case that n/β < p < ∞ and the endpoint case that p = n/β.

Here the author obtains the same bounded estimates for M~b.
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Similar to the result in [14], in Section 3 we will prove that the multilinear com-

mutator defined by (1.6) is bounded from the Hardy space H1(µ) to some Lebesgue

space with nondoubling measures.

Throughout this paper, we use the constant C with subscripts to indicate its de-

pendence on the parameters in the subscripts. For a µ-measurable set E, χE denotes

its characteristic function. For any p ∈ [1,∞], we denote by p ′ its conjugate index,

namely, 1/p + 1/p ′
= 1.

2 Boundedness on Lebesgue Spaces

This section is devoted to the behaviour of commutators on Lebesgue spaces.

Theorem 2.1 Let m ∈ N and for i = 1, 2, . . . ,m, bi ∈ Lip(βi , µ) with 0 < βi ≤ 1.

Assume K satisfies (1.2) and (1.3), and letM~b be as in (1.6). Suppose 0 <
∑m

i=1 βi < n.

Then there exists a positive constant C > 0 such that

(i) for all bounded functions f with compact support,

‖M~b( f )‖Lq(µ) ≤ C
m
∏

i=1

‖bi‖Lip(βi )
‖ f ‖Lp(µ),

where 1 < p < n/(
∑m

i=1 βi) and 1/q = 1/p − (
∑m

i=1 βi)/n;

(ii) for all bounded functions f with compact support and all λ > 0,

µ({x ∈ R
d : M~b( f )(x) > λ}) ≤ C

(

∏m
i=1 ‖bi‖Lip(βi )

‖ f ‖L1(µ)

λ

) n/(n−
∑m

i=1 βi )

.

To prove Theorem 2.1, we need the following lemma about fractional integral

operators on Lebesgue space with nondoubling measures.

Recall that for 0 < α < n and all x ∈ supp(µ), the fractional integral operator Iα
is defined by

Iα( f )(x) =

∫

Rd

1

|x − y|n−α
f (y) dµ(y).

Garcı́a-Cuerva and Gatto [6] obtained the boundedness of Iα as follows.

Lemma 2.2 Let 0 < α < n, 1 ≤ p < n/α and 1/q = 1/p − α/n.Then there exists

a positive constant C > 0 such that for all bounded functions f with compact support

and all λ > 0,

‖Iα( f )‖Lq(µ) ≤ C‖ f ‖Lp(µ),

µ({x ∈ R
d : Iα( f )(x) > λ}) ≤ C

( ‖ f ‖L1(µ)

λ

)
n

n−α

.
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Proof of Theorem 2.1 By the Minkowski inequality and the condition (1.4), we have

M~b( f )(x) =
(

∫ ∞

0

∣

∣

∣

∫

|x−y|≤t

m
∏

i=1

[bi(x) − bi(y)]K(x, y) f (y) dµ(y)
∣

∣

∣

2 dt

t3

) 1/2

=

∫

Rd

|K(x, y)|
m
∏

i=1

|bi(x) − bi(y)|| f (y)|
(

∫ ∞

|x−y|≤t

dt

t3

) 1/2

dµ(y)

≤ C
m
∏

i=1

‖bi‖Lip(βi )

∫

Rd

| f (y)|

|x − y|n−(
∑

m
i=1 βi )

dµ(y)

≤ C
m
∏

i=1

‖bi‖Lip(βi )
I(
∑

m
i=1 βi )(| f |)(x)

Then it is easy to deduce the result from Lemma 2.2.

By contrast with the endpoint estimate for the commutators generated by

Marcinkiewicz integrals and RBMO(µ) functions ([9, Theorems 3.1, 3.5, 3.6]), we

can see that the behaviour of commutators with Lipschitz functions is quite different

from that of commutators with RBMO(µ) functions.

Now we assume m = 1. In the following, using Theorem 2.1, we consider the

boundedness of commutators defined by (1.6) for n/β < p < ∞ and p = n/β.

Hu, Lin, and Yang [9]introduced a Hörmander condition

(2.1)

sup
l>0,y,y ′∈R

d

|y−y ′|≤l

∞
∑

k=1

k

∫

2k l<|x−y|≤2k+1l

[

|K(x, y) − K(x, y ′)| + |K(y, x) − K(y ′, x)|
]

×
1

|x − y|
dµ(x) ≤ C,

which is slightly stronger than (1.3). Actually they proved the boundedness of Mar-

cinkiewicz commutator generated with RBMO(µ).

Here we will study the commutator Mb with kernel K satisfying (1.1) and the

Hörmander condition defined as follows.

Definition 2.3 Given 1 ≤ s < ∞, 0 < ε ≤ 1, we say that the kernel K satisfies the

Ls-Hörmander condition if there are numbers cs > 1 and Cs > 0 such that for any

x ∈ R
d and l > cs|x|,

sup
l>0,y,y ′∈R

d

|y−y ′|≤l

∞
∑

k=1

2kε (2kl)n
( 1

(2kl)n

∫

2kl<|x−y|≤2k+1l

[(

|K(x, y) − K(x, y ′)|

+ |K(y, x) − K(y ′, x)|
) 1

|x − y|

] s

dµ(x)
) 1/s

≤ Cs.

We will denote by H s the class of kernels satisfying the Ls-Hörmander condition.
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Observe that these classes are nested: by Hölder’s inequality, it is easy to check that

H
s2 ⊂ H

s1 ⊂ H
1, 1 < s1 < s2 < ∞,

and H 1 is obviously stronger than condition (2.1).

Theorem 2.4 Let n/β < p < ∞, 0 < ε ≤ 1 and b ∈ Lipβ(µ), 0 < β <
min{1/2, ε}. If K satisfies (1.2) and the H s(p ≤ s < ∞) condition, then the commu-

tator Mb in (1.6) is bounded from Lp(µ) into Lipβ−n/p(µ), with bound no more than

C‖b‖Lipβ(µ) such that ‖Mb( f )‖Lipβ−n/p(µ) ≤ C‖b‖Lipβ(µ)‖ f ‖Lp(µ).

Remark 2.5 The method used in the proof of Theorem 2.4 is not applicable to

multilinear commutators defined by (1.6) for m ≥ 2.

Remark 2.6 When µ is the d-dimensional Lebesgue measure in R
d and K(x, y) =

Ω(x − y)/|x − y|n−1 where Ω ∈ Ls(Sd−1) satisfies the condition defined in [15, The-

orem 1], by a straightforward computation using [12, Lemma 2.2.2], we know K

must satisfy the condition H s with some 0 < ε ≤ 1. In this sense, the condition H s

is weaker.

The following characterization of the space Lipβ(µ) for 0 < β ≤ 1 in [5] plays a

key role in the proof of Theorem 2.4.

Lemma 2.7 For a function b ∈ L1
loc(µ), conditions (i), (ii), and (iii) below are equiv-

alent.

(i) There is a constant C1 ≥ 0 such that |b(x) − b(y)| ≤ C1|x − y|β , for µ-almost

every x and y in the support of µ.

(ii) There exist some constant C2 ≥ 0 and a collection of numbers bQ, one for each

cube Q, such that these two properties hold: for any cube Q

(2.2)
1

µ(2Q)

∫

Q

|b(x) − bQ| dµ(x) ≤ C2ℓ(Q)β ,

and for any cube R such that Q ⊂ R and ℓ(R) ≤ 2ℓ(Q),

(2.3) |bQ − bR| ≤ C2ℓ(Q)β .

(iii) For any given p, 1 ≤ p ≤ ∞, there is a constant C(p) ≥ 0, such that for every

cube Q, we have

[ 1

µ(Q)

∫

Q

|b(x) − mQ(b)|p dµ(x)
] 1/p

≤ C(p)ℓ(Q)β ,

where here and in the sequel, mQ(b) = 1
µ(Q)

∫

Q
b(y) dµ(y), and also for any cube

R such that Q ⊂ R and ℓ(R) ≤ 2ℓ(Q), |mQ(b) − mR(b)| ≤ C(p)ℓ(Q)β .

In addition, the quantities inf{C1}, inf{C2}, and inf{C(p)}with a fixed p are equiv-

alent to ‖b‖Lipβ(µ).
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We remark that Lemma 2.7 is a slight variant of [5, Theorem 2.3]. To be precise,

if we replace all balls in [5, Theorem 2.3] by cubes, we then obtain Lemma 2.7.

Remark 2.8 For 0 < β ≤ 1, (2.3) is equivalent to

(2.4) |bQ − bR| ≤ C ′
2SQ,Rℓ(R)β

for any two cubes Q ⊂ R with ℓ(R) ≤ 2ℓ(Q); see [5, Remark 2.7]. Note that for

β = 0, (2.2) and (2.4) are just the space RBMO(µ) of Tolsa; see [21]. Therefore,

the space Lipβ(µ) for 0 < β ≤ 1 can be seen as a member of a family containing

RBMO(µ).

Proof of Theorem 2.4 For any cube Q in R
d and any cube R such that Q ⊂ R satisfies

ℓ(R) ≤ 2ℓ(Q), let aQ = mQ[Mb( fχ
Rd\ 3

2
Q)r], and aR = mR[Mb( fχ

Rd\ 3
2

R)]. It is easy

to see aQ and aR are real numbers. By Lemma 2.7, we need to show that there exists a

constant C > 0 such that

1

µ(2Q)

∫

Q

|Mb( f )(x) − aQ| dµ(x) ≤ C‖ f ‖Lp(µ) ℓ(Q)β−n/p,(2.5)

|aQ − aR| ≤ C‖ f ‖Lp(µ) ℓ(Q)β−n/p.(2.6)

Let us first prove the estimate (2.5). For a fixed cube Q and x ∈ Q, decompose

f = f1 + f2, where f1 = fχ 3
2

Q and f2 = f − f1. Write

1

µ(2Q)

∫

Q

|Mb( f )(x) − aQ| dµ(x) ≤
1

µ(2Q)

∫

Q

|Mb( f1)(x)| dµ(x)

+
1

µ(2Q)

∫

Q

|Mb( f2)(x) − aQ| dµ(x)

= I1 + I2

Choose 1 < p1 < n/β < p and q1 such that 1/q1 = 1/p1 − β/n. From the

Hölder inequality and Lemma 2.7, it follows that

I1 ≤ C
1

µ(2Q)

[

∫

Q

|Mb( f1)(x)|q1 dµ(x)
] 1/q1

µ(Q)1−1/q1

≤ C‖ f ‖Lp(µ) ‖b‖Lipβ(µ)ℓ(Q)β−n/p.

To estimate the term I2, set

D1(x, y) =
(

∫ ∞

0

[

∫

|x−z|≤t<|y−z|

|K(x, z)||b(z) − mQ(b)|| f2(z)| dµ(z)
] 2 dt

t3

) 1/2

,

D2(x, y) =
(

∫ ∞

0

[

∫

|y−z|≤t<|x−z|

|K(y, z)||b(z) − mQ(b)|| f2(z)| dµ(z)
] 2 dt

t3

) 1/2

,
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D3(x, y)

=

(

∫ ∞

0

[

∫

|y−z|≤t
|x−z|≤t

|K(x, z) − K(y, z)||b(z) − mQ(b)|| f2(z)| dµ(z)
] 2 dt

t3

) 1/2

.

It is easy to see that for any x, y ∈ Q,

|Mb( f2)(x) −Mb( f2)(y)|

=

∣

∣

∣

∣

(

∫ ∞

0

∣

∣

∣

∫

|x−z|≤t

[b(x) − b(z)]K(x, z) f2(z) dµ(z)
∣

∣

∣

2 dt

t3

) 1/2

−
(

∫ ∞

0

∣

∣

∣

∫

|y−z|≤t

[b(y) − b(z)]K(y, z) f2(z) dµ(z)
∣

∣

∣

2 dt

t3

) 1/2
∣

∣

∣

∣

≤

3
∑

j=1

D j(x, y).

To estimate D1(x, y), for x, y ∈ Q, z ∈ ( 3Q
2

)c, we have

D1 ≤
(

∫ ∞

0

[

∫

|x−z|≤t<|y−z|

|b(z) − mQ(b)|

|x − z|n−1
| f2(z)| dµ(z)

] 2 dt

t3

) 1/2

≤ Cℓ(Q)1/2

∫

Rd\ 3
2

Q

|b(z) − mQ(b)|

|x − z|n+1/2
| f (z)| dµ(z)

≤ Cℓ(Q)1/2

∞
∑

k=1

∫

3
2

2kQ\ 3
2

2k−1Q

|b(z) − mQ(b)|

|x − z|n+1/2
| f (z)| dµ(z)

≤ C

∞
∑

k=1

2−k/2ℓ(2kQ)β−n‖b‖Li pβ(µ)

∫

3
2

2kQ

| f (z)| dµ(z)

≤ C‖b‖Li pβ(µ)‖ f ‖Lp(µ)

∞
∑

k=1

2−k/2ℓ(2kQ)β−nµ(
3

2
2kQ)1−1/p

≤ C‖b‖Li pβ(µ)‖ f ‖Lp(µ) ℓ(Q)β−n/p.

Here we used the Minkowski inequality, 0 < β < 1/2 and condition (ii) of Lemma

2.7, i.e.,

|b(z) − mQ(b)| ≤ Cℓ(2kQ)β‖b‖Li pβ(µ), for z ∈ R
d\

3

2
Q.

Similarly, by symmetry, we have that for x, y ∈ Q,

D2 ≤ C‖b‖Li pβ(µ)‖ f ‖Lp(µ) ℓ(Q)β−n/p.
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Finally, applying the Minkowski inequality and condition (1.2).

D3(x, y)

=

(

∫ ∞

0

[

∫

|y−z|≤t
|x−z|≤t

|K(x, z) − K(y, z)||b(z) − mQ(b)|| f2(z)| dµ(z)
] 2 dt

t3

) 1/2

≤ C

∞
∑

k=1

∫

3
2

2kQ\ 3
2

2k−1Q

|K(x, z) − K(y, z)||b(z) − mQ(b)|
| f (z)|

|y − z|
dµ(z)

≤ C‖b‖Lipβ(µ)‖ f ‖Lp(µ)

∞
∑

k=1

ℓ(2kQ)β−n/pℓ(2kQ)n/p

×
(

∫

3
2

2kQ\ 3
2

2k−1Q

[

|K(x, z) − K(y, z)|
1

|y − z|

] p ′

dµ(z)
) 1/p ′

≤ C‖b‖Lipβ(µ)‖ f ‖Lp(µ)

∞
∑

k=1

ℓ(2kQ)β−n/pℓ(2kQ)n

×
( 1

ℓ(2kQ)n

∫

3
2

2kQ\ 3
2

2k−1Q

(

|K(x, z) − K(y, z)|
1

|x − y|

) p ′

dµ(z)
) 1/p ′

≤ C‖b‖Lipβ(µ)‖ f ‖Lp(µ)ℓ(Q)β−n/p.

Here we used the condition H p ′

that kernel K satisfies and the fact that 0 < β <
min{1/2, ε}.

Combining the estimates above, we obtain that

I2 ≤ C‖b‖Lipβ(µ)‖ f ‖Lp(µ)ℓ(Q)β−n/p.

and the estimate (2.5) is proved.

We now verify (2.6). For any cubes Q ⊂ R with x ∈ Q, where Q is an arbitrary

and R is a doubling cube with ℓ(R) ≥ ℓ(Q), denote NQ, R + 1 simply by N. Write

|aQ − aR| ≤
∣

∣mR[Mb( fχRd\2N Q)] − mQ[Mb( fχRd\2N Q)]
∣

∣

+ |mQ[Mb( fχ2N Q\ 3
2

Q)]| + |mR[Mb( fχ2N Q\ 3
2

R)]| = E1 + E2 + E3 .

As in the estimate for the term II2, we have

E1 ≤ C‖b‖Lipβ(µ)‖ f ‖Lp(µ)ℓ(Q)β−n/p.

On the other hand, via y ∈ R, z ∈ 2N Q \ 3
2
Q, we have

Mb

(

fχ2N Q\ 3
2

R

)

(y) ≤ C

∫

2N Q\ 3
2

R

|K(y, z)(b(y) − b(z)) f (z)|
(

∫ ∞

|y−z|

dt

t3

) 1/2

dµ(z)

≤ C‖b‖Lipβ(µ)‖ f ‖Lp(µ)ℓ(Q)β−n/p.
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Taking the mean over y ∈ R, we obtain

E3 ≤ C‖b‖Lipβ(µ)‖ f ‖Lp(µ)ℓ(Q)β−n/p.

An argument similar to the estimate for E2 tells us that

E2 ≤ C‖b‖Lipβ(µ)‖ f ‖Lp(µ)ℓ(Q)β−n/p.

For the endpoint case that p = n/β, we have the following result.

Theorem 2.9 Let K satisfy (1.2) and the H p ′

condition for p ∈ (n/β, ∞) and

p ′
=

p
p−1

. Let Mb be defined as in (1.6). Then for any 0 < β ≤ 1 and b ∈ Lipβ(µ),

there is a constant C > 0 such that for all bounded functions f with compact support,

‖Mb( f )‖RBMO(µ) ≤ C‖b‖Lip(β)‖ f ‖Ln/β(µ).

Here we will not give the details of the proof of Theorem 2.9, since we can prove

it similarly to Theorem 2.4.

3 Boundedness on Hardy Spaces H1(µ)

In order to consider the boundedness of multilinear commutators generated by the

Marcinkiewicz integrals with Lipschitz functions on the Hardy space H1(µ) of Tolsa

[19,20], we first recall the definition of the grand maximal operator MΦ of Tolsa [20].

Definition 3.1 Given f ∈ L1
loc(µ), we define

MΦ f (x) = sup
ϕ∼x

∣

∣

∣

∫

Rd

fϕ dµ
∣

∣

∣
,

where the notation ϕ ∼ x means that ϕ ∈ L1(µ) ∩C1(R
d) and satisfies

(i) ‖ϕ‖L1(µ) ≤ 1,
(ii) 0 ≤ ϕ(y) ≤ 1

|y−x|n for all y ∈ R
d,

(iii) |ϕ ′(y)| ≤ 1
|y−x|n+1 for all y ∈ R

d.

Based on Tolsa ([20, Theorem 1.2]), we can define the Hardy space H1(µ) as fol-

lows; see also [19].

Definition 3.2 The Hardy space H1(µ) is the set of all functions f ∈ L1(µ) satis-

fying
∫

Rd f dµ = 0 and MΦ f ∈ L1(µ). Moreover, we define the norm of f ∈ H1(µ)

by

‖ f ‖H1(µ) = ‖ f ‖L1(µ) + ‖MΦ f ‖L1(µ).

Using Theorem 2.1, we can obtain the following boundedness of multilinear com-

mutators in the Hardy space H1(µ).
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Theorem 3.3 Let m ∈ N and for i = 1, 2, . . . ,m, bi ∈ Lip(βi , µ) and 0 < βi ≤ 1.

Suppose that 0 <
∑m

i=1 βi < n and 1/q = 1 − (
∑m

i=1 βi)/n. Let K satisfy (1.2) and

the H q condition and let M~b be as in (1.6). Then M~b is bounded from H1(µ) to Lq(µ)

with the operator norm at most C‖b1‖Lip(β1) · · · ‖bm‖Lip(βm).

Remark 3.4 In [19], Tolsa showed that the space RBMO(µ) is the predual of the

Hardy space H1(µ), as in the doubling case. By this fact together with the fact that

Ln/β(µ) is the dual of Ln/(n−β)(µ), we can deduce Theorem 2.9 from Theorem 3.3.

We omit the details.

To prove Theorem 3.3, we first recall the atomic Hardy space H
1,∞
atb (µ), which has

been proved to be the same space as the Hardy space H1(µ); see [19, 20].

Definition 3.5 Let ρ > 1. A function h ∈ L1
loc(µ) is called an atomic block if

(i) there exists some cube R such that supp(h) ⊂ R,

(ii)
∫

Rd h(x) dµ(x) = 0,

(iii) for i = 1, 2, there are functions ai supported on cubes Qi ⊂ R and numbers

λi ∈ R such that h = λ1a1 + λ2a2, and ‖ai‖L∞(µ) ≤ [µ(ρQi)SQi , R]−1.

Then we define |h|H1,∞
atb

(µ) = |λ1|+ |λ2|. We say that f ∈ H
1,∞
atb (µ) if there are atomic

blocks {h j} j∈N such that

f =

∞
∑

j=1

h j

with
∑∞

j=1 |h j |H1,∞
atb

(µ) < ∞. The H
1,∞
atb (µ) norm of f is defined by

‖ f ‖H
1,∞
atb

(µ) = inf
{

∑

j

|h j |H1,∞
atb

(µ)

}

,

where the infimum is taken over all possible decompositions of f in atomic blocks.

The definition of H
1,∞
atb (µ) does not depend on the constant ρ > 1, which was

proved in [19].

Proof of Theorem 3.3 For simplicity, set

β =

m
∑

i=1

βi and ‖~b‖Lip(β)
=

m
∏

i=1

‖bi‖Lip(βi )
.

It is easy to see that we only need to prove the theorem for atomic blocks h as in

Definition 3.5 with ρ = 4. Let R be a cube such that supp(h) ⊂ R,
∫

Rd h(x) dµ(x) = 0,

and

(3.1) h(x) = λ1a1(x) + λ2a2(x),

where λi for i = 1, 2 are real numbers, |h|H1,∞
atb

(µ) = |λ1| + |λ2|, ai for i = 1, 2 are

bounded functions supported on some cube Qi ⊂ R and satisfy

(3.2) ‖ai‖L∞(µ) ≤ [µ(4Qi)SQi ,R]−1.
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Write

‖M~b(h)‖Lq(µ) ≤ C
(

∫

2R

|M~b(h)(x)|q dµ(x)
) 1/q

+
(

∫

Rd\(2R)

|M~b(h)(x)|q dµ(x)
) 1/q

≤ C
(

∫

2R

|M~b(h)(x)|q dµ(x)
) 1/q

+
{

∫

Rd\(2R)

(

∫ |x−xR|+2ℓ(R)

0

∣

∣

∣

∫

|x−y|≤t

K(x, y)

×

m
∏

i=1

[bi(x) − bi(y)]h(y) dµ(y)
∣

∣

∣

2 dt

t3

) q/2

dµ(x)
} 1/q

+
{

∫

Rd\(2R)

(

∫ ∞

|x−xR|+2ℓ(R)

∣

∣

∣

∫

|x−y|≤t

K(x, y)

×

m
∏

i=1

[bi(x) − bi(y)]h(y) dµ(y)
∣

∣

∣

2 dt

t3

) q/2

dµ(x)
} 1/q

= I + II + III .

By (3.1), we can further decompose

I ≤ |λ1|
(

∫

2R

|M~b(a1)(x)|q dµ(x)
) 1/q

+ |λ2|
(

∫

2R

|M~b(a2)(x)|q dµ(x)
) 1/q

= I1 + I2 .

To estimate I1, we write,

I1 ≤ |λ1|
(

∫

2Q1

|M~b(a1)(x)|q dµ(x)
) 1/q

+ |λ1|
(

∫

2R\2Q1

|M~b(a1)(x)|q dµ(x)
) 1/q

= I11 + I12 .

Choose p1 and q1 such that 1 < p1 < n/β and 1/q1 = 1/p1 − β/n. It is

obvious that 1 < q < q1. The Hölder inequality, the fact that SQ1,R ≥ 1, and the

(Lp1 (µ), Lq1 (µ))-boundedness of M~b by Theorem 2.1 in Section 2 tell us that

I11 ≤ |λ1|
[

∫

2Q1

|M~b(a1)(x)|q1 dµ(x)
] 1/q1

µ(2Q1)1/q−1/q1

≤ C‖~b‖Lip(β)
|λ1|‖a1‖Lp1 (µ)µ(2Q1)1/q−1/q1

≤ C‖~b‖Lip(β)
|λ1|.

Denote S2Q1,2R simply by N1. Invoking the fact that ‖a1‖L∞(µ) ≤ [µ(4Q1)SQ1, R]−1,

https://doi.org/10.4153/CMB-2011-139-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-139-1


658 J. Zhou and B. Ma

we have

I12 ≤ C|λ1|
{

N1+1
∑

k=1

∫

2k+1Q1\2kQ1

[

∫ ∞

0

∣

∣

∣

∫

|x−y|≤t

∏m
i=1[bi(x) − bi(y)]

|x − y|n−1
a1(y) dµ(y)

∣

∣

∣

2 dt

t3

] q/2

dµ(x)
} 1/q

≤ C‖~b‖Lip(β)
|λ1|

{

N1+1
∑

k=1

ℓ(2kQ1)q(β−n)

∫

2k+1Q1\2kQ1

[

∫

Q1

|a1(y)| dµ(y)
] q

dµ(x)
} 1/q

≤ C‖~b‖Lip(β)
|λ1|

{

N1+1
∑

k=1

ℓ(2kQ1)q(β−n)µ(4Q1)−qS
−q
Q1,R

µ(2(k+1)Q1)µ(Q1)q
} 1/q

≤ C‖~b‖Li p(β)
|λ1|.

Here we use the fact that
N1+2
∑

k=2

µ(2kQ)

l(2kQ)n
≤ CSQ1,R;

see [19, 20]. The estimates for I11 and I12 give the desired one for I1. An argument

similar to the estimate for I1 tells us that I2 ≤ C‖~b‖Lip(β)
|λ2|. Combining the estimates

for I1 and I2 yields the desired estimate for I.

For i = 1, 2, y ∈ Qi ⊂ R, x ∈ R
d\(2R), we have

|x − y| ∼ |x − xR| ∼ |x − xR| + 2ℓ(R).

By the Minkowski inequality, we have

II ≤ C
{

∫

Rd\(2R)

[

∫

Rd

(

∫ |x−xR|+2ℓ(R)

|x−y|

dt

t3

) 1/2

×
|h(y)|

|x − y|n−1

m
∏

i=1

|bi(x) − bi(y)| dµ(y)
] q

dµ(x)
} 1/q

≤ C

∫

R

{

∫

Rd\(2R)

( ℓ(R)1/2

|x − y|3/2

|h(y)|

|x − y|n−1

m
∏

i=1

|bi(x) − bi(y)|
) q

dµ(x)
} 1/q

dµ(y)

≤ C‖~b‖Lip(β)

(

2
∑

j=1

|λ j |‖a j‖L1(µ)

){

∞
∑

k=1

ℓ(R)1/2ℓ(2kR)−n+β−1/2µ(2k+1R)1/q
}

≤ C‖~b‖Lip(β)

(

2
∑

j=1

|λ j |
)

.
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Now we turn our attention to the estimate for III. For 1 ≤ i ≤ m, we denote

by Cm
i the family of all finite subsets σ = {σ(1), . . . , σ(i)} of {1, 2, . . . ,m} with i

different elements. For any σ ∈ Cm
i , the complementary sequence σ ′ is given by

σ ′
= {1, 2, . . . ,m}\σ. For any σ = {σ(1), σ(2), . . . , σ(i)} ∈ Cm

i , set

βσ = βσ(1) + · · · + βσ(i) and βσ ′ = β − βσ.

For 1 ≤ i ≤ m, all σ ∈ Cm
i , all y ∈ R

d and all cubes R, write

[b(y) − mR(b)]σ = [bσ(1)(y) − mR(bσ(1))] · · · [bσ(i)(y) − mR(bσ(i))].

With the aid of the formula

m
∏

i=1

[bi(x) − bi(y)] =

m
∑

i=0

∑

σ∈Cm
i

[b(x) − mR(b)]σ[mR(b) − b(y)]σ ′ ,

and for any y ∈ R, we have t ≥ |x − xR| + 2ℓ(R) ≥ |x − xR| + |y − xR| ≥ |x − y|. So

by the fact that
∫

R
h(x) dµ(x) = 0, we obtain

III ≤
{

∫

Rd\(2R)

∣

∣

∣

∫

R

K(x, y)

m
∏

i=1

[bi(x) − bi(y)]h(y) dµ(y)

×
(

∫ ∞

|x−xR|+2ℓ(R)

dt

t3

) 1/2∣
∣

∣

q

dµ(x)
} 1/q

≤ C
{

∫

Rd\(2R)

∣

∣

∣

∫

R

K(x, y)h(y)

|x − xR| + 2ℓ(R)

m
∏

j=1

[b j(x) − mR(b j)] dµ(y)
∣

∣

∣

q

dµ(x)
} 1/q

+ C
{

∫

Rd\(2R)

∣

∣

∣

∫

R

K(x, y)h(y)

|x − xR| + 2ℓ(R)

×
m−1
∑

j=1

∑

σ∈Cm
j

[b(x) − mR(b)]σ ′[mR(b) − b(y)]σ dµ(y)
∣

∣

∣

q

dµ(x)
} 1/q

+ C
{

∫

Rd\(2R)

∣

∣

∣

∫

R

K(x, y)h(y)

|x − xR| + 2ℓ(R)

m
∏

j=1

[mR(b j) − b j(y)] dµ(y)
∣

∣

∣

q

dµ(x)
} 1/q

= C{III1 + III2 + III3}.

For III1, by the Minkowski inequality, the vanishing condition of h and (3.2), we
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have

III1 =

{

∫

Rd\(2R)

∣

∣

∣

m
∏

j=1

[b j(x) − mR(b j)]

∫

R

K(x, y) − K(x, xR)

|x − xR| + 2ℓ(R)
h(y) dµ(y)

∣

∣

∣

q

dµ(x)
} 1/q

≤ C‖~b‖Lip(β)

×

∫

R

|h(y)|

∞
∑

k=1

(

∫

2k+1R\2kR

[

ℓ(2kR)β
|K(x, y) − K(x, xR)|

|x − y|

] q

dµ(x)
) 1/q

dµ(y)

≤ C‖~b‖Lip(β)

2
∑

j=1

|λ j |.

Here we use the fact that 1/q = 1 − β/n and 0 < ε ≤ 1.

Similar to the estimate of III1, we obtain

III2 ≤ C
{

∫

Rd\(2R)

m−1
∑

j=1

∑

σ∈Cm
j

∣

∣

∣

∫

R

K(x, y)h(y)

|x − xR| + 2ℓ(R)

× [b(x) − mR(b)]σ ′[mR(b) − b(y)]σ dµ(y)
∣

∣

∣

q

dµ(x)
} 1/q

≤ C

m−1
∑

j=1

∑

σ∈Cm
j

∫

R

∞
∑

k=1

‖~b‖Lip(βσ )
ℓ(R)βσ

×
(

∫

2k+1R\2kR

[ |K(x, y) − K(x, xR)|

|x − y|
|b(x) − mR(b)|σ ′

] q

dµ(x)
) 1/q

|h(y)| dµ(y)

≤ C‖~b‖Lip(β)

2
∑

j=1

|λ j |‖a j‖L1(µ) ≤ C‖~b‖Lip(β)

2
∑

j=1

|λ j |.

Let us now estimate III3. Note that for any y ∈ R, x ∈ R
d\2R, we have |x − y| ∼

|x − xR| + 2ℓ(R), so by the Minkowski inequality,

III3 ≤

∫

R

∞
∑

k=1

(

∫

2k+1R\2kR

[ |K(x, y)|

|x − y|

m
∏

j=1

|mR(b j) − b j(y)|
] q

dµ(x)
) 1/q

|h(y)| dµ(y)

≤ C

∫

R

∞
∑

k=1

‖~b‖Lip(β)
ℓ(R)βℓ(2kR)−nµ(2k+1R)1/q

2
∑

j=1

|λ j ||a j(y)| dµ(y)

≤ C‖~b‖Lip(β)

2
∑

j=1

|λ j |.
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So III ≤ C‖~b‖Li p(β)

∑2
j=1 |λ j |. Combining the estimates for I, II, and III yields that

‖M~b(h)‖Lq(µ) ≤ C|h|H1,∞
atb

(µ) .
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