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Randers Metrics of Constant Scalar
Curvature
Esra Sengelen Sevim and Zhongmin Shen

Abstract. Randers metrics are a special class of Finsler metrics. Every Randers metric can be expressed
in terms of a Riemannian metric and a vector field via Zermelo navigation. In this paper, we show that
a Randers metric has constant scalar curvature if the Riemannian metric has constant scalar curvature
and the vector field is homothetic.

1 Introduction

For a Finsler manifold (M, F), the flag curvature K = K(x, y, P) at a point x is a
function of tangent plane P ⊆ TxM and nonzero vector y ∈ P. This quantity tells us
how curved the space is. The Ricci curvature Ric = Ric(x, y) is the average value of
the flag curvature over the “flags” P containing a vector y ∈ TxM. Further averaging
on the Ricci curvature gives the so-called scalar curvature

r(x) :=
n + 2

ωn

∫
Bx

Ric(x, y)dVx,

where Bx the unit ball of Fx in TxM, dVx is the Busemann volume form on TxM,
and ωn is the volume of the unit ball in Rn ([5]). It is a natural problem in Finsler
geometry to understand the geometric properties of Finsler metrics of constant flag
curvature, constant Ricci curvature or constant scalar curvature. In this paper, we
shall focus on the scalar curvature of a special class of Finsler metrics in the form

F = α + β,

where α =
√

ai j(x)yi y j is a Riemannian metric and β = bi(x)yi is a 1-form on a
manifold. This class of Finsler metrics was introduced by G. Randers in 1941 in his
study on general relativity, and hence they are named after him. Randers metrics also
arise naturally from the navigation problem on a manifold M with a Riemannian
metric h =

√
hi j(x)yi y j under the influence of an external force field V = V i(x) ∂

∂xi

on M. The least time path from one point to another is a geodesic of the Randers
metric F

(1.1) F =

√
λh2 + V 2

0

λ
− V0

λ
,
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where V0 := Vi yi ,Vi := hi jV j and λ := 1−ViV i . It is easy to see that every Randers
metric can be expressed in the form (1.1); see [2, 4]. The pair (h,V ) is called the
navigation data of F.

The classification of Randers metrics of constant flag curvature has been com-
pleted [2], and Randers metrics with constant Ricci curvature can be characterized
by Riemannian Einstein metrics and homothetic vector field via Zermelo navigation
[1]. The main purpose of this paper is to bring attention to the scalar curvature and
to show how to construct Randers metrics of constant scalar curvature.

Theorem 1.1 Let F = α+β be a Randers metric on an n-manifold M that is expressed
by navigation data (h,V ) in (1.1). Let r(x) and r(x) denote the scalar curvature of F
and h respectively. Suppose that V is homothetic with respect to h, namely,

(1.2) Vi; j + V j;i = −4chi j ,

where Vi := hi jV j and c = constant. Then r(x) = r(x) − n(n − 1)c2. Hence, if
h has constant scalar curvature, r = n(n − 1)µ, then F has constant scalar curvature
r(x) = n(n− 1)(µ− c2).

Note that if V is a Killing vector field with respect to h, i.e., V satisfies (1.2) with
c = 0, then the scalar curvature of F is equal to that of h.

There are many non-trivial examples of Randers metrics with constant scalar cur-
vature but not constant Ricci curvature.

Example 1.2 Let n ≥ 3 and ε =
√

(n− 2)/n. The product Riemannian metric h
on M = Sn−1(ε)× R has constant scalar curvature

r(x) = (n− 1)(n− 2)ε−2 = n(n− 1).

Let V = ∂/∂t be the vector field tangent to R in M = Sn−1(ε) × R. Then V is a
Killing vector field on (M, h). Let F be the Randers metric defined by (1.1). Then it
has constant scalar curvature r(x) = n(n− 1).

Example 1.3 Let n ≥ 4 and Hn−2 be the Riemannian hyperbolic space of constant
curvature -1. Let ε = 1/

√
n2 − 3n + 3 and let S2(ε) be the standard sphere of radius

ε in Rn. The product Riemannian metric h on M = S2(ε)×Hn−2 has constant scalar
curvature

r(x) = 2ε−2 − (n− 2)(n− 3) = n(n− 1).

Let V be a Killing vector field on S2(ε). We can extend V to a Killing vector field
V = V ⊕ {0} on M = S2(ε) × Hn−2. Let F be the Randers metric defined by (1.1).
Then it has constant scalar curvature r(x) = n(n− 1).

2 Preliminaries

Consider a Randers metric F = α+β on a manifold M. We can express it in the form
(1.1), namely,

(2.1) F =

√
λh2 + V 2

0

λ
− V0

λ
,
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where h =
√

hi j(x)yi y j is a Riemannian metric, V = V i(x) ∂
∂xi is a vector field, and

V0 = Vi(x)yi . Let Ric = Ric(x, y) and Ric = Ric(x, y) denote the Ricci curvature of
F and h respectively. Since h is Riemannian, Ric(x, y) = Rici j(x)yi y j is quadratic in
y ∈ TxM. For the vector ξ = ξi ∂

∂xi ∈ TxM with

(2.2) ξi := yi − F(x, y)V i(x),

let

h̃ :=
√

hi j(x)ξiξ j , R̃ic := Rici j(x)ξiξ j .

Note that the transformation ψ : y ∈ TxM \ {0} → ξ ∈ TxM \ {0} defined by (2.2)

is a diffeomorphism. It is easy to verify that h̃(x, ξ) = F(x, y).
We have the following lemma.

Lemma 2.1 ([3]) Let F = α + β be a Randers metric on an n-manifold M given
by (1.1) with navigation data (h,V ). Suppose that V is homothetic with respect to h,
namely,

Vi; j + V j;i = −4chi j ,

where Vi := hi jV j and c = c(x) is a scalar function on M. Then for any scalar function
µ = µ(x) on M

(2.3) Ric− (n− 1)
{ 3cxm ym

F
+ σ
}

F2 = R̃ic− (n− 1)µh̃2,

where σ := µ(x)− c2(x)− 2cxm (x)V m(x).

For a Finsler metric F = F(x, y) on an n-dimensional manifold M, the Busemann-
Hausdorff volume form dVF = σF(x)dx1 · · · dxn is given by

σF(x) :=
ωn

Vol{(yi) ∈ Rn | F(x, y) < 1}
,

where ωn := Vol(Bn(1)). On the tangent space TxM, there is a natural coordinate
system (yi) determined by the natural basis {∂/∂xi} for TxM. Then the Busemann-
Hausdorff volume form dVF = σF(x)dx1 · · · dxn induces a volume form dVx on TxM:

dVx = σF(x)dy1 · · · dyn.

We use this volume form dVx to average the Ricci curvature over the unit ball Bx :=
{y ∈ TxM | F(x, y) < 1} and define the scalar curvature of F by

r(x) :=
n + 2

ωn

∫
Bx

Ric dVx.

This definition is given in [5]. We will show that if F is Einstein, i.e.,

Ric = (n− 1)σF2,

then it is easy to see that r(x) = n(n− 1)σ. Moreover, if F is weakly Einstein, i.e.,

Ric = (n− 1)
{ 3cxm ym

F
+ σF

}
,

then r(x) = 3(n2 − 1)cxmV m + n(n− 1)σ.
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3 Proof of Theorem 1.1

Let F = α+β be a Randers metric given by (2.1) with navigation data (h,V ). Suppose
that V satisfies Vi; j + V j;i = −4chi j , where c = c(x) is a scalar function. This is
equivalent to the S-curvature being isotropic, S = (n + 1)cF. Theorem 1.1 follows
from the next theorem.

Theorem 3.1 The scalar curvatures of F and h are related by

(3.1) r(x)− r(x) = −n(n− 1)(c2 + 2cxmV m) + 3(n2 − 1)cxmV m.

Proof To prove Theorem 3.1, we need (2.3) in Lemma 2.1. We can rewrite equation
(2.3) as

(3.2) Ric− R̃ic = 3(n− 1)cxm ymF + (n− 1)σF2,

where σ = −c2− 2cxmV m. By evaluating equation (3.2) on the unit tangent ball with
respect to Busemann–Hausdorff volume form dVx, we obtain (3.1).

Fix a coordinate system (xi) at x. There are two coordinate systems (yi) and (ξi) in
TxM, which are related by the following coordinate transformation, ψ : (yi) → (ξi)
given by

ξi = yi − F(x, y)V i(x).

Let Bx := {(yi) | F(x, y) < 1} and B̃x := {(ξi) | h̃(x, ξ) < 1)}. Since F(x, y) =

h̃(x, ξ) for ξi = yi − F(x, y)V i(x), one can see that the image of Bx under the map ψ

is B̃x. Note that the Riemannian volume of h̃ =
√

hi jξiξ j on TxM in (ξi) is given by

dVh̃ =
√

det(hi j)dξ1 · · · dξn.

The unit balls Bx and B̃x are related by B̃x = Bx − (V i) in Rn. Thus,

σx =
Vol(Bn)

Vol {(yi)| F(x, y) < 1}
=

Vol(Bn)

Vol (Bx)

=
Vol(Bn)

Vol (Bx −V )
=

Vol(Bn)

Vol {(ξi)| h̃(x, ξ) < 1}
=
√

det(hi j).

Furthermore, the coordinate transformationψ has Jacobian 1/(1 + h̃ξkV k). Thus, the

Busemann–Hausdorff volume form dṼx = (ψ−1)∗dVx can be expressed in (ξi)

dṼx = (1 + h̃ξkV k)dVh̃ =
√

det hi j(1 + h̃ξkV k)dξ1 · · · dξn.

Integrating (3.2) on Bx or B̃x, we obtain

(3.3)

∫
Bx

Ric dVx −
∫

B̃x

R̃ic dṼx =

(n− 1)σ

∫
Bx

F2 dVx + 3(n− 1)cxm

∫
Bx

ymF dVx.
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Using the definition of the coordinate transformation ψ, we have h̃(x, ξ) = F(x, y).
We have ∫

B̃x

R̃ic dṼx =

∫
B̃x

R̃ic dVh̃ +

∫
B̃x

R̃ic h̃ξkV k dVh̃,∫
Bx

F2dVx =

∫
B̃x

h̃2dṼx =

∫
B̃x

h̃2(1 + h̃ξkV k)dVh̃,

cxm

∫
Bx

ymFdVx = cxm

∫
B̃x

(ξm + h̃V m)h̃(1 + h̃ξkV k)dVh̃.

By definition,

(3.4)

∫
Bx

Ric dVx =
ωn

n + 2
r(x),

∫
B̃x

R̃ic dVh̃ =
ωn

n + 2
r(x).

Since R̃ic h̃ξkV k is an odd function in ξ on B̃x, we have

(3.5)

∫
B̃x

R̃ic h̃ξkV k dVh̃ = 0.

It is easy to verify that

(3.6)

∫
B̃x

h̃2 dVh̃ =
n

n + 2
ωn.

Note that h̃2h̃ξkV k(x) = h̃h jk(x)ξ jV k(x) is an odd function on B̃x. Thus∫
B̃x

h̃2h̃ξkV k(x)dVh̃ = 0.

Then

(3.7)

∫
B̃x

h̃2 dṼx =

∫
B̃x

h̃2(1 + h̃ξkV k)dVh̃ =
n

n + 2
ωn.

Since both h̃ξm and h̃2h̃ξkV mV k are odd functions on B̃x, we have∫
B̃x

h̃ξmdVh̃ =

∫
B̃x

h̃2h̃ξkV mV kdVh̃ = 0.

Then

cxm

∫
Bx

ymFdVx = cxm

∫
B̃x

(ξm + h̃V m)h̃(1 + h̃ξkV k)dVh̃

= cxmV m

∫
B̃x

h̃2dVh̃ + cxm

∫
B̃x

ξmh̃h̃ξkV kdVh̃

=
n

n + 2
ωncxmV m + cxm

∫
B̃x

ξmh̃h̃ξkV kdVh̃.
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We claim that

(3.8) cxm

∫
B̃x

ξmh̃h̃ξkV kdVh̃ =
1

n + 2
ωncxmV m.

To prove (3.8), we choose a special coordinate system at x such that hi j = δi j . Then

B̃x =
{

(ξi)
∣∣ |(ξi)| < 1

}
and

cxm

∫
B̃x

ξmh̃h̃ξkV kdVh̃ = cxmV k

∫
B̃x

ξkξm dξ1 · · · dξn.

Note that if k 6= m, ∫
B̃x

ξkξm dξ1 · · · dξn = 0.

For each fixed k = m,∫
B̃x

ξmξk dξ1 · · · dξn =
1

n

∫
B̃x

n∑
i=1

(ξi)2 dξ1 · · · dξn =
1

n + 2
ωn.

Thus

cxmV k

∫
B̃x

ξkξm dξ1 · · · dξn =
1

n + 2
ωncxmV m.

This proves (3.8). Therefore,

(3.9) cxm

∫
Bx

ymFdVx =
n + 1

n + 2
ωncxmV m.

Plugging (3.4)–(3.9) into (3.3), we obtain (3.1). This completes the proof of Theo-
rem 3.1.
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