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Abstract

Let g(n, m) denote the maximal number of distinct rows in any (0, 1)-matrix with n columns,
rank < n — 1, and all row sums equal to m. This paper determines g(n, m) in all cases:

g(ny m) = -
/ „ i \

if n/2 <m < n.
( n - l \

In addition, it is shown that if V is a £-dimensional vector subspace of any vector space, then V
contains at most 2* vectors all of whose coordinates are 0 or 1.

1980 Mathematics subject classification (Amer. Math. Soc.): OS B 20.

1. Introduction

Let g(n, m) denote the maximal number of distinct rows in any (0, l)-matrix
with n columns, rank < n — 1 (over any field of characteristic zero), and all row
sums equal to m. In a recent paper Longstaff [1] determined g(n, m) for
1 < m < Vn — 2 and n — Vn — 2 < m < n — 1. The purpose of this note is
to present a different method that determines g(m, ri) completely. (Note that
g{n, m) = <̂ ,> — 1, where <^> is LongstafFs rotation.)
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194 A. M. Odlyzko [2 ]

THEOREM 1. / / 1 < m < n — 1, then

(n, m)

n-m , ifm<n/2,

i n - l \
\m- I)

ifn = 0 (mod 2), m = n/2,

ifm >n/2.

Results of the above type have applications in certain combinatorial prob-
lems. For example, suppose that each element j of an /i-element set {1, . . . , n)
has associated to it a real (or complex) number xJf and that there is a family F of
m-element subsets of {1, . . . , « } and a constant c such that

2 Xj: = c for all A G F.

What can we conclude about the xy? There is always the trivial solution
Xj = c/m for ally. If |F| > g(n, m), then this is the unique solution.

The restriction in the definition of g(n, m) that the rank be < n — 1 over a
field of characteristic zero (ranks of (0, l)-matrices are the same over all such
fields) is essential, since if the characteristic is positive and divides k, all the (n

k)
vectors containing exactly k l's span a subspace of dimension n — 1. It should
be possible to extend the method of this note to obtain results for non-zero
characteristics which do not divide k. Also, it should be possible to extend
Theorem 1 to cover the case where the rank of the matrix is restricted to
be < n — 2 for some n > 2, but such results would be much more complicated.

The basic tool in our proof will be provided by Lemma 1. That lemma also
leads to an easy proof of the following result, which is of independent interest
and answers a question posed by P. Frankl in connection with a problem of
Erdos about set intersections.

THEOREM 2. Let V be an n-dimensional vector subspace of some vector space W
(which may be over any field). Then in any coordinate system for W, V contains at
most 2" vectors all of whose coordinates are 0 or 1.

2. Proofs

LEMMA 1. Let V be an n-dimensional subspace of an r-dimensional vector space
W over any field. Then in any coordinate system for W, we can find a basis of V
such that after permuting the coordinates of W this basis has the form

(i) a-V-J,
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where ln denotes the n X n identity matrix, Anr_n some n X (r — ri) matrix, and
the rows of the matrix represent the basis vectors,

PROOF. Let M be an n X r matrix whose rows form a basis for V. By
permuting the columns of M, if necessary, we can assume that M is of the form

M = (B C),

where B is a nonsingular n X n matrix. But then the rows of

B~XM - (/„ B~lC)

generate the same space as the rows of M, namely V.

PROOF OF THEOREM 2. We may assume that W is of finite dimension r, since if
V had more than 2" (0, 1)-vectors in an infinite-dimensional space W, then we
could find a subspace V of a finite-dimensional space W such that dim( V) <
n = dim(F), and V would contain > 2" (0, l)-vectors. Suppose therefore that
dim( W) = r. By Lemma 1, we can find a basis of V such that after a suitable
permutation of the coordinates, it has the form (1). Let vv . .. , vn denote the
rows of the matrix (1). If v is any (0, 1)-vector in V, then

n

v = 2 ajvj.

Since v has only 0's and l's as coordinates, we conclude that each a,- is 0 or 1.
Hence there are no more than 2" possibilities for v. Q.E.D.

PROOF OF THEOREM 1. This proof is considerably more involved than that of
Theorem 2. We first prove that g(n, m) is at least as large as the values given in
Theorem 1. If m < n/2, consider an (n — 1) X n matrix

A =

0

0

Then the ("J) choices of m rows of A give distinct H-vectors with sum of entries
equal to m, and they all lie in the (« — l)-dimensional subspace spanned by the
rows of A. Hence g(n, m) > ("^) (a bound which is actually valid for all m). If
m > n/2, we replace each 0 in the last column of A by \/{m — 1) and consider
choices of m — 1 rows of A at a time. This shows that g(n, m) > (n^\}\). Finally,
suppose that 2\n, m = n/2. In this case we replace the last column of A by the
transpose of the vector ((w — I)"1, (w — I)"1, . . . , (m — I)"1, -1) of length
n — 1. Then adding up any choice of m — 1 of the first n — 2 rows of A will
yield an «-vector with sum equal to m. This same sum, however, will also be
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obtained by choosing any m — 1 of the first n — 2 rows of A and the last row of
A. Thus we obtain 2(^_2,) distinct choices in this case, which concludes the
proof that the values given in Theorem 1 are actually lower bounds for g(n, m).

We now proceed to obtain upper bounds for g{n, m). Let us suppose that V is
a vector subspace of a vector space W (over a field of characteristic 0 this time),
dim(W) = «, dim(K) = n - 1. Let Vm be the set of (0, 1)-vectors in V which
have exactly m l's. If m = 1, then the assertion of the theorem is trivial. Hence
we can take m > 2. By Lemma 1, we can find a basis for V which, after suitable
coordinate permutations, has the form

(2)

Denote the rows of this matrix by vx, . . ., t>n_v vk = (vk „ . . . , vkn). Any vector
v G Vm must be the sum (with coefficients 1) of either m — 1 or m of the Vj. Let

If we could show that none of the sets in Sm_y is a subset of any set in Sm, we
would be done very quickly. Unfortunately no such result is valid in general.
However, our proof will be based on a somewhat related observation. If
AGSm_vBe 5m,then

Vk,n = ]> 2 Vk,n

so that ii B = A u {fj,}, then c w = - 1 . Thus the vectors vp with vpn — -1 play
a special role, and we will treat them in a special way.

Let t be the number of vectors vp, 1 < p < n — 1, such that vpn = - 1 , and
T = {vp; vpn = -1}. By permuting rows and columns of the matrix (2), if
necessary, we may assume that vn_tn = vn_t+in = • • • = vn_XjH = - 1 . (We do
not exclude the possibility that t = 0.) We let s = n — 1 — /, so that vkn =£ -1
for 1 < /t < J. We also define

{ m-fc
»-; v = (r,, . . . , !>„),!» = 2 ty ! < 'i < • • • < '«-* < *' »„ =

We now observe that if v £ Vm, v = {yx, . . . , vn) has vn = 0, then for some
nonnegative integer r, v must be a sum of r distinct vectors ^ e T , and of a
vector in S*(r). Similarly, if v G Vm has *>„ = 1, then for some r, it is the sum of
r distinct vectors from T and of a vector in S*(r + 1). Moreover, each such
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representation is unique. Hence

where r ranges between 0 and min(f + 1, m — 1).
To bound the sum in (3) we now need to obtain some additional information

about the S*(k). In fact we only need to show that not all of the S*(r) can be
large simultaneously. Since vpn ¥= ~\ for any vp with 1 < p < s, we conclude
that if v e S*(v + 1), v = vit + • • • +vlm_r_l, then v + vp <£ S*(r) for any p
with 1 < p < s, p ¥= i1( . . . , »m_r_!. Thus for each v £ S*(r + 1), there are
s — (m — r — I) vectors which cannot be in S*(r) even though they are sums of
m — r of the vk, \ < k < s. Furthermore, since each vector vv which is a sum of
the vk, 1 < k < s, can be expressed in at most m — r ways as vv = v + vp for
v G S*(r + 1), 1 < p < s, we conclude that

,,, , . j — m + r + 1 , ,.
(4) *(r) + ^ ^ 3{r + D <

for 0 < r < min(/, w — 2). We will conclude the proof by showing that the
system (4) of inequalities yields the desired bound for Vm.

We now regard the s(r) as nonnegative real numbers subject only to the
inequalities (4). Since the system (4) gives an absolute bound for each of the s(r),
there is a choice of the s(r) which achieves the maximum possible value of

min(f + 1, m — 1)

(5) 2

We now claim that for this optimal choice of the s(r\ equality must hold in (4)
for all r. This is clearly true for r = 0 and r = min(f, m — 2), since in each case
the corresponding inequality contains an s(k) that appears only in that inequal-
ity. Suppose therefore that for some r, 0 < r < min(f, m — 2), we have the
inequalities

(6a) S ( r - \ ) +
S - m + \s{r)<( * A,

v / v ' m - r + 1 v ; \m - r + If

(6b) sir) + ^r-r sir + D < ( w 1 r ) ,

(6c) s ( r + i ) +
S - m + r + 2 s i r + 2 ) < ( ' A

m — r — \ v ' \m - r — \)
We wish to show that the strict inequality in (6b) enables us to find another
set of sik)'s which will increase the sum in (5). If we increase s(r) by e > 0,
then in order to keep (6a) satisfied we will need to decrease sir — 1) by
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e(s — m + r)/{m — r + 1). This change will add to (5) the quantity

m - r + \\r -

If we instead increase s(r + 1) by e, then in order to keep (6c) satisfied we will
need to decrease s(r + 2) by e(m — r — l)/(s — m + r + 2) which will have the
effect of adding to (5) the quantity

= J t + I) _ e r n - r - \ l t + i \
\r+l) s - m + r + 2\r + 2r

We now show that either xx > 0 or x2 > 0. After simplifying the above expres-
sion we discover that xl > 0 precisely when

yx = mt - rt - rs - 3r + t + 2w + 2 > 0

and that x2 > 0 when

y2 = -mt + rt + rs + 3r + t - 2m + 2s + 4 > 0.

However,

_y, + y2 = 2t + 2s + 6 = 2n + 4 > 0,

so at least one of yx and_y2 is positive, and hence at least one of xx and x2 is
positive. This shows that the s(r) do not maximize (5), which is a contradiction.
Thus we have proved our claim that equality must hold in (4) for all r.

The rest of the proof is relatively straightforward. Since we have

for 0 < r < min(/, m — 2), the value of s(0) determines all the other s(r), and in
fact any solution (s(Q), s(l), . . . ) of (7) is a convex combination of the extremal
solutions obtained when s(0) = 0 and when 5(0) = (,J,). Therefore (5), and hence
also | Vm\, is bounded by the maximum of the values of (5) at those two choices
of the s(r). If s(0) = 0, we obtain s(r) = 0 for r = 0 (mod 2), s(r) = (mir) for
r = 1 (mod 2), and so

If *(0) = (^), then s(r) = 0 for r = 1 (mod 2), s(r) = (mir) for r = 0 (mod 2),
and so

Theorem 1 now easily follows from the following binomial coefficient inequality.
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LEMMA 2. If m, n, and k are positive integers, and

•5 ( M >">*)"r | I ) f»- ' ' (*)
forj = 0 or 1, then

fj(m, n,

PROOF. We first prove the lemma for n + k odd, /w = (/i + A: — l ) /2 . Let us
first assume that n > 4, k > 4. Since^(/M, n, A:) is the coefficient of zm in

(i + z ) ( i + z) +

it will suffice to prove that if Am = coefficient of zm in (1 - z)*(l + z)n, then

) {
m m

Now by Cauchy's theorem,

so as 9 runs over the real numbers,

\Am\ < max|l - ei9\k\\ + ew\n = max 2nH

9 0

Letting x = (sin(0/2))2, we find that

sin —0 cos x

\A max - JC)".

By setting the derivative of xk(l — x)n equal to 0, we discover that the maxi-
mum above is attained at x = k/(n + k), and equals

kk
n"4n+k

 = kknn42m+l

(n + k)n+k ~ (2m + l ) 2 m + 1 '

To obtain (8), it will therefore suffice to prove that for 4 < k < 2m — 1,

(9) kk(2m + 1 - k)2m+1~k < 4 - 2 m - " 2 m + l' ,
(m + I)2
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The maximum of the quantity on the left side above is achieved at the endpoints
of the interval [4, 2m — 3], so it will suffice to prove (9) for k = 4, which reduces
to

(10) 42"+5(2m - 3 ) 2 " - 3 ( w + 1 > 2 < ( 2 m 2

(2m + l ) 2 m + 1 V m

Since

m

(10) will follow if we can show that

(11) m(m + l)2(2m - 3)2""~3(2m

But

m{m ( ^ 3 r « o » ±f . ( 1

(2m + l)2m+1 ( 2 m - 3 ) 4 \ 2m

m(m+lf ^
<—* he ioxm>\,

(2m - 3)4

and m(m + l)2(2w - 3)^ < 11 • 122- 19"1 < e4- 4^ for m > 11, which proves
(11), and therefore also (10) for m > 11. Finally, it is easily checked that (10)
holds for 7 < m < 10. We have thus proved the lemma in the special case
m = (n + k - l)/2, 4 < k < 2m - 3, m > 7. If m = (n + k - l)/2, 4 < k <
2m — 3, but 4 < m < 6, then we check by direct computation that the lemma
holds.

To complete the proof of the lemma for m = (n + k — l)/2, we next consider
1 < k < 3. As an example, we have

On the other hand,

((n"+
+2)/2 ) - 6( n/2- 1) + A n,2- 2 ) > / . « " + 2) A "• 3)-

The verification of the other cases is even more routine and is omitted. Finally,
the case 2m — 2 < k < 2m reduces to the case 1 < k < 3, since

fj(m, n, k) = ff(m, k, n),

where j = / if m = 0 (mod 2), andy = 1 — / otherwise.
The above discussion proves the lemma whenever m = (n + k — l)/2. The

remaining cases follow quite easily. We use induction on m + n. Suppose that
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the lemma is true for m + n < M. Since the lemma is trivially true if any of
m, n, and k equals 1, this assumption is certainly true for M = 2. Now suppose
m + n ~ M + 1, and that m > 2, n > 2. Then

= fj{m, n-l,k)+ fj(m - 1, n - 1, k).

We now apply the induction hypothesis to

fj(m, n - I, k) and fj(m - 1, n - 1, k).

If m < (n + k - l)/2, then we obtain

which is the claim of the lemma. Similarly if m > (n + k + l)/2, then

If m = (n + &)/2, then (12) and the induction hypothesis give

To complete the proof, we thus only have to consider m = (n + k ± l)/2. If
m = (n + k — l)/2, then the claim of the lemma follows from the discussion at
the beginning of the proof. The case m = (n + k + l)/2, on the other hand,
follows from the case m = (n + k — l)/2 and the observation that

so that fj(m, n, k) = ff(n + k — m,n, k), where/ =k + j (mod 2).
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