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ON THE BIADJOINT OF RIESZ-LIKE HOMOMORPHISMS ON
PARTIALLY ORDERED VECTOR SPACES

GERARD BUSKES AND JAMIE SUMMERVILLE

We generalise to partially ordered vector spaces, with a new technique, Arendt's
approach to Kim's characterisation of Riesz homomorphisms.

In [8] Kim proved the elegant duality connection between Riesz homomorphisms
and interval preserving maps. A particular consequence is the fact, referred to as Kim's
Theorem in this paper, that the biadjoint of a Riesz homomorphism is again a Riesz
homomorphism. It is the latter consequence that we focus on. Kim's Theorem has inter-
esting applications in spectral theory and there is a need for similar results in the much
wider context of partially ordered vector spaces. Two such results exist in the literature,
one by Wickstead [14] and one by Takeo [12] (also see [13]). Their theorems are in
the setting of partially ordered Banach spaces with the Riesz decomposition property
and therefore do not generalise Kim's Theorem. Motivated by Arendt's proof of Kim's
Theorem in [2] (also see [1, Theorem 7.4]) as well as by the notion of enveloping Riesz
space in [3] (also see [5]), we arrive in this paper at general purely order theoretic results
for partially ordered vector spaces. Thus, our Theorem 13 generalises Kim's Theorem.
Proposition 11 and Theorems 4 and 8 expand the corresponding theorems by Arendt in
[2] to partially ordered vector spaces. Lemma 5, in the case of Riesz spaces, can be found
as [1, Exercise 1, p.28]. Our notation and terminology will be standard and we refer to
1, 10, 11, 15]. We first make a blanket assumption. Throughout this paper,

E, F and G are Archimedean, directed, partially ordered vector spaces.

We denote by Lr(E,F) the directed partially ordered vector space of all regular
operators E —>• F, that is, the space of all differences of positive operators E -* F.
Instead of LT(E,H) we write E~. A map T : E -> F is interval preserving if T is
positive and for every x € E+ and y £ F+ with y ^ T(x), there exists z 6 E+ such
that z ^ x and T(z) = y. The choice of an analogue for Riesz homomorphism in the
setting of partially ordered vector spaces is not obvious at all. Somewhat surprisingly,
the choice of homomorphisms that was made in [3] to describe the enveloping Riesz space
does not work well for this duality problem as we shall show in the example following
Theorem 10. Instead we have opted for a stronger type of homomorphism that is very
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474 G. Buskes and J. Summerville [2]

close to Wickstead's definition in [14]. If F is a Riesz space, we say that a positive
operator T : E —> F is an R-homomorphism if for all x,y € E there exists z ^ x, y in E

for which
T(z)=T(x)vT(y),

or equivalently, if for all x,y € E+ there exists z ^ x, y in £ for which T(z) = T(x)AT(y).
This R-homomorphism coincides with Wickstead's definition in [14] (which originated in
[6]), when one restricts the range space to be a Riesz space in his definition. In case that
E is a Riesz space as well, the class of R-homomorphisms coincides with the class of Riesz
homomorphisms. Every R-homomorphism is positive. For a regular map T : E —> F
we define the (regular) adjoint T~ : F~ -+ E~ by T~(^)(e) = 4>{T{e)) for all <p € F~
and e € E. Finally, as is common convention, a map between two vector spaces is called
sublinear if it is positive homogeneous and subadditive. One of our goals is a proof of the
following result.

THEOREM 1 . Let G be a Riesz space. IfT:E—>Gisan R-homomorphism then

T~~ is an R-homomorphism E— -»• G—.

A powerful tool in the proof of this theorem will be the following Mazur-Orlicz type
sandwich theorem (see [10, Theorem 1.5.3] for a proof).

THEOREM 2 . Let F be a Dedekind complete Riesz space. Let p : E —»• F be
a sublinear map, A C E nonempty and convex, and q : A —> F concave (that is,
q(tx + (1 - t)y) ^ tq{x) + (1 - t)q(y) for all x,y £ A and 0 ^ t ^ I) with q ^ p on A.
Then there exists a linear operator T : E —» F such that T ^ p everywhere, and q ^ T
on A.

Our avenue for proving Theorem 1 will be a wide generalisation of the following
result by Arendt (see [2] or [1, Theorem 7.4]).

THEOREM 3 . (Arendt) Let E, G and F be Riesz spaces with F also Dedekind
complete. Let T : E —• G be a linear operator.

(i) IfT is a Riesz homomorphism, then the map S i—> S o T from Lr(G, F)

into Lr(E, F) is interval preserving.

(ii) IfT is interval preserving, then the map S i—> S o T from Lr(G, F) into
Lr(E, F) is a Riesz homomorphism.

Our version of part (i) for partially ordered vector spaces (see Theorem 4 below)
involves an argument in which Arendt's Theorem itself will be used. The analogue of (ii)
above requires, however, a different and more complicated approach. At the same time
we wish to use the fact that (ii) still holds, with exactly the same proof as provided in
[1], in case that E and G merely have the Riesz decomposition property. The first step
in the direction of Theorem 1 is the following result.
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THEOREM 4 . Let G be a Riesz space, and suppose that F is a Dedekind complete

Riesz space. If T : E -> G is an R-homomorphism then the map S i—> S o T from

Lr(G, F) into Lr(E, F) is interval preserving.

P R O O F : Note that Lr(G,F) is a Dedekind complete Riesz space (see [7]), while

Lr(E,F) is an Archimedean, directed, partially ordered vector space (not necessarily a

Riesz space). Let T : E —> G be an R-homomorphism. The map 5' i—> S o T from

LT(G,F) into Lr(E,F) obviously is positive. Fix 5 £ Lr(G,F) with S ^ 0, and let V

in Lr(E, F) be such that 0 ^V ^ SoT. We shall show the existence of Si G Lr(G, F)

with 0 ^ Si ^ S and Si o T = V.

E and G, being Archimedean, have Dedekind completions E6 and Gs respectively

(see [11, 1.19, p.151]). Moreover, E is a majorising vector subspace of Es, and it follows

from [4, Corollary 2.7] tha t T can be extended to a Riesz homomorphism T6 : Es —»• G6.

By Kantorovic's Theorem (see [1, Theorem 2.8]) it follows that S can be extended to a

positive Ss : Gs ->• F.

V

For all x&E6, define
p(x) = (S«oTs)(x+),

where x+ is in Es. It is elementary to show that p is sublinear. To prove that p dominates
V, let x G E. Since Ts is a Riesz homomorphism,

p(x) = (S6 oT6)(x+) = Sd(T6(x)+),

where again, x+ is in E6. By the definition of R-homomorphism, there exists hx € E+

with hx ^ x and T(hx) — T(x) +. Thus,

V(x) ^ V(hx) < (S o T)(hx) = Ss(T(hx)) = Ss(T(x)+) = S5(T6(x)+) = p(x).

By the Hahn-Banach Theorem (see [1, Theorem 2.1]), there exists a linear Vs : E5 —>
F with V6\E = V and Vs(x) < p{x) for all x in Es. Because Vs(-x) < p{-x) =
(S5 o T6) ((-x)+) = 0 for every x € Es+, it follows that Vs ^ 0. Furthermore, for every
x G E6+ we have

Vs (x) < p(x) = (S6 o T5) (x+) = (S5 o Ts) (x).

By part (i) of Arendt's Theorem above, there exists Sf G LT(G\ F ) such that 0 < Sf ^
S1* and Sf o T* = V"5. Defining Si = Sf |G, we obtain

K = V"5^ = (Sf o Ta) | £ = Sf o T = Si o T,
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and

s, = s(\c < s6\G = s. D
To arrive at an analogous result for part (ii) of Arendt's Theorem we have to work

harder. Before we can present such an analogue, we need three lemmas which are of
interest in their own right.

LEMMA 5 . Let E be a solid, directed, partially ordered vector subspace ofG with
the Riesz decomposition property. Let F be a Dedekind complete Riesz space. Then
the map R : Lr{G,F) ->• Lr{E,F) defined by R{T) = T\E is an R-homomorphism.
In particular, if G has the Riesz decomposition property as well, then R is a Riesz
homomorphism between the Dedekind complete Riesz spaces Lr(G, F) and LT(E, F).

PROOF: R is obviously positive. To show that R is an R-homomorphism we need
to find for every S,T G Lr(G,F) with S,T > 0 an H G Lr(G,F) such that H < S,T
and R(H) = R{S) A R(T). Let S,T G Lr{G,F) with S,T ;> 0. Since Lr{G,F) is not
necessarily a Riesz space, the infimum of {S, T] may not exist. Instead, we define Tr\S
on G+ by

(T n S){x) = inf{T(u) + S(v) : u, v G G+ and u + v = x}.

By a slight abuse of language, but with a straightforward proof, T n 5 is sublinear on

G+. From here the proof proceeds in two steps.

STEP 1. T n 5 is linear on E+.

Let x G E+. In Lr(E, F), which is a Riesz space, we have

(R(T) A R(S))(x) = inf{T(w) + S(v) : u, v G E+ and u + v = x}.

Obviously, inf {T(u) + S(v) : u, v G E+, u + v = x} ^ inf {T(u) + S(v) :u,vGG+:

u + v = x}. To obtain the opposite inequality, let u,v G G+ with u + v = x. Then

0 ^ u ^ x and 0 ^ v ^ x, and since E is a solid subspace of G it follows that u, v G E+.

Hence, (T n 5) \E+ = {R{T) A R{S))\E+.

STEP 2: There exists an H as desired.

Define the sublinear p : G —> F by

p{x) = inf{(T n S){y) : y G G+ and y ^ i } .

Note that T l~l S1 is monotone, since 5, T ^ 0. Thus, for every a; G G+,

0 s$ p(x) = inf{(T n 5)(j/) : y G G+and y > x) = (T n 5)( i) .

By the sandwich Theorem 2, there exists a linear operator H : G —> F such that H ^ p
on G and (T n S)\E+ < -ff|B+. This implies that for every x G E+, (T n 5)( i) ^ i/(a;) <
p(i) ^ (T n 5)( i ) . Hence, /f G Lr(G, F ) + and if |B + = (T n 5 ) | E + = (i?(T) A i2(5))|B+.
Therefore, R{H) = R{T) A fi(5) and H ^ S,T. D
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In the following proposition we show that the composition of R-homomorphisms

again is an R-homomorphism. We remind the reader of [3, Example 1.10] where the

composition of similar but weaker Riesz-like homomorphisms is less pleasant.

LEMMA 6 . The composition of two R-homomorphisms is an R-homomorphism.

P R O O F : Let G and F be Riesz spaces. Let 7\ : G -> F and T2 : E -¥ G be R-

homomorphisms. Then 7\ is a Riesz homomorphism, since G and F are Riesz spaces. Of

course T\ o T2 is a positive map. Let x,y € E. Since T2 is an R-homomorphism, there

exists h € E with h^s x,y and T2(h) = T2(x) V T2{y). Thus,

(7\ o T2){x) V (7\ o T2)(y) = T ^ x ) V T2(y)) = (7\ o T2)(/»).

Therefore, T\ o T2 is an R-homomorphism. D

LEMMA 7 . Let E have the Riesz decomposition property. IfT : E —>• G is interval
preserving then T(E) is a solid, directed, partially ordered vector subspace of G. In
addition, T(E) has the the Riesz decomposition property

PROOF: The directedness of T(E) is immediate. To prove that T(E) is solid in G,

let y e G and x € T{E) such that 0 ^ y ^ x. Because T is interval preserving there
exists x0 € E with 0 ̂  x0 ^ x and T(a;0) = y. Thus y € T(E).

For the Riesz decomposition property of T(E) we reason as follows. Let y, z\,z2 6
T(E) with 2j,Z2 ^ 0 and 0 ^ y ^ Z\ + z2. Since Z\ € T(£^) there exists yo £ E such
that T(j/0) = Z\. Because E is directed there exists y\,y2 6 ^ + with y0 = yi — y2. Then
z\ = T(yo) = T(y\) — T(y2), where T(y\) and T(y2) are positive since T is positive. Then
0 ^ z\ ^ T(yi). Because T is interval preserving there exists z[ & E with 0 ^ z[ ^ ?/i
and T(z[) = z\. Similarly, there exists z'2 e E with 0 ^ 4 and T{z2) = z2. Because T is
interval preserving, we can find x 6 E with 0 ^ x ^ z[ + z'2 and T(x) = j / . Since £ has the
Riesz decomposition property there exists x[,x2 € E with 0 ̂  x[ ^ z[, 0 ̂  x'2 ^ z^ a n d
x = x[+ x2. By the positivity of T we have that y - T(x\) + T(x'2) and 0 ̂  T(x[) ^ zx

and 0 ̂  T(4) ^ z2. D

We are now in a position to prove the analogue to part (ii) of Arendt 's Theorem.

THEOREM 8 . Let E have the Riesz decomposition property. Assume furthermore

that F is Dedekind complete. If T : E —> G is interval preserving, then the map

S i—>• S oT from Lr(G, F) into Lr(E, F) is an R-homomorphism.

PROOF: Define 7\ : Lr{G,F) -> LT{E,F) by Ti (5) = S\T(E)- By the previous

lemma, T(E) is directed, has the Riesz decomposition property, and is solid in G.

Lemma 5 implies that 7\ is an R-homomorphism. Define T2 : Lr{T{E),F) —>• Lr(E,F)

by T2(S) — S o T. As observed right after Theorem 3, a variation of (ii) in Arendt 's

Theorem yields that T2 is a Riesz homomorphism.
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Consider T2 o 7\ : Lr(G,F) -»• Lr(E,F). Lemma 6 implies that T2 o Tx is an R-
homomorphism. For every S £ Lr(G,F) we have,

(TzoIiXS) = T2(5|T(£)) = (5 | T ( £ ) ) o T = SoT. Q

From Theorem 4 (respectively Theorem 8) we now derive results on the adjoint of
an R-homomorphism and (respectively) the adjoint of an interval preserving map.

THEOREM 9 . Let G be a Riesz space. IfT : E —̂  G is an R-homomorphism then
T~ : G~ —» E~ is interval preserving.

PROOF: For every (p £ E~, we have that T~(v?) = <p o T. By Theorem 4, T~ is
interval preserving. D

THEOREM 1 0 . Let E have the Riesz decomposition property. HT : E -t G is
interval preserving then T~ : G~ —> E~ is an R-homomorphism.

PROOF: For every tp € E~, T~(tp) = ipoT. It follows from Theorem 8 that T~ is
an R-homomorphism. D

We can now prove the result announced in the beginning of this paper as Theorem 1.

PROOF OF THEOREM 1: T~ is interval preserving by Theorem 9. Also, G~ is a
Riesz space, and E~ is an Archimedean, directed, partially ordered vector space. By
Theorem 10, T is an R-homomorphism. D

For the sake of clarity, we shall now choose another name for what was called a Riesz
homomorphism in [3]. Let F be a Riesz space. T : E -> F is a weak R-homomorphism

if for every x,y G E we have

T(x) V T(y) = inf{T(z) : z £ E and z ^ x, y}.

We present an example of a weak R-homomorphism of which the biadjoint is not a
weak R-homomorphism.

EXAMPLE. (A weak R-homomorphism of which the biadjoint is not a weak R-homo-

morphism.)

Let H = {/ G C [ - l , l ] : /(0) = ( / ( - I ) + / ( l ) ) / 2 } and let i be the identity
map from H into C{—1,1]. Indeed, i is a weak R-homomorphism. We shall show that
the biadjoint of i is not a weak R-homomorphism. Firstly, i/~ is Riesz isomorphic to
N = {n £ C[—l, l}~ : /^({0}) = 0}. Although the latter result can be computed in a
straightforward matter, we would like to point out the connection with barycentric maps
(see [9, Definition 2, p.188]). Indeed, the map p : [-1,1] -> C [ - l , 1]~ denned by

if i € [-1,0) U (0,1]

2 ^
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is a barycentric map. It follows from a very general theorem about such barycentric
maps (see [9, Theorem 6, p. 188]) that the restriction map j defined by /x H-> H\U from
N onto H~ is a linear isometry. This linear isometry is positive, and thus it is a Riesz
isomorphism from N onto H~ (see [10, Exercise 1.4.E5]).

Now fix fi 6 C[ - l , l ]~ . Then there exists v € N with j(v) = i~((i), that is,
i/({0}) = 0 and for every / € H, J fd/j, = J fdv. By a straightforward application of the
Dominated Convergence Theorem, we find that for all / e H

/ ( - I ) (^({-1}) + ^({0}) ) + /(I)

By choosing / € H such that / ( - I ) — 0 and /(I) = 2, for example, f(x) = x + 1

{x e [-1,1]), we find

M({l}) + ^({0}) = ^({ID-

Then

We now show why i~ is not interval preserving. Let /i = <J_i + 25o + 35i- Then

(1) i / ( ( - l , 0 ) U ( 0 , l ) ) = 0 ,

(2) i / ({ - l} )=M({- l})+/ i /2 ({0}) and

(3) «/({!}) = A*({l})+^/2({0}).

Thus, «/ = 2^_! + 4S\. Consider rj — 45\ in N. Since 0 ^ r\ ̂  i/ we have 0 < j(rj) ^
j(v) = i~(/j). Suppose i~ is interval preserving. Then there exists rj € C[—1,1]~ with
0 ^ rj ̂  /i and i~(77) = j(r/), that is, rj\H = 45X\H. It follows that rj = a5-i + b50 + c5i

for some a,b,c ^ 0. But then, since r}{{ — 1}) = 0, we have a,b = 0. Therefore, c = 4,
and rj — 4<$i ^ /i. As a result i~ is not interval preserving.

To prove that i is not a Riesz homomorphism, we suppose that it is. Then i

is interval preserving. Let \i € C[—1,1]~ with \i > 0, and v € H~ with 0 < 1/ ^ i~(/z).
Of course, i/~ and C[—1,1]~ are Riesz subspaces of H and C[—1,1] respectively.
Furthermore, since C[—1,1]~ is an L-space, C[—1,1]~ is an ideal in C[—1,1] (see [10,
p.68]). Therefore, /* € C [ - l , 1] , v € H~~~, and i~(/z) = « (n) & H with \i ^ 0
and 0 ^ v ^ i (/i). Since i is interval preserving, there exists /u-o S C[—1,1] ~
with 0 ^ Mo ^ A* a nd J (Mo) = ^- Because C[ - l , l ]~ is an ideal in C[-l , l]~~~,
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Ho € Cf—1,1]~. Thus, i~(/zo) — v. But that implies i~ is interval preserving. Therefore,
i~~ is not a Riesz homomorphism.

The above example augurs no hope for getting a result for weak R-homomorphisms
in the style of Theorem 1. We are able to strengthen Theorem 1, by making a change
in the definition of R-homomorphism. Indeed, if F is a partially ordered vector space
(that is, not necessarily a Riesz space) then a linear map T : E —» F is called an R-
homomorphism if T considered as a map from E to the enveloping Riesz space of F,
denoted by R[F], is an R-homomorphism in the sense defined in the introduction of this
paper. We shall prove that the biadjoint of an R-homomorphism with values in a space
with the Riesz decomposition property is again an R-homomorphism. For the proof we
need the observation that in Theorem 4 we can drop the condition that G is a Riesz
space.

PROPOSITION 1 1 . Let F be a Dedekind complete Riesz space. IfT : E ->• G

is an R-homomorphism then the operator S <—> S o T from Lr(G,F) into Lr(E,F) is

interval preserving.

P R O O F : Since T is an R - h o m o m o r p h i s m , for every x,y € E+ t he re exists h € E+

with h>x,y and T(h) = T(x)VT{y) in R[G]. The operator S H-> SOT from Lr(G, F) into
Lr(E, F) is positive. Assume that 5 G Lr(G, F) with S ^ 0, and let V € Lr(E, F) such
that 0 ^V ^ SoT. We need to show the existence of Sl e Lr{G, F) with 0 ^ 5j ^ S

and Si o T = V.

By Kantorovic's Theorem, S has a positive extension SR € Lr(R[G],F). Diagram-
matically we have:

Since SR\G = S and T(E) C G, SRT = ST. Hence, V ^ SR°T. By Theorem 4,
the operator [ / H > 1 / O T from Lr(R[G], F) into LT(E, F) is interval preserving. So, there
exists SR e Lr(R[G], F) with 0 ^ Sf < SR and S?oT = V.

Define Si — SR\G. Sx is positive because SR is positive, and from SR ^ SR it follows

t h a t S i = SR\G <: SR\G = S. F u r t h e r m o r e , S1oT = V. D

COROLLARY 1 2 . HT:E^Gisan R-homomorphism then T~ : G~ ->• E~ is

interval preserving.

We now present the promised generalisation of Theorem 1.
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THEOREM 1 3 . Let G have the Riesz decomposition property. IfT : E —>• G is an

R-homomorphism then T is an R-homomorphism E -4 G .

PROOF: By the above corollary, T~ is interval preserving. G~ is a Riesz space and

E~ is an Archimedean, directed, partially ordered vector space. Thus, Theorem 10 yields

that T is an R-homomorphism. D
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