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Abstract. We establish an estimate for the measure of non-compactness of an
interpolated operator acting from a J-space into a K-space. Our result refers to
general Banach N-tuples. We also derive estimates for entropy numbers if some of
the N-tuples reduce to a single Banach space.

0. Introduction. The investigation of the behaviour of compactness under
interpolation methods for N-tuples of Banach spaces associated with polygons was
started by Cobos and Peetre in [8]. There they studied the case when the interpolated
operator acts between two K-spaces or two J-spaces. Later, Cobos, KuÈ hn and
Schonbek [7] continued this research by considering operators acting from a J-space
into a K-space. Optimality of all these results was analyzed in [3].

It is natural to investigate now how far from being compact an interpolated
operator can be, a question that was already considered by Edmunds and Teixeira
[12] and by the present authors [5] in the case of the real method for couples, and by
Nikolova [10] in the present context of N-tuples of Banach spaces. Nikolova derived
estimates for the measure of non-compactness of an interpolated operator provided
that one of the N-tuples degenerates into a single Banach space or that the image N-
tuple satis®es a certain approximation condition.

We deal here with general N-tuples, without requiring any approximation
hypothesis, and we establish an estimate for the measure of non-compactness when
the interpolated operator T acts from a J-space into a K-space. In the special situa-
tion where one of the restrictions of T is compact, we recover the compactness result
of Cobos, KuÈ hn and Schonbek [7].

Our techniques are based on some ideas introduced in [7] that allow us to use
e�ciently the information known for the real interpolation method for couples. The
relevant estimate in this last case was derived by the authors in [5].

The organization of the paper is as follows. In Section 1 we recall some basic
facts on measure of non-compactness and on methods associated with polygons.
Section 2 contains the estimate for the measure of non-compactness. Finally, in
Section 3, we study degenerate cases when one of the N-tuples reduces to a single
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Banach space. In these special cases we show estimates for entropy numbers that
improve Nikolova's results mentioned before.

1. Preliminaries Let A and B be Banach spaces and T2L(A,B) be a bounded
linear operator acting from A into B. The n-th entropy number en(T) of T is de®ned
as the in®mum for all r>0 such that there are b1,. . .,bm2B with m�2nÿ1 and

T�UA� �
[m
j�1
fbj � rUBg:

Here UA and UB are the closed unit balls of A and B respectively. The measure of
non-compactness �(T) of T is de®ned as the in®mum of all r>0 such that there
exists a ®nite number of elements b1,. . .,bs2B so that

T�UA� �
[s
j�1
fbj � rUBg:

Clearly k T k� e1�T� � e2�T� � � � � � 0, and en(T)!�(T) as n!1. Also �(T)=0 if
and only if T is compact. We refer to [2], [9] and [11] for others properties of these
notions.

Let � � P1 . . .PN be a convex polygon in the a�ne plane R2 with vertices
Pj=(xj, yj), (j=1,. . ., N). Let A � fA1; . . . ;ANg be a Banach N-tuple, that is to say, a
family of N Banach spaces Aj all of them continuously embedded in a common lin-
ear Hausdor� space. In what follows, it will be useful to imagine each space of the
N-tuple A as sitting on the vertex Pj.

By means of the polygon � , we de®ne the following family of norms in the sum
��A� � A1 � � � � � AN:

K�t; s; a� � K�t; s; a;A� � inf
XN
j�1

txj syj k aj kAj
: a �

XN
j�1

aj; aj 2 Aj

( )
t; s > 0:

Similarly, in �(A)=A1\� � �\AN, we consider the family of norms

J�t; s; a� � J�t; s; a;A� � max
1�j�N

txjsyj k a kAj

� 	
:

Given (�,� ) in the interior of � , (�,� )2 Int� , and 1�q�1, the K-interpolation
space A(�,�),q;K is formed by all elements a2�(A ) for which the norm

k a k��;��;q;K�
X
�m;n�2Z2

�2ÿ�mÿ�nK�2m; 2n; a��q
0@ 1A1

q

is ®nite (the sum should be replaced by the supremum if q=1).
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The J-interpolation space is formed by all elements a2�(A) which can be
represented as

a �
X
�m;n�2Z2

um;n �convergence in ��A��

with (um,n)��(A ) and

X
�m;n�2Z2

�2ÿ�mÿ�nJ�2m; 2n; um;n��q
0@ 1A1

q

<1:

The norm in A��;��;q;J is

k a k��;��;q;J� inf
X
�m;n�2Z2

�2ÿ�mÿ�nJ�2m; 2n; um;n��q
0@ 1A1

q

8><>:
9>=>;

where the in®mum is taken over all representations (um,n) as above. It is possible to
give continuous characterizations for the spaces A(�,�),q;K and A(�,�),q;J using inte-
grals instead of sums, but they will not be required here (see [8] for more details).

Note that the real interpolation space (A0, A1)�,q can be described by a similar
scheme, but replacing the polygon � by the segment [0,1], the N-tuple by a couple
(A0, A1) and (�, �) by a point �2(0,1). In the case of couples, it is well known that J-
and K-spaces coincide with equivalence of norms, i.e.

�A0;A1��;q;K � �A0;A1��;q;J � �A0;A1��;q

(see [1] or [13]). However, working with N-tuples (N�3), K- and J-spaces do not
agree in general. We only have the continuous inclusion A��;��;q;J,!A��;��;q;K (see [8,
Theorem 1.3]).

Let B={B1,. . .,Bn} be another Banach N-tuple, which we also think of as sitting
on the vertices of another copy of � . By T : A!B we mean a bounded linear
operator from �(A ) into �(B) whose restriction to each Aj de®nes a bounded
operator from Aj into Bj, j=1,. . .,N. We denote the norm of T : Aj!Bj by kTkj.

It is not hard to check that if T : A!B, then the restriction of T to A(�,�),q;K

gives a bounded operator

T : A��;��;q;K ! B��;��;q;K:

According to [6, Theorem 1.9], its norm can be estimated by

kTk��;��;q;K�k T : A��;��;q;K ! B��;��;q;K k� C max
fi;j;kg2P��;��

fkTkcii kTkcjj kTkckk g: �1�

Here C is a constant that depends only on (�,�) and � , P(�,�) stands for the collec-
tion of all triples {i,j,k} such that the point (�,�) belongs to the interior of the tri-
angle PiPjPk and (ci,ci,ck) are the barycentric coordinates of (�,�) with respect to the
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vertices {Pi,Pj,Pk}. A similar estimate holds for the restriction of T to the J-spaces. If
we consider instead the operator T acting from a J-space into a K-space, then it was
shown in [6, Theorem 3.2] that

kT : A��;��;q;J! B��;��;q;K k� C
YN
j�1
kTk�jj �2�

where � � ��1; . . . ; �N� are some barycentric coordinates of (�; �) with respect to the

vertices P1,. . .,PN of � (i.e. 0 < �1; . . . ; �N < 1;
PN
j�1
�j � 1 and

PN
j�1
�jPj � ��; ��), and C

is a constant depending only on �.

Inequality (1) for J-spaces yields

k a k��;��;q;J� C1 max
fi;j;kg2P��;��

fk a kciAi
k a kcjAj

k a kckAk
g; a 2 ��A�; �3�

while for the K-norm it follows from (2) that

k a k��;��;q;K� C2

YN
j�1
k a k�jAj

; a 2 ��A�: �4�

Given any double sequence of Banach spaces (Wm,n)(m,n)2Z2 and any sequence of
non-negative numbers (�m,n)(m,n)2Z2 we write `q(�m,nWm,n) to designate the vector-
valued `q space modelled on the Wm,n, that is to say,

`q��m;nWm;n� �
n
w � �wm� : wm;n 2Wm;n and

k w k`q��m;nWm;n��
� X
�m;n�2Z2

��m;n k wm;n kWm;n
�q
�1

q

<1
o
:

2. Estimates for the measure of non-compactness.

Theorem 2.1. Let � � P1 . . .PN be a convex polygon with vertices Pj=(xj,yj), let
(�,�)2 Int� and 1�q�1. There exist constants 
>0 and 0<�<1, depending only on
� and (�,�), such that for any N-tuples, A={A1,. . .,AN} and B={B1,. . .,BN}, and any
operator T : A!B the measure of non-compactness of the interpolated operator can be
estimated by

��T : A��;��;q;J! B��;��;q;K� � 
 min
1�i�N
f��T : Ai ! Bi�g� max

1�i�N
fk T kig1ÿ�:

Proof. As we pointed out in the Introduction, we shall use in the proof some
ideas developed in [7] in order to use e�ciently the estimate established in [5] for the
real method.

First of all, by [7, Remark 4.1], we can assume without loss of generality that �
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is such that P1=(0,0), P2=(1,0) and PN=(0,1). We can also suppose that
�1 � min

1�j�N
f�ig, where �i=�(T : Ai!Bi).

Since (�, �)2Int� , there exists 0<�<1 with (�0, �0)=(�/�, �/�)2 Int� . Write
A�i � �A1;Ai��;1;B�i � �B1;Bi��;1 and consider the N-tuples A

� � fA�1; . . . ;A�Ng;
B
� � fB�1; . . . ;B�Ng. According to the formula we established in [5, Theorem 1.2], the

measure of non-compactness ~�i of T : A�i ! B�i can be estimated by

~�i � ��T : A�i ! B�i � � C��
1ÿ�
1 ��i :

On the other hand, by [7, Theorem 4.7], we can compare spaces generated by A; B
and (�, �) with those de®ned by A�, B� and (�0, �0). Namely, the following con-
tinuous inclusions hold:

A��;��;q;J,!A
�

��0;�0�;q;J; A
�

��0;�0�;q;K,!A��;��;q;K:

Hence, there is a constant C depending only on (�,�) and � such that

��T : A��;��;q;J! B��;��;q;K� � C��T : A
�
��0;�0�;q;J! B

�
��0;��;q;K�: �5�

This shows that in order to establish the theorem it su�ces to work with
��T : A

�

��0;�0�;q;J! B
�
��0;�0�;q;K�. With this aim, we put

G�m;n � ��A ��; J�2m; 2n; :A ��
� �

; F �
m;n �

X
�A ��;K�2m; 2n; :;A ��

� �
; �m; n� 2 Z2

and we shall work with vector-valued sequence spaces modelled on these Banach
spaces.

Let � be the operator de®ned by ��um;n� �
P

�m;n�2Z2

um;n. Clearly

� : `1�2ÿmxiÿnyiG�m;n� ! A�i is bounded with norm �1 for i=1,. . .,N. Moreover

� : `q�2ÿ�0mÿ�0nG�m;n� ! A
�
��0;�0�;q;J is a metric surjection.

Consider next the operator j that associates to each b2�(B�) the constant
sequence j (b)=(. . .,b,b,b,. . .). This time j : B�i ! `1�2ÿmxiÿnyiF �m;n� is bounded with
norm �1 for i=1,. . .,N, and j : B

�
��0;�0�;q;K ! `q�2ÿ�0mÿ�0nFm;n� is a metric injection.

So we have the following diagram of bounded operators.

`1�2ÿmx1ÿny1G �
m;n� !� A�1 !T B �

1 !
j
`1�2ÿmx1ÿny1F �m;n�

. . .. . .. . .. . .. . .. . .. . .. . .. . . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .
. . .. . .. . .. . .. . .. . .. . .. . .. . . . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

`1�2ÿmxNÿnyNG�m;n� !� A �
N !

T
B �
N !j `1�2ÿmxNÿnyNF�m;n�

`q�2ÿ�0mÿ�0nG�m;n� !� A
�

��0;�0�;q;J !T B
�
��0;�0�;q;K !

j
`q�2ÿ�0mÿ�0nF�m;n�

Write ^̀
1 � f`1�2ÿmx1ÿny1G�m;n�;. . . ; `1�2ÿmxNÿnyNG�m;n�g; ^̀1 � f`1�2ÿmx1ÿny1G�m;n�; . . . ;

`1�2ÿmxNÿnyNG�m;n�g and put TÃ=jT�. Using the properties mentioned above of j and
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�, we get

��T : A
�
��0;�0 �;q;J ! B

�
��0;�0 �;q;K� � 2��T̂ : `q�2ÿ�0mÿ�0nG�m;n� ! `q�2ÿ�0mÿ�0nF�m;n��: �6�

We write, for simplicity, ��T̂� � ��T̂ : `q�2ÿ�0mÿ�0nG�m;n� ! `q�2ÿ�0mÿ�0nF�m;n��. In order
to estimate this value let us introduce on ^̀

1 families of operators fP�r�k g1k�1,
r=0,1,2,3,4 de®ned by Pk

(r)((�m,n))=(um,n) where

um;n � �m;n if �m; n� 2 
�r�k
0 otherwise

�

and where the sets {
k
(r)} are given by


�0�k � f�m; n� 2 Z2 : jmj < k; jnj < kg;

�1�k � f�m; n� 2 Z2 : m � ÿk; jnj < kg;

�2�k � f�m; n� 2 Z2 : m � k; jnj < kg;

�3�k � f�m; n� 2 Z2 : n � ÿkg;

�4�k � f�m; n� 2 Z2 : n � kg:

It is not hard to check that the following properties hold.
(I) The identity operator on �( ^̀

1) can be decomposed as

I �
X4
r�0

P
�r�
k ; k � 1; 2; . . .

(II) They are uniformly bounded, i.e.

k P�r�k : `1�2ÿmxiÿnyiG�m;n� ! `1�2ÿmxiÿnyiG�m;n� k� 1

for any k2N, 0�r�4, 1�i�N.

(III) For each k2N, we have that

P
�1�
k : `1�2ÿmG�m;n� ! `1�G�m;n�;

P
�2�
k : `1�G�m;n� ! `1�2ÿmG�m;n�;

P
�3�
k : `1�2ÿnG�m;n� ! `1�G�m;n�;

P
�4�
k : `1�G�m;n� ! `1�2ÿnG�m;n�;

and their norms are equal to 2ÿk.
(IV) For each k2N, Pk

(0) : �( ^̀
1 )!�( ^̀

1 ) is bounded.
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Since T̂ � T̂P
�0�
k � T̂P

�1�
k � T̂P

�2�
k � T̂P

�3�
k � T̂P

�4�
k , we get

��T̂� � ��T̂P�0�k � �
X4
r�1
k T̂P�r�k k

where all the operators are considered from `q�2ÿ�0mÿ�0nG�m;n� into `q�2ÿ�
0mÿ�0nF�m;n�.

Let us estimate each of these terms. We start with �(TÃP0
k).

Let `�2kÿ1�
2

q be R�2kÿ1�
2

with the `q-norm. Since `�2kÿ1�
2

q is ®nite dimensional, given
any ">0, there exists a ®nite set f�rglr�1 � U`�2kÿ1�2q

such that for any �2U
`�2kÿ1�

2

q

min
1�r�l
fk �ÿ �r k

`�2kÿ1�
2

q

g � ":

Given any u � �um;n� 2 U`q�2ÿ�0mÿ�0nG�m;n�, since

k �2ÿ�0mÿ�0nJ�2m; 2n; um;n��jmj;jnj<k k`�2kÿ1�2q

�
� X
�m;n�2Z2

�2ÿ�0mÿ�0nJ�2m; 2n; um;n��q
�1=q
� 1

we can ®nd r2[1,l ] satisfying that

2ÿ�
0mÿ�0nJ�2m; 2n; um;n� � �r

m;n � "

for any m, n with jmj, jnj<k, where �r=(�r
m;n)jmj,jnj<k. Hence

k um;n kA�
i
� ��r

m;n � "�2��
0ÿxi�m���0ÿyi�n; 1 � i � N; jmj; jnj < k:

According to the de®nition of ~�i, if kÄi> ~�i, we can ®nd a ®nite set of vectors
{bi,�}�Bi

�, �=1,. . .,hi, 1�i�N, such that

min
1���hi

k T�um;n� ÿ ��r
m;n � "�2��

0ÿxi�m���0ÿyi�nbi;� kB�
i

n o
� ~ki��r

m;n � "�2��
0ÿxi�m���0ÿyi�n; 1 � i � N:

So, for each jmj, jnj<k, there is a ®nite set fdpm;ng � B�1 \ � � � \ B�N of, say, w=w(m,n)
vectors such that for some p

k T�um;n� ÿ dp
m;n kB�i� 2 ~ki��r

m;n � "�2��
0ÿxi�m���0ÿyi�n; 1 � i � N:

Let

D �
X
jmj;jnj<k

d p
m;n : p � p�m; n� 2 �1;w�m; n��

( )
:

Then D is a ®nite subset of B
�
��0;�0�;q;K and is such that for each

u � P
�m;n�2Z2

um;n 2 U`q�2ÿ�0mÿ�0nG�m;n� there exists some
P

jmj;jnj<k
dpm;n 2 D with
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K
�
2s; 2t;

X
jmj;jnj<k

�T�um;n� ÿ dpm;n�
�

�
X
jmj;jnj<k

K�2s; 2t;T�um;n� ÿ dpm;n�

�
X
jmj;jnj<k

min
1�i�N
f2sxi2tyi k T�um;n� ÿ dpm;n kB�i g

�
X
jmj;jnj<k

2 min
1�i�N
f2sxi2tyi ~ki��r

m;n � "�2��
0ÿxi�m���0ÿyi�ng

�
X
�m;n�2Z2

2� ~�r
m;n � "� min

1�i�N
f2�sÿm�xi��tÿn�yi��0m��0n ~kig

�
X

�m0;n0�2Z2

2� ~�r
sÿm0;tÿn0 � "� min

1�i�N
f2m0xi�n0yi��0�sÿm0���0�tÿn0� ~kig

where

�r
m;n �

�r
m;n if jmj; jnj < k
ÿ" otherwise

:

�
Thus

k T�P�0�k �u� ÿ
X
jmj;jnj<k

dp
m;n k��0;�0�;q;K

�
X
�s;t�2Z2

�2ÿ�0sÿ�0tK�2s; 2t;
X
jmj;jnj<k

�T�um;n� ÿ dpm;n���q
24 351=q

�
X
�s;t�2Z2

�2ÿ�0sÿ�0t
X

�m0;n0�2Z2

2� ~�r
sÿm0;tÿn0 � "� min

1�i�N
f2m0xi�n0yi��0�sÿm0���0�tÿn0� ~kig�q

24 351=q

�
X
�s;t�2Z2

�
X

�m0;n0�2Z2

2� ~�r
sÿm0;tÿn0 � "� min

1�i�N
f2m0xi�n0yiÿ�0m0ÿ�0n0 ~kig�q

24 351=q

� 2
X

�m0;n0�2Z2

X
�s;t�2Z2

� ~�r
sÿm0;tÿn0 � "�q min

1�i�N
f2m0xi�n0yiÿ�0m0ÿ�0n0 ~kigq

0@ 1A1=q

� 2
X

�m0;n0�2Z2

min
1�i�N
f2m0xi�n0yiÿ�0m0ÿ�0n0 ~kig�

X
ÿk�m0<s<k�m0
ÿk�n0<t<k�n0

� ~�r
sÿm0;tÿn0 � "�q�1=q

264
375

� 2�1� "�2kÿ 1�2=q�
X

�m0;n0�2Z2

2ÿ�
0m0ÿ�0n0 min

1�i�N
f2m0xi�n0yi ~kig

To evaluate the last series observe that since (�0,�0)2 Int� , we can choose "1>0
such that (�0,�0)+"1h2Int� for all possible vectors h=(�1,�1). By [7, Lemma 4.2],
there exist positive real numbers f�i�h�gNi�1 such that
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XN
i�1

�i�h� � 1 and ��0; �0� � "1h �
XN
i�1

�i�h�Pi:

Taking into account that min
1�i�N

�i �
QN
i�1
��ii for �i; �i > 0 with

PN
i�1
�i � 1, we obtain

2ÿ�
0m0ÿ�0n0 min

1�i�N
f2m0xi�n0yi ~kig � 2ÿ�

0m0ÿ�0n0YN
i�1
�2m0xi�n0yi ~ki��i�h� � 2"1<�m;n�;h>

YN
i�1

~k
�i�h�
i

where < , > stands for the inner product of R2.
Put �1=min{�i(h) : 1�i�N, h=(�1,�1)}. Then we have

YN
i�1

~k
�i�h�
i � max

1�i�N
f ~kig

YN
i�1
�

~ki

max
1�i�N
f ~kig
��i�h�

� max
1�i�N
f ~kig

min
1�i�N
f ~kig

max
1�i�N
f ~kig

0B@
1CA
�1

� � min
1�i�N
f ~kig��1 �max

1�i�N
f ~kig�1ÿ�1 :

Taking the minimum over all h=(�1,�1) we obtain

2ÿ�
0m0ÿ�0n0 min

1�i�N
f2m0xi�n0yi ~kig � 2ÿjm

0 j"1ÿjn0j"1 �min
1�i�N
f ~kig��1�max

1�i�N
f ~kig�1ÿ�1 :

This implies that

X
�m0;n0 �2Z2

2ÿ�
0m0ÿ�0n0 min

1�i�N
f2m0xi�n0yi ~kig � min

1�i�N
f ~kig

� ��1
max
1�i�N
f ~kig

� �1ÿ�1 X
�m0;n0 �2Z2

2ÿjm
0 j"1ÿjn0 j"1 ;

and therefore,

��T̂P�0�k � � ��T��0�k � � 2
� X
�m0;n0�2Z2

2ÿjm
0 j"1ÿjn0 j"1

�
min
1�i�N
f ~�ig

� ��1
max
1�i�N
f ~�ig

� �1ÿ�1
:

Put 
1 � 2
� P
�m0;n0�2Z2

2ÿjm
0 j"1ÿjn0j"1

�
. Recalling that ~�i � C��

1ÿ�
1 ��i with �1 � min

1�i�N
f�ig,

we conclude

��T̂P�0�k � � 
1C���11 ��1ÿ���1ÿ�1�1 max
1�i�N
f�ig

� ���1ÿ�1�
� 
1C��1ÿ����11 max

1�i�N
f�ig

� ���1ÿ�1�
:

Next we estimate the norm of the operator
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T̂P
�1�
k : `q�2ÿ�0mÿ�0nG�m;n� ! `q�2ÿ�0mÿ�0nF�m;n�:

The arguments given in [8, Theorem 3.1] show that

`q�2ÿ�0mÿ�0nG�m;n� ! � ^̀1���0;�0�;q;J

� ^̀1���0;�0�;q;K ! `q�2ÿ�0mÿ�0nF�m;n�

with norms �1. If �=(�1,. . .,�N) are some barycentric coordinates of (�0,�0) with
respect to P1,. . .,PN, it follows from (2) and (I) that

T̂P
�1�
k

��� ������ ��� � T̂P
�1�
k

��� ������ ���
� ^̀1���0 ;�0 �;q;J;� ^̀1���0 ;�0 �;q;K

� C T̂P
�1�
k

��� ������ ����2
2

max
1�i�N

T̂P
�1�
k

��� ������ ���
i

n o1ÿ�2
� C T̂P

�1�
k

��� ������ ����2
2

max
1�i�N

Tj jj ji
� 	1ÿ�2 :

Further since

T̂P
�1�
1

��� ������ ���
2
5 T̂P

�1�
2

��� ������ ���
2
5 � � �50

there exists ��0 such that k T̂P �1�k k2! � as k!1. Choose vectors
�uk�k2N � U`1�2ÿmG�m;n� such that

T̂P
�1�
k �uk�

��� ������ ���
`1�2ÿmF�m;n�

! � as k!1:

By the de®nition of ~�2, given any ">0, there exists a ®nite set {b1
2,b2

2,. . .,bs
2} in B�2

such that

T��U`1�2ÿmG�m;n�� �
[s
r�1
fb2r � � ~�2 � "�UB�2g:

For some subsequence (k0)�N and some r, say r=1, it follows that

T�P�1�k0 �uk
0 � 2 fb21 � � ~�2 � "�UB�2g for all k0:

Using property (III), we have that for any m, n2Z

2ÿmK�2m; 2n; b21� � 2ÿm 2m b21 ÿ T�P�1�k0 �uk
0 �

��� ������ ���
B�
2

� T�P�1�k0 �uk
0 �

��� ������ ���
B�
1

� �
� � ~�2 � "� � 2ÿmÿk

0
Tj jj j1! ~�2 � " as k0 ! 1:

This implies

j�b21�
�� ���� ��

`1�2ÿmF�m;n�� sup
�m;n�2Z2

f2ÿmK�2m; 2n; b21�g � ~�2 � ";

whence
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� � lim
k0!1

T̂P
�1�
k0 �uk

0 �
��� ������ ���

`1�2ÿmF�m;n�

� sup
k0

T̂P
�1�
k0 �uk

0 � ÿ j�b21�
��� ������ ���

`1�2ÿmF�m;n�
� j�b21�
�� ���� ��

`1�2ÿmF�m;n�

� �
� 2� ~�2 � "�:

Given any ">0, there then exists k12N such that for all k�k1,

T̂P
�1�
k

��� ������ ����2
2
� �2 ~�2��2 � "

and so

T̂P
�1�
k

��� ������ ��� � C�2 ~�2��2 max
1�i�N
f Tj jj jig1ÿ�2 � " � C2�2��1ÿ���21 ���22 max

1�i�N
f Tj jj jig1ÿ�2 � ":

Similar arguments show that

T̂P
�2�
k

��� ������ ��� � C2�1��11 max
1�i�N
f Tj jj jig1ÿ�1 � ";

T̂P
�3�
k

��� ������ ��� � C2�N��1ÿ���N1 ���NN max
1�i�N
f Tj jj jig1ÿ�N � "

T̂P
�4�
k

��� ������ ��� � C2�1��11 max
1�i�N
f Tj jj jig1ÿ�1 � ":

Therefore

��T̂� � C�
1�
1ÿ����1
1 max

1�i�N
f�ig��1ÿ�1� � C2�2��1ÿ���21 ���22 max

1�i�N
fk T kig1ÿ�2

� 2C2�1��11 max
1�i�N
fk T kig1ÿ�1 � C2�N��1ÿ���N1 ���NN max

1�i�N
fk T kig1ÿ�N � 4":

Writing 
2 � 
1C� � C2�2 � C2�1�1 � C2�N and � � minf1ÿ � � ��1; �1ÿ ���2; �1;
�1ÿ ���Ng, we get

��T̂� � 
2 minf�ig� �� maxfk T kig� �1ÿ�:

Combining this inequality with (5) and (6) we ®nally obtain the desired estimate

��T : A��;��;q;J� ! B��;��;q;K� � 
 minf�ig� �� maxfk T kig� �1ÿ�:

If one of the restrictions T : Ai!Bi is compact, so �i=0, we recover the compactness
theorem of Cobos, KuÈ hn and Schonbek (see [7, Theorem 4.8]).

3. Estimates for entropy numbers. When one of the N-tuples degenerates to a
single Banach space, i.e. A1=� � �=AN=A or B1=� � �=BN=B, we can improve
Theorem 2.1 by estimating entropy numbers of the interpolated operator.
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Proposition 3.1. Let � � P1 . . .PN be a convex polygon with vertices Pj, let
(�,�)2 Int� and 1�q�1. For any Banach N-tuple A � fA1; . . . ;ANg, any Banach
space B and any operator T : A! B, we have

(i) en1�����nNÿN�1�T : A��;��;q;J ! B� � C1Nen1�T1��1 � � � enN�TN��N ;
(ii) en1�����nNÿN�1�T : A��;��;q;K ! B� � C2N max

fi;j;kg2P��;��
feni�Ti�cienj�Tj�cj enk �Tk�ckg:

Here Ti=TjAi
, i=1,. . .,N, �=(�1,. . .,�N) are barycentric coordinates of (�,�), C1 is a

constant depending only on �, and C2 is another constant that depends only on � and
(�,�).

Proof. For i=1,. . .,N, take any ki>eni(Ti) and consider the following norm on
�(A ):

kja kj � inf k1 k a1 k � . . .� kN k aN k: a �
XN
i�1

ai; ai 2 Ai

( )
:

Given any a2A(�,�),q;J with kak(�,�),q;J<1, by the Hahn-Banach theorem, we can ®nd
a bounded functional f2(�(A))* such that f( a)=kjakj and k f kAi

�ki for i=1,. . .,N.
According to (2), the norm of the restriction of f to A(�,�),q;J satis®es

k f k�A��;��;q;J��� C1k
�1
1 � � � k�NN :

Hence

kja kj � jf�a�j � C1k
�1
1 � � � k�NN k a k��;��;q;J< C1k

�1
1 � � � k�NN :

It follows that there is a representation a �PN
i�1

ai of a with k ai kAi

� C1k
�1
1 � � � k�iÿ1i � � � k�NN , 1�i�N. Thus

ai

C1k
�1
1 � � � k�iÿ1i � � � k�NN

2 UAi
:

By de®nition of entropy numbers, there exists bi1; . . . ; bisi with si�2niÿ1 so that

T�UAi
� �

[si
j�1
fbij � kiUBg; 1 � i � N:

We can then choose ji in such a way that

k T�ai� ÿ Ck�11 � � � k�iÿ1i � � � k�NN biji kB� C1k
�1
1 � � � k�NN ;

and so

k T�a� ÿ �C1k
�1ÿ1
1 � � � k�NN b1j1 � � � � � C1k

�1
1 � � � k�Nÿ1N bNjN� kB 4C1Nk�11 � � � k�NN :

This yields the result

en1�����nNÿN�1�T : A��;��;q;J! B� � C1Nen1 �T1��1 � � � enN�TN��N :
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Inequality (ii) follows from similar arguments but now using (1) to estimate the
norm of the restriction of f to A(�,�),q;K.

Remark 3.2. Inequality (i) does not hold for K-spaces, as we show next by
means of an example.

Let �={(0,0), (1,0), (0,1), (1,1)} be the unit square, let A={`n1,`1,`1,`1},
B=l1 and let T be the identity operator.

Choose (�,�) as in Fig. 2.1, i.e. in the interior of the triangle �1; 0�; �0; 1�; �1; 1�.
Then, since `n1 is n-dimensional, T : `n1!`1 is compact. But
T : �`n1; `1; `1; `1���;��;q;K ! `1 fails to be compact, because, according to [4 Theo-
rem 1.5], �`n1; `1; `1; `1���;��;q;K � `1. In other words, lim

n!1 en�T :A��;��;q;K ! B� 6� 0
although lim

n!1 en�T : A1 ! B� � 0.

Next we turn our attention to the case when the operator starts from a degen-
erate N-tuple. This time the stronger result corresponds to K-spaces.

Proposition 3.3. Let � � P1 . . . PN be a convex polygon with vertices Pj, let
(�,�)2Int� and 1�q�1. For any Banach N-tuple B � fB1; . . . ;BNg, any Banach
space A and any operator T : A! B, we have

(i) en1�����nNÿN�1�T : A! B��;��;q;K� � 2C1Nen1 �T1��1 � � � enN �TN��N ;
(ii) en1�����nNÿN�1�T : A! B��;��;q;J� � 2C2N max

fi;j;kg2P��;��
feni�Ti�cienj�Tj�cj enk �Tk�ckg:

Here Ti=T:A!Bi, i=1,. . .,N, �=(�1,. . .,�N) are barycentric coordinates of (�,�), C1

is a constant depending only on �, and C2 is another constant that depends only on �
and (�,�).

Proof. Given any ki>eni(Ti), there are fyijig1�ji�si � Bi with si�2niÿ1 and

T�UA� �
[si
ji�1
fyiji � kiUBi

g; 1 � i � N:

Hence

T�UA� �
[

1�j1�s1......
1�jN�sN

\N
i�1
fyiji � kiUBi

g
 !

:

Figure 2.1

NON-COMPACTNESS AND INTERPOLATION 77

https://doi.org/10.1017/S0017089599970404 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599970404


Take w�j1;...;jN� 2
TN
i�1
fyiji � kiUBi

g if the last set is non-empty. Then the number of the

w�j1;...;jN� is at most 2n1�����nNÿN, and given any a2UA we can ®nd ( j1,. . .,jN) such that

k Taÿ w�j1;...;jN� k��;��;q;K� C1

YN
i�1
k Taÿ w�j1;...;jN� k�iBi

� 2C1

YN
i�1

k�ii

where we have used (4) in the ®rst inequality. This implies (i). Part (ii) follows by
using (3) instead of (4).

Remark 3.4. Let �={(0,0),(1,0),(0,1),(1,1)} be the unit square, let

A � `1�n� � f� � ��n� :k � k`1�n��
P1
n�1

nj�nj <1g;B � f`1; `1�n�; `1�n�; `1�n�g and let T

be the identity operator. Taking (�,�) as in Remark 3.2, it follows from [4, Theorem
1.5], that B(�,�),q;J=`1(n). Therefore lim

n!1 en�T : A! B��;��;q;J� 6� 0 although

lim
n!1 en�T : A! B1� � 0. Consequently, estimate (i) does not hold in general for J-

spaces.

Remark 3.5. Proposition 3.1(ii) and Proposition 3.3(ii) yield Nikolova's results
[10] mentioned in the Introduction, because lim

n!1 en�T� � ��T�.
Compactness results in degenerate cases established by Cobos and Peetre in [8,

Section 4], and Cobos, KuÈ hn and Schonbek [7, Proposition 4.5 and 4.6], follow also
from Propositions 3.1 and 3.3.
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