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Abstract. We establish an estimate for the measure of non-compactness of an
interpolated operator acting from a J-space into a K-space. Our result refers to
general Banach N-tuples. We also derive estimates for entropy numbers if some of
the N-tuples reduce to a single Banach space.

0. Introduction. The investigation of the behaviour of compactness under
interpolation methods for N-tuples of Banach spaces associated with polygons was
started by Cobos and Peetre in [8]. There they studied the case when the interpolated
operator acts between two K-spaces or two J-spaces. Later, Cobos, Kiihn and
Schonbek [7] continued this research by considering operators acting from a J-space
into a K-space. Optimality of all these results was analyzed in [3].

It is natural to investigate now how far from being compact an interpolated
operator can be, a question that was already considered by Edmunds and Teixeira
[12] and by the present authors [5] in the case of the real method for couples, and by
Nikolova [10] in the present context of N-tuples of Banach spaces. Nikolova derived
estimates for the measure of non-compactness of an interpolated operator provided
that one of the N-tuples degenerates into a single Banach space or that the image N-
tuple satisfies a certain approximation condition.

We deal here with general N-tuples, without requiring any approximation
hypothesis, and we establish an estimate for the measure of non-compactness when
the interpolated operator T acts from a J-space into a K-space. In the special situa-
tion where one of the restrictions of 7' is compact, we recover the compactness result
of Cobos, Kiithn and Schonbek [7].

Our techniques are based on some ideas introduced in [7] that allow us to use
efficiently the information known for the real interpolation method for couples. The
relevant estimate in this last case was derived by the authors in [5].

The organization of the paper is as follows. In Section 1 we recall some basic
facts on measure of non-compactness and on methods associated with polygons.
Section 2 contains the estimate for the measure of non-compactness. Finally, in
Section 3, we study degenerate cases when one of the N-tuples reduces to a single
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Banach space. In these special cases we show estimates for entropy numbers that
improve Nikolova’s results mentioned before.

1. Preliminaries Let 4 and B be Banach spaces and T€/L(4,B) be a bounded
linear operator acting from A into B. The n-th entropy number ¢,(T) of T is defined
as the infimum for all » >0 such that there are b;,. . .,b,,€B with m<2"~! and

TWU.) < | Jtb; + s}

J=1

Here U 4 and Uy are the closed unit balls of 4 and B respectively. The measure of
non-compactness B(7) of T is defined as the infimum of all »>0 such that there
exists a finite number of elements by,...,b,€B so that

T < iy + rtds).

J=1

Clearly | T |l=ei(T) = ex(T) > --- > 0, and ¢,(T)—B(T) as n—o00. Also B(T)=0 if
and only if T is compact. We refer to [2], [9] and [11] for others properties of these

notions.
Let Il = P, . Py be a convex polygon in the affine plane R? with vertices
=(x5 ), =1,..., N). Let A ={A;,..., Ay} be a Banach N-tuple, that is to say, a

family of N Banach spaces 4; all of them continuously embedded in a common lin-
ear Hausdorff space. In what follows, it will be useful to imagine each space of the
N-tuple 4 as sitting on the vertex P;.

By means of the polygon II, we define the following family of norms in the sum
A =414+ Ay

N N
K(t,s;a) = K(t, 5; a; A) = inf Z I aj g a = Zaj, ajeAdj; t,s>0.
Jj=1 Jj=1

Similarly, in A(4)=A4,N---NAy, we consider the family of norms

J(t, s;a) = J(t, 570, A) = mi)liv{ 1957\ alla,}-

Given (o,8) in the interior of II, (a,8)€Int II, and 1<¢<oo, the K-interpolation
space Ay p) 4k is formed by all elements ae %(A4 ) for which the norm

q

|| a ”(a,ﬂ),q;K: Z (2—am—ﬂnK(2m’ 211; a))q
(m,n)eZ?

is finite (the sum should be replaced by the supremum if ¢ = 00).
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The J-interpolation space is formed by all elements aeX(4) which can be
represented as

Z Umn (convergence in £(A4))
(m,n)eZ?

with (¢, ,,)CA(A) and
L
D @I, 2 )" | < oo

(m,n)eZ?

The norm in Ay g 4.7 i

q

lall@pgs=infq [ > @ IQ2", 2" )
(m,n)eZ?

where the infimum is taken over all representations (u,,,) as above. It is possible to
give continuous characterizations for the spaces A ) 4:x and A p) 4.7 Using inte-
grals instead of sums, but they will not be required here (see [8] for more details).

Note that the real interpolation space (4, 41)s, can be described by a similar
scheme, but replacing the polygon II by the segment [0,1], the N-tuple by a couple
(A4g, A;) and («, B) by a point 0€(0,1). In the case of couples, it is well known that J-
and K-spaces coincide with equivalence of norms, i.e.

(Ao, A1)g 4.k = (Ao, A1)g 4.y = (Ao, A1)y,

(see [1] or [13]). However, working with N-tuples (N>3), K- and J-spaces do not
agree in general. We only have the continuous inclusion A g) ¢./> A(@.p).q: (se€ [8,
Theorem 1.3]).

Let B={B,,...,B,} be another Banach N-tuple, which we also think of as sitting
on the vertices of another copy of II. By T : A—B we mean a bounded linear
operator from X(A4) 1nto »(B) whose restriction to each A; defines a bounded
operator from A; into B;, j=1,...,N. We denote the norm of T: A;— B; by [ T1);.

It is not hard to check that if T: A—B, then the restriction of T to A(w.p)q:x
gives a bounded operator

T: Awp.gx = Bap.gk-

According to [6, Theorem 1.9], its norm can be estimated by

I Tl wprgix =l T2 Awwpraik = Baprgx 1= C (ihax WTUNTIZNTIEY. (D)

L) K€ P (a,p)

Here C is a constant that depends only on («,f) and II, P, g stands for the collec-
tion of all triples {ij,k} such that the point («,8) belongs to the interior of the tri-
angle P;P;Py and (c;.c;.cx) are the barycentric coordinates of («,8) with respect to the
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vertices { P;, P, Pi}. A similar estimate holds for the restriction of T to the J-spaces. If
we consider instead the operator T acting from a J-space into a K-space, then it was
shown in [6, Theorem 3.2] that

N
1T : Awwpy.gis = Baprax I CTTITIY ©)
j=1
where 6 = (1, . .., Oy) are some barycentric coordinates of (a, 8) with respect to the
N N
vertices Py,...,Pyof II (ie. 0 <6y,...,0y <1, Y 0;=1and ) 6,P; = (c, B)), and C
is a constant depending only on 6. 7=l 7=l
Inequality (1) for J-spaces yields
I all@p.gs< Ct max {lal|Glalla .}, ae A(A), 3)
{i./,K}EPa,p) ! /
while for the K-norm it follows from (2) that
N . _
lall@pax< C:[Ial, ac AC). 4

J=1

Given any double sequence of Banach spaces (W, ,)imnez” and any sequence of
non-negative numbers (A, ,))mnyez’ We write £y(A,, W, ) to designate the vector-
valued £, space modelled on the W, ,, that is to say,

Zt]()‘m,n Wm,n) = {W = (Wm) W € Wm,n and

1
q
|| w ||€1/()\/71.n u/m.n): ( Z ()‘-m.n ” Wm,n ” Wm'”)q) = oo}

(m,n)eZ?

2. Estimates for the measure of non-compactness.

THEOREM 2.1. Let II = P; ... Py be a convex polygon with vertices P;=(x;,y;), let
(o, 8) € Int IT and 1<qg<o0. There exist constants y >0 and 0 < t <1, depending only on
II and (a,B), such that for any N-tuples, A={A,,...,Ay} and B={B,,....By}, and any
operator T : A— B the measure of non-compactness of the interpolated operator can be
estimated by

BT : Aty = Bappax) < v min (B(T': 4; > B} max (|| T},
Proof. As we pointed out in the Introduction, we shall use in the proof some
ideas developed in [7] in order to use efficiently the estimate established in [5] for the

real method.
First of all, by [7, Remark 4.1], we can assume without loss of generality that 7
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is such that P;=(0,0), P,=(1,0) and Pny=(0,1). We can also suppose that
B = 1m.inN{,B,‘}, where B;=B(T : A— B)).
<j<

Since (a, B)elntll, there exists 0 <6<1 with (¢, 8')=(«/0, B/0) € Int II. Write
A = (A1, A))g,, B! = (B), B)),, and consider the N-tuples A =4, .., A5,
B'=1(B,..., B4} According to the formula we established in [5, Theorem 1.2], the
measure of non-compactness §; of T: 47 — B/ can be estimated by

Bi=B(T: 4] — B)) < Copi'B.

On the other hand, by [7, Theorem 4.7], we can compare spaces generated by A, B
and (o, B) with those defined by 4?, B? and (o, f). Namely, the following con-
tinuous inclusions hold:

A@pgi=Aw prgr A pr.gx=Ad@pak

Hence, there is a constant C depending only on («,8) and I such that
- = —6 =0
B(T : Aa.p.g:0 = Bapax) < CBT 2 A g0 = B py.g50)- ®)

This ihgows that ir@l order to establish the theorem it suffices to work with
B(T: Ay gy g7 = B p)qx)- With this aim, we put

m,n m,n

G = (A(ZQ),J(2’”,2”,.20)>, Fo = (Z(ZG), K(2’”,2”,.;Ze)>, (m, n) € 2

and we shall work with vector-valued sequence spaces modelled on these Banach
spaces.

Let 7 be the operator defined by #(unn)= Y. ity Clearly
(m,n)eZ?
m gy (2miGh ) — A? is bounded with norm <1 for i=1,...,N. Moreover

/ / —0 . . . .
7 8y NG) ) = Ay ) 4oy 18 @ metric surjection.

Consider next the operator j that associates to each heX(B’) the constant
sequence j(b)=(...,h,b,b,...). This time j: B} — €x,(27™™iFY Y is bounded with

. J— b L mn S
norm <1 for i=1,...,N, and j: B(a’,ﬁ’),q;K — £,(27¢ ’”‘ﬂ”Fm,n) 1s a metric injection.

So we have the following diagram of bounded operators.

—mx—ny| ~6 b8 o T o J —mx|—ny| 6
xe Gl B4l LB Lo )

m,n

VI —0 T 50 i R
L emFnGo ) D Ay = By gy gk Log 2-am—pnp

m,n ).q;J m,n

Write 01 = (6,771 GY, ) Q27N TINGE, N g = {Loo (27 TGE, ),

m,n m,n

Lo (27NN Ggm)} and put 7'=;T7. Using the properties mentioned above of j and

. T ] _ —nyw
E](2—n1x,v—11yNG?n’n) £> A[@ = B]é{] i> Eoo(z mxy ;1,1,7\]:'9 )
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T, we get

—0 i 7 —o'm—p —oa'm—p'n
B(T: Ay gy 4s = B prgr) < 28T 6,7 FPGh ) — £, " FP"E ). (6)

m,n

We write, for simplicity, B(T) = A(T : £,2~*" "G ) — L 27@m=Fn 9 ). In order

Am,n

to estimate this value let us introduce on ¢; families of operators {Pg)}}:o:l,
r=0,1,2,3,4 defined by P,"((&,.,)) = (t,,) where

ue = L if (m,m) € Qg)
i 0 otherwise

and where the sets {2,7} are given by

OO = {(m,n) € Z*: |m| < k, |n| < k},
Qg) ={(m,n) e Z*> :m < —k,|n| <k},
Qf) ={m,n)eZ? m=>k, |n <k},
(2}{3) ={(m,n) € Z* :n < —kj},

Q}j) ={(m,n)e Z* :n> k).

It is not hard to check that the following properties hold.
(I) The identity operator on X(¢;) can be decomposed as

4
(r)
1= P k=12 ...

(IT) They are uniformly bounded, i.e.

” Pg‘) : El(zﬂnx,-fny,-Gi’n) — El(zfmx,»fny[GG ) ”: 1

for any keN, 0<r<4, 1<i<N.

(ITT) For each keN, we have that

PV 06, ) — GG, ).

m,n
PP (G, — 627G, ),
PO 676, — 4(Gh,),

P (G0 ) = 6"

m,n m,n’?

and their norms are equal to 2. . A
(IV) For each keN, P,© : ©(¢;)— A(£;) is bounded.
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Since 7= TP + TP) + TP + TP + TP, we get

B(T) < B(TPY) + Z I TP |

where all the operators are considered from £,(2~ om= /’”Ge ,) into £ (2“" " f‘”an W)
Let us estimate each of these terms. We start w1th B(TP -

Let £2%~ D* be R’ with the ¢ g-norm. Since £~ 1’ is finite dimensional, given
any £>0, there exists a finite set {u” }/ - Z/{Z(z, 12 such that for any Ae uz@‘ 2
q q

1113112[{” A= /'Lr ”5(21(71)2} < e&.
=r= q
Given any u = (U, ) € Llel(zfannfﬂfnca )» since

q mn

@I 2 e N = (D @ 2 umn») <1

(m,n)ez?

we can find re[1,/] satisfying that
27 (M 2" ) < b,
for any m, n with |m|, |n| <k, where u" = (i}, ,)imi.in <k Hence
It L4 < (12, +€)2THEN L < < N, |, |n] < k.

According to the definition of Bi, if l€i>,4§,-, we can find a finite set of vectors
{b"CBf v=1,...h;, 1<i<N, such that

min {1 Tun) = (1}, + )2 =0y |

1<v<h;

< ki, , + £)2 I < i < N,

So, for each |m|, |n| <k, there is a finite set {¢?, ,} € B{ N ---N BY, of, say, w=w(m,n)

vectors such that for some p

m,n

| T(ttyn.) — mn ||B"< 2k ('umn +8)2(a x))m+(B —yi)n 1<i<N.

Let

:{ Z P p=p(m,n) €1, wim, n)

|m|,|n|<k

. . —6 .
Then D is a finite subset of By g ,.x and is such that for each
u= 3 Unn €Uy ownmg, ) thereexists some > d) €D with

m,n
(m,n)eZ? |ml, |nl<k
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K(2.25 Y (T — )

|m|,|n|<k

< Z K(2S, 2t; T(um,n) - aa;;,n)

Iml.|n|<k

min (2%t T(um.n) — a% N
1<i<N ’ i
|m|,|n|<k — —

2 min (227 ki, , + )2 I

IA

IA

1<i

Iml.|n| <k
_ ~r ; s—m)xi+(t—n)yi+o' m+pny
- Z jz(u“;n,n +8) 12‘151}\/{2(3 (=)l ﬁnki}
(m,n)eZ”
_ ad : /X' yito (s—m')+B (1—n') [
— Z 2(M§7}11/7t7n, +¢) lglilgnN{2mY ' yito (s—m')+B (¢ n)ki}

(m'.n')eZ?
where ‘ .
- Mo A Imlsn| < k
m,n —& otherwise
Thus
0
I TaPP@) — > db, gk
|m|,|n|<k
B 1/q
= Y @KL Y (T — )
| (s.0eZ? |ml,|n|<k
B 1/q
_(s,t)eZ2 (m’,n/)EZ2 S1=
B 1/q
| SR 2y b min ey
_(s,t)eZ2 (m',n'eZ? -
1/q

~r q : m' xi+n'yi—ad'm' —Bn' 17 \q
<2 ) > (i + )" min (2 kit
(' .n)eZ? \(s,1)eZ? -

=2 Z min {2171/x,'+n’y,'—a/m/—ﬁ/n/lgi}( Z (la;—m’,t—n’ + E)q)l/q

1<i<N
m'nez*| T k! <s<ktn’

—k-+n' <t<k+n'

<2(1+eQk— 1Y) Y 27 B min 2

1<i<N
(m' . )eZ?

To evaluate the last series observe that since (¢/,8') € Int I, we can choose g; >0
such that («,8) + e;helntll for all possible vectors A=(£1,%1). By [7, Lemma 4.2],
there exist positive real numbers {ai(h)}fvz | such that

https://doi.org/10.1017/5S0017089599970404 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089599970404

NON-COMPACTNESS AND INTERPOLATION 73

N N
D iy =1and (. )+ erh =Y ai(h)P;.
i=1 i=1

Taking into account that min §; < ]_[ 87 for &, v; > 0 with Z v; = 1, we obtain

1<isN i=1 i=1

27a’m’7,3’n’ min {2)11’x;+n’y,]€i} < 27a’m’7;3’n’ l_[(2m'xi+n'}’i]€l,)wi(/7) — 251<(m,n),h> ng‘i"f(h)
l=i=N i=1 i=1

where < , > stands for the inner product of R2.
Put 7y =min{e,(h) : 1<i<N, h=(£1,£1)}. Then we have

N
ngf"'(h) = max {k;} l_[( Ly

i 1<i<N max k
i=1 i=1 l<z<N{ }
min {lg,-}
~ | 1<i=n
< max {k;}| ——=
I<i<N max {k;}
1<i<N

_ : 1\ Tl C -1
_(ElgnN{k’}) (lrggv{k,}) .

Taking the minimum over all z=(%1,+1) we obtain

2—am B lmlnN{zm xi+n'y; k } <2~ |m' &1 —|n & ( mm {k })r‘(max {k })1 7] )
<i<

This implies that

T 1-7
2 : p—a'm —pn min {2m Xi +n},k } < [ min {kz} max {kz} 2 : 27\111 ler—1n'|e1 ,
I<i<N I<i<N I<i<N

(' .n)eZ? (m' .n)eZ?

and therefore,

T B -1
BIPY) < pray <2 Y 27 IHI)(anN ui»}) (m,ax{ﬁ,-}) :

1<i<N
(m',n')eZ?

Put y; = 2( > 2*‘”1"5"‘""8'). Recalling that ; < CpBl=¢ with g, = min {8},
(m',n)eZ? 1<i<N
we conclude

o(1—71) 6(1-7)
BTPY) < i CoB B ’1><max{ﬂ,}> =GB} ”9“<max {ﬂl}) :

1<i<N I<i<N

Next we estimate the norm of the operator
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TP : 0,27 Gh, ) — £, ).

m,n m,n

The arguments given in [8, Theorem 3.1] show that

7 FGE ) = ) p) g

m,n

(EOO)(O/W)J]:K g Zfl(z_a m—ﬁn m, n)

with norms <1. If =(6,,...,8y) are some barycentric coordinates of (c/,8) with
respect to Pi,...,Py, it follows from (2) and (I) that
1-6,
§

10';

max {
2 1<i<N

) g0 Co)at prax

< CHTP“)H max {11711}

Further since
] 541
2 2

there exists A>0 such that | fPE{l) l,— A as k — oo. Choose vectors
(U )reny C Uy gy ) such that

H]A"P;:)(uk) — A as k — oo.

’[m(z—m‘w )

mn

By the definition of B, given any & >0, there exists a finite set {b;%5,%....b2} in BY
such that

T]T(Z/{[I(Q mGo

m,n

) S U7+ B+ o).
r=1

For some subsequence (k')CN and some r, say r=1, it follows that
TP (") € (b7 + (B> + &)U g ) for all K.

Using property (III), we have that for any m, neZ

2—1‘)11((21117 2”; b%) < o—m (2111

b — TnP,(:,)(uk/)‘ ]BH+HT71P§;)(uk’)‘ ‘3)
2 1
<Br4e)+ 27" T, > B2 +eas k' — oco.
This implies

H‘](b%)| i[x(2fmpl‘:1”): Sup {27’71K(2m7 2”7 b%)} S BZ + 8’
' (m,n)eZ?

whence
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A= lim HTP“,) s H
ko0 A o2, )

=p(D) o, K 72 (2 R
< sgp[\ TPECE 0D,y HIOD] o Fg)} < 2 +e)

Given any ¢ > 0, there then exists k;€N such that for all k>k;,

~ 0 ~
770 < 0By +e

and so

[ 7PP]| < A max (17111 + & < C2% 7" % max (117111~ +e.
<i< <i<

Similar arguments show that

|77 = c2 g max 7" +e.
=i<
HTP;?)H < C20Nﬂ(11—0)01\"3?§,v 111333](\,{”71 |i}179N +e

77| < 2 max iy +e.
Therefore

A . _ 1-6)6, H —6,
B(T) < Coy """ max (8" + C2% 47" B max (|| T [}~
1<i<N 1<i<N

+2C27 B max (I T 13" + C27 B ™" Y max (1| T 1"~ + de.

Writing y, = y1Cp + C2% 4+ C2+1 - C2% and © = min{l — 6+ 61y, (1 — 0)65, 6;,
(1 —0)0y}, we get

B(T) < ya(min{B:})"(max{|| T |I;)'

Combining this inequality with (5) and (6) we finally obtain the desired estimate

B(T : A4 —> Blapg:x) < y(min{ ) (max{|| T||:)' .

If one of the restrictions 7 : 4,— B; is compact, so 8;=0, we recover the compactness
theorem of Cobos, Kiithn and Schonbek (see [7, Theorem 4.8]).

3. Estimates for entropy numbers. When one of the N-tuples degenerates to a

single Banach space, i.e. 4,=---=Ay=A or By=..--=By=B, we can improve
Theorem 2.1 by estimating entropy numbers of the interpolated operator.
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PRrOPOSITION 3.1. Let II = P;... Py be a convex polygon with vertices Pj, let
(o, ) e Int II and 1<g<oo. Fg annyanach N-tuple A ={A,, ..., An}, any Banach
space B and any operator T : A — B, we have

() en ety -N+1(T 2 A@py.gs = B) < CiNeu (T -+ 4 (Ty)™,

(ii) en|+~-~+nN7N+l(T: A(a,ﬂ),q;K - B) = CZNU/I/:}IS% {en;(E)Cien,(ﬂ)cjenk(Tk)CA}-
Js (@.p)

Here T;=T4, i=1,...,N, 57: (61, . .,.0§) are barycentric coordinates of («,B8), C, is a
constant depending only on 0, and C, is another constant that depends only on Il and

(a.B).

_ Proof. For i=1,...,N, take any k;>e,(T;) and consider the following norm on

3(A):
N

lla lIl = inf:kl lar | +...+kyllay l:a= "aia € A

i=1

Given any aez(a,ﬂ),q; s with ||all )47 < 1, by the Hahn-Banach theorem, we can find
a bounded functional fe(2(4))* such that f{a)=|llall| and || f|.4<k; for i=1,...,N.
According to (2), the norm of the restriction of f'to A, g) 4./ satisfies

. 0 On
WS NG gy g = 1KY =Ky
Hence
0 O 0 Oy
lla Il = @) < Cik}' ---k§ || @ ll@.p.gs< Ciky' -+ kY.

N
It follows that there is a representation a= > a of a with | a |4
< Gk KKy, 1<i<N. Thus i=1

a; c
6 0;—1 On
CLk kT

Uy,.

i

By definition of entropy numbers, there exists b{, ..., b} with 5,<2"~! so that

TU4) | Wb+ kihp}, 1 <i < N.
J=1

We can then choose j; in such a way that
I Ta;) = R k™t kYL Nlp< CIkT - kY
and so
I T(a) = (Cik ™" K)o + CE - RN [l <CINKY - kY

This yields the result

en oty N11(T: A p)gs — B) < CiNey, (T))" - e, (Tn)™.
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Inequality (ii) follows from similar arguments but now using (1) to estimate the
norm of the restriction of f't0 Ay g 4:k-

REMARK 3.2. Inequality (i) does not hold for K-spaces, as we show next by
means of an example.

Let IT={(0,0), (1,0), (0,1), (1,1)} be the unit square, let Z:{EQO,ZOO,KOO,ZOO},
B=1I,, and let T be the identity operator.

Lo oo
AN
N
AN o(a! )
N
A AN

o lo

Figure 2.1

Choose (o,8) as in Fig. 2.1, i.e. in the interior of the triangle (1,0), (0, 1), (1, 1).
Then, since ¢2  is n-dimensional, T : (i —{, 1is compact. But
T:(£5,, loo, Loos Zoo)(a,ﬁ),q;K — £ fails to be compact, because, accgrding to [4 Theo-
rem 1.5], (€3, €oo,s €oos Loo)(a p).q:k = Loo- In Other words, ,11Lngo en(T: A p gk = B) #0
although nlingo e (T: Ay — B)=0.

Next we turn our attention to the case when the operator starts from a degen-
erate N-tuple. This time the stronger result corresponds to K-spaces.

PROPOSITION 3.3. Let Il = P;... Py be a convex polygon with vertices P, let
(a,B)elntll and 1<g<oco. For any_Banach N-tuple B={By, ..., By}, any Banach
space A and any operator T : A — B, we have

(1) en|+~~~+nN7N+l(T: A — E_(a,ﬁ),q;K) =< ZCIZ\'Iem(Tl)al e enN(TN)ﬁNa
(i1) epopny-n+1(T : A = Bop)gs) <2C:N  max  {e, (T;)"e,(T))7 e, (Tr)"}.
{ij.,k}EPw.p)
Here T;=T:A—B,, i=1,...,N, §_= (01,. . ..0N) are barycentric coordinates of (a,B), C;
is a constant depending only on 6, and C, is another constant that depends only on IT
and (a,B).

Proof. Given any k;>e, (T;), there are {y,;,»}lsjéx,- C B; with 5;<2"~! and

TU) | JU, +ktds} 1 <i < N.

Ji=1

Hence v
Tunc Y (ﬂ{y_,’;+k,ug,}>.

I<ji<s \i=l

I<jn=<sn
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N .
Take wy,,... ;v € (1}, + kildg,} if the last set is non-empty. Then the number of the
=1

i=
W,y 18 at most 2" Fv=N "and given any aeld 4 we can find (jy....,jy) such that

N N

0; 0;

I Ta = wg,....j lwpgx< Cr [ I Ta = wg, . 15< 2C T [ A
i=1 i=1

where we have used (4) in the first inequality. This implies (i). Part (ii) follows by
using (3) instead of (4).

REMARK 3.4. Let I1={(0,0),(1,0),(0,1),(1,1)} be the unit square, let
A=bm) ==& :NElow= io: nl&,| < oo}, B = {£y, £1(n), £,(n), €,(n)} and let T

n=1
be the identity operator. Taking (e,8) as in Remark 3.2, it follows from [4, Theorem
1.5], that Bpg4s=01(n). Therefore lim e,(T: A4 — Byp)qs) #0 although
n—o0o

lim e,(T: A — B;) = 0. Consequently, estimate (i) does not hold in general for J-
n—0oQ

spaces.

REMARK 3.5. Proposition 3.1(ii) and Proposition 3.3(ii) yield Nikolova’s results
[10] mentioned in the Introduction, because lim e,(7T) = B(T).
n—oo

Compactness results in degenerate cases established by Cobos and Peetre in [8,
Section 4], and Cobos, Kithn and Schonbek [7, Proposition 4.5 and 4.6], follow also
from Propositions 3.1 and 3.3.
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