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Abstract

We use a theorem of Loxton and van der Poorten to prove the transcendence of certain real
numbers denned by digit patterns. Among the results we prove are the following. If k is
an integer at least 2, P is any nonzero pattern of digits base k, and ep(n) € [0, r — 1]
counts the number of occurrences (mod r) of P in the base k representation of n , then
'7(4'°) = J2T=oep)(")/r" i s transcendental except when t = 3 , P = 1 and r = 2 . When
(r, k - 1) = 1 the linear span of the numbers n(e^) has infinite dimension over Q, where P
ranges over all patterns base k without leading zeros.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 10 F 35, 11 A 63.

1. Introduction

This paper is concerned with proving the transcendence of certain real num-
bers denned using digit patterns. Specifically, let k be an integer at least
2, and let P be a pattern of digits base k. Further let ep{n) denote the
number of occurrences of P in the base k representation of n, allowing for
leading zeros as necessary (see [3], [5], or [13, Section 2]). If r > 2 is any
integer, we define the sequence e^p by

(1) e(p\n) = ep{n) (mod r), where 0 < ep
r\n) < r - 1.

With these definitions the following results hold.
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[2] Digit patterns and transcendental numbers 217

TRANSCENDENCE THEOREM, (a) / / P is any nonzero pattern of digits base
k, the real number

n=0

is transcendental, unless k = 3 , P = 1 and r = 2 (in which case tj(e^) =
2/3).

(b)Let ¥ = {P} be any set of patterns base k with the following properties:

(i) if P ef, P has no leading zeros (e.g. P ̂ OQ for some pattern Q);
(ii) for any pattern Q, there is a digit i (base k) so that Qi £ P.

If (r, k - 1) = 1, then the corresponding set of real numbers

{>j(4r)):PeP}u{l}

is linearly independent over Q. Moreover every finite sum

Per

is transcendental.

For example, if P = \j is the pattern consisting of the digit 1 repeated j
times, the set ¥ = {lj: j > 1} satisfies (i) and (ii) for any k > 2. Hence the
linear span of the numbers n(e(p) (for P e P ) has infinite dimension over
Q for any r > 2 for which (r,k-\) = \.

Our proof is based on the following theorem of Loxton and van der
Poorten (see [8, II, obs. 2.16], [11] and [12]).

THEOREM (Loxton and van der Poorten). Let r>2 be fixed and let {an}
be a sequence of integers taken from a finite set. If {an} is generated by a
finite automaton, then J^jlo anlr" ' 5 either rational or transcendental and is
rational if and only if the sequence {an} is ultimately periodic.

A sequence {an} , whose terms an are taken from a finite alphabet A, is
said to be generated by a finite fc-automaton, or more simply, is ^-automatic,
if the set of distinct sequences of the form

is finite (see [2, Section 3]). This condition is conveniently expressed in terms
of digit substitutions (see [2], [6], [7]). The sequence a = {an} is said to
be a fixed point of a uniform ^-substitution if there is a rule which replaces
each symbol of A by a string of k symbols of A, under which a is left
fixed. Then a is fc-automatic if and only if a is the image of a fixed point
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218 Patrick Morton and W. J. Mourant [3]

of a fc-substitution, that is, if and only if a is a sequence derived from a
fixed point by renaming or identifying letters of A .

We apply the Loxton and van der Poorten theorem to certain groups of
sequences that we investigated in [13]. These groups are defined as follows.
Let G be an abelian group and a — {a(n)} a sequence of elements in G.
Associated to a are the vectors

(3) Xq = (a(nkq), a(nkq + 1), . . . , a(nkq + kq - 1)),

for each q > 0, which we refer to as kq-segments of a. The group Tk(G)
is defined to be the set of all sequences for which a~\n)Xq is periodic, that
is, for which there is a positive integer M satisfying

(4) a~l(n)Xq = a~\m)Xq
m, for n = m (mod M),

for all q > 0, where the scalar multiplication is performed by applying
a~\n) to each component of Xq using the operation in G. If G is an
additive group we write this in the form

Xq - a(n) = Xq
m - a(m), for n = m (mod M).

The least positive M for which (4) holds is called the conductor of a, and
is denoted by M(a). The moduli M for which (4) holds are then exactly
the multiples of M(a).

In [13] it is shown that Tk(G) is a group under componentwise multipli-
cation (addition, if G is additive), and that the sequences for which M(a)
divides a power of k form a subgroup Ak(G).

An important example is the group rfc(Z). Its subgroup Afc(Z) is gener-
ated by the constant sequences and the pattern sequences ep, where P is a
pattern of digits base k (not all of which are zero), and ep(n) is defined as
above. The related sequences ep^ and ap defined by (1) and

(5) Qp(n) — Cr , Cr a primitive rth root of unity,

generate the respective groups A/fc(Zr) (additively) and Afc((£r)) (multiplica-
tively). These are the sequences to which we apply the Loxton and van der
Poorten theorem.

We first show (in Section 2) that for finite G the sequences in Tk(G) are
all A;-automatic. This fact allows us to apply the Loxton and van der Poorten
theorem to any sequence in Afc(Zr): for a given sequence e in Ak(Zr), the
number

(6) «^_\--(")
n=0
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[4] Digit patterns and transcendental numbers 219

is rational or transcendental. The sequences e for which t\(e) is rational
are exactly the ultimately periodic sequences in AA.(Zr), and these obviously
form a subgroup Hk(Zr) of Afc(Zr). A large part of this paper is devoted
to determining the subgroup Hk(Zr). In Section 3 we prove several lemmas
concerning the group of periodic sequences in Tk(G), for arbitrary abelian
groups G.

In Section 4 we determine all periodic sequences in Afc((fr)) which have
conductor 1 (Theorem 2). They form a cyclic subgroup of Afc((£r)) which

is generated by the sequence {C*ff(B)} , where a(n) is the sum of the digits
of n base k, and e is the smallest divisor of r with the property that
r\e(k - 1). Using this and a certain endomorphism of Afc((£r)) we show that
any periodic sequence in Ak((Cr)) has a period of the form bM(a), where
b\(r, k-1). If (r, k-1) = 1 this allows us to give a complete determination
of the groups Hk((Q) and Hk{Zr).

The results of Section 4 lead directly to the transcendence results in Section
5, which are mostly concerned with the transcendence of the numbers in (6)
denned using sequences in Afc(Zr).

We obtain limited results for the group Afc((fr)). We show that when P
is an arbitrary nonzero pattern base k with at least 2 digits, and ap(n) is
denned in (5), then at least one of the series

for 1 < / < r - 1,

is transcendental.
Finally, we show that if a e Ak({£r)) with M(a) = 1, so that a is k-

multiplicative in Delange's sense [9], then

n=o r

is transcendental if and only if a is not a power of the sequence
denned above.

We remark that our methods here, as in [13], are elementary. The Loxton
and van der Poorten theorem is the only non-elementary component of our
argument. We also refer the reader to Allouche [1], which contains results of
a related nature, and to Allouche and Shallit [4], which generalizes the notion
of an automatic sequence.

We are very grateful to J. P. Allouche and J. Shallit for their remarks
concerning an earlier version of this paper.
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220 Patrick Morton and W. J. Mourant [5]

2. Digit substitutions

Our first theorem shows that the sequences in Tk(G) are fc-automatic.

THEOREM 1. Let G be a finite abelian group and let a be any sequence
in Yk{G). Then for suitable q, the sequence {Xq} of kq-segments of a
is the fixed point of a k'-substitution, for some r>\. In particular, a is
k-automatic.

PROOF. Let a e Tk(G) with modulus M, let q > 0 and consider the
vector

For each q we construct a code vector Kq of length M which encodes
relations among the Xq , for n < M. We do this as follows: each entry of
Kq will be an element (i, g) of ZM x G, where 0 < i < M - 1 and g £G.

Letting Kq(n) denote the nth entry of Kq, we set Kq{0) = (0, i) where
i is the identity in G and Kq{ri) = (0, g) whenever Xq = gX%. If m is
the first index where Xq

m ^ gX% for any g £ G, set K (m) = (1 , i), and set
Kq(n) = (1 , g) whenever Xq = gXq

m . Continuing in this manner, we obtain
a vector Kq for which

(7) Kq(n) £ZMxG, for 0 < n < M - 1

and

(8) Kq(nl) = Kq(n2)(0,g) if and only if Xq
n> = gX^.

Since there are only finitely many vectors satisfying (7), there must be
q > 0 and r > 0 for which Kq = Kq+r. For this q and r , (8) shows that

(9) Xq
ni = gXq

2 if and only if Xq
n+

r = gX"*',

for nx, n2< M and g £ G. We shall show that the map

n ~* n ' — '

is equivalent to a digit substitution. First we note that this map is well-
def ined . S u p p o s e Xq

m = Xq. If m = m l , n = n l ( m o d M) a n d mi,nl <
M, then it is an easy exercise using (4), (9) and (4) again (with q + r for q)
to show that Xq+r = X^+r.

Now number the \G\ = m elements of G by g0, glt ..., gm_x and re-

place gi in Xq and Xq+r by i. Taken together, the entries in Xq give a

digit dn base mk , and the entries in Xq+r give a sequence of kr digits

dn !, dn 2 , . . . , dn kr base w . The sequence {dn} is therefore fixed by
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[6] Digit patterns and transcendental numbers 221

the substitution

(10) d n - + d n l , d n 2 , . . . , d n k r , f o r « > 0 .

T h e c o n c a t e n a t e d s e q u e n c e s Xq, Xq, ... , Xq, ••• = Xq+r, Xq+r,..., Xq
n
+r,

... coincide with the sequence a. Since the sequence a is the image of the
fixed point {dn} under the map dn —> Xq

n , a is ^-automatic.

COROLLARY. Let G = Zm and let P be a nonzero pattern base k of
length d>\. If ep

m\n) = ep(n) (mod m), where 0 < ep
m){n) < m, then

the sequence {Xd~1} of kd~l-segments of the sequence ep
m) is fixed by a

k-substitution.

PROOF. By the proof of the theorem we only need to show for the sequence
ep

m) that Xd~l -> Xd
n is well-defined, and for this it sufiices to prove that

(11) Xd~l = Xd
n~

x + e (mod m) implies Xd = Xd + e (mod m),

for all n{ and n2 , where 0 < e < m - 1. (We use additive notation since
G is an additive group.) Note that (11) holds if and only if

(12) ef\nxk
d-' + ;) = ef\n2k

d-x + j) + e (mod m)

for all j £[0,kd~x) implies

(13) 4m )("i^ + / ) = 4 m W ' ' + / ) + e (modm)
for all / e [0, kd). However the definition of e^ implies easily that

e}, \ntk +j) = eP \ntk +j) + eP \j )

where / = jk + s and 0<s<k-l. Thus (12) implies (13).

Alternate proofs of Theorem 1 have been given by Shallit (private com-
munication) and Morton [14].

3. Properties of periodic sequences in Tk(G)

The lemmas in this section form a basis for the determination in Section
4 of the periodic sequences in Afc(G) for various groups G.

Let G be any abelian group. It is easy to show that

LEMMA 1. The set of ultimately periodic sequences in Tk(G) is a subgroup
ofrk(G).

LEMMA 2. If a € Tk(G) is ultimately periodic with period p, then a is
purely periodic with period p. Every period of a is also a period of the
sequence X9 = {Xq} of kq-segments of a.
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222 Patrick Morton and W. J. Mourant [7]

PROOF. We have

(14) a~\n)Xq
n=cT\m)Xq

m, for n = m (mod M)

and

(15) a(n + p) = a(n), for n> N, for some N > 0.

It follows easily from (3) that

(16) K+P = K ifnk«>N.

Now choose q so that kq > N. Then for n, m > 1, the equation

a~\n + p)Xq
n+p = a-\m + p)Xq

m+p, for n = m (mod M)

implies by (16) that

a~\n + p)Xq = a~l(m + p)Xq
m, for n = m (mod M).

Hence (14) shows that

a{n)a~ (m) = a(n + p)a~ (m + p)

or

(17) a(m + p)a{n) = a(m)a(n + p),

for n = m (mod M) and n, m>\.

Given m > 1, choose n > N so that n = m (mod M). Then (15) and (17)
imply a{m) = a{m + p), if m > 1. If follows from (15) and (16) that

K=xm+P> for m > 1 and a lU > 0.

Finally, since M > 1 we see from what we have just shown that

fl-1^ = a-\M)Xl
M = a-\hf + p)Xx

M+p = a-\p)Xl
p.

Considering the second components in the first and last terms of this equality
gives easily that a(0) = a(p). This shows that (15) and (16) hold with N -0
and proves Lemma 2.

LEMMA 3. If a e Tk(G) and a is periodic with least period p, then p =
bM{a) where (b,k) = l.

PROOF. The conductor M(a) is the least positive integer M for which
(4) holds, that is, for which n = m (mod M) implies

(18) a(nkq + j)a(m) = a(mkq + j)a{n), for all j with 0 < ; < k" - 1.

This does hold if M = p, and therefore M(a)\p.
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[8] Digit patterns and transcendental numbers 223

Now let M be any modulus for a for which p\Mkq for some q > 1.
Taking j = 0 and m — n + M in (18) gives

a(nkq)a(n + M) = a{nkq + Mkq)a(n) = a(nkq)a(n),

which shows that a(n + M) = a(n) for all n > 0. Therefore M is a period
o f a a n d p \ M . H e n c e p \ M k q i m p l i e s p \ M , f o r a n y q > \ . \ f p = b M ( a ) ,
then a straightforward argument shows that (b, k) — 1.

LEMMA 4. If a e Ffc(G), then X1 = {Xx
n} e Tk(G

k), with M(Xl)\M(a).

PROOF. Define Xn = Xx
n and Xn = (Xnk>Xnk+l,... , Xnk+k_x). Then

*„ e Gk , and * ' e Tk{Gk) if and only if

(19) x;lXn=X^xXm forworn (mod M)

for some M. (See [13, Lemma 2].) We show this holds with M = M =
M{a). By definition of Tk(G), the congruence n = m (mod M) implies
that

(20) Xn = a{n)a-\m)Xm

and

Xnk+j = a(nk+J)a~i(mk + J)Xmk+j> fOT0<j<k-L

Hence

x;lXn = a-l(n)a(m)X-l(...,a(nk + j)a-l(mk + j)Xmk+j,...)

from (20). Since M(Xl) is the least modulus M for which (19) holds, we
have M(Xl)\M(a).

COROLLARY. If a e Tk(G), then X" = {Xq} e Tfc(G
fc?) for q > 1, and

M(Xq+l)\M(Xq) for q>0. (Note that X° = a.)

This follows by induction from Lemma 4.
Let pq = p(Xq) be the least period of the sequence Xq = {Xq}, if it

exists, for q > 0.
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LEMMA 5. If a eTk{G) with least period p = p0 then X" is periodic for
all q>0 and

(a) Pq = {pq. k)pq+l ,for q>0, and
(b) p = (p,k")pq.

PROOF. TO prove p = {p, k)px, note that p{ is the least integer for which
Xl

n+p = Xl
n for n > 0. This holds if and only if

(21) a((n + pjk + j) = a(nk + j), for 0 <j < k - 1, n > 0.

Equation (21) is satisfied if and only if pxk is a period of a. Hence px is
the least positive integer for which p\pxk. By Lemma 2, px\p, so px is the
least positive integer for which (p/px)\k, that is, p/px = (p, k). Applying
the same argument to Xq and X9+1 in place of a and X1 proves (a). The
proof of (b) is similar.

To summarize, if a eTk(G) is a periodic sequence and we apply Lemma

3 to the sequence Xq e Fk(G
k ) , we see that

Pq = bqMq, q>0,

where {bq, k) = 1 and Mq = M{X9). (Note that Mo = M(a) and b0 =
b, as defined in Lemma 3.) Further, Lemma 5 shows that Pg+l\pq and
(pq/Pq+\)\k- By the Corollary to Lemma 4,

(22) PqIPq+x = (bqlbq

where the first and third quotients lie in Z, and the second involves none of
the prime factors of k.

Certainly each of the sequences p , b and M is constant past a certain
point.

LEMMA 6. If a £ rk(G) is periodic and M{a) divides a power of k {that
is, a e Ak(G)), then b = bo = bq for q > 0. If pq+l = pq then the sequence

X9 has conductor 1 in Tk(G
kq), and (pq,k) = l.

PROOF. From (22), bq = bq+l, for q > 0, since pq/pq+l and Mq/Mq+l

are products of prime factors of k and {bq, k) = (bq+l, k) = 1. Further-
more if pq = pq+l, then by Lemma 5, pq and Mq are relatively prime to k.
But M divides M{a), which divides a power of k, so Mq = 1. Therefore

the sequence X9 has conductor 1 in Fk(G ) and period pq = bq which is
prime to k.
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[10] Digit patterns and transcendental numbers 225

We now focus on sequences with conductor 1. Suppose a e Ak(G), where
M(a) = 1. Then

Xn = a(n)a~l(0)X0, for n > 0.

Multiplying a by a~l(0) we can assume a(0) = 1. This gives Xn = a(n)X0 .
Writing out both sides of this equation we see that

(23) a(nk + j) = a{n)a(j), for n > 0, 0 < j < k - 1.

Now write n = jtk' + jt_lk'~i H \- j 0 . Then using (23) repeatedly gives

a(n) = a{jtk'~l +••• + ; , ) a t / 0 ) = a{jt)a{jt_x) • ••a{jx)a{jQ).

We have thus proved the following.

LEMMA 7. / / a e \{G), M(a) = 1, and a(0) = 1, then a(n) =

n'i-oaUi)> where n = J,jt-i •••Jo (base fc)•

The sequences described in Lemma 7 are called k-multiplicative sequences
by Delange [9]. Combining Lemmas 6 and 7 we see that for every periodic
sequence a e Ak(G) there is a 4 for which (X*)"1 X9 e Tk(G

k') is k-
multiplicative.

4. Periodicity results

We first determine the periodicity of sequences defined by patterns con-
sisting of single digits. We use this in Theorem 3 to describe the possible
periods of periodic sequences in Ak((Q), where £ is an rth root of unity.

THEOREM 2. Let i be a digit base k and a((n) = Ce'(n), where C = Cr is
an rth root of unity. If S is a non-empty set of nonzero digits base k, and

(24) «,

where r does not divide er then as is not ultimately periodic, unless as(n) =
Cx<J{n) where a = e, + 2e2 + • • • + {k - l)ek_{, and r/(r, e,)|(A: - 1). In this
case as has least period r/(r, e,), and S = {/|i ^ 0 (mod r/(r, e{))}.

PROOF. Assume as is ultimately periodic and that p is the least period of
as. We know M(as) = 1 in Tk({Q) because the patterns in S all have length
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226 Patrick Morton and W. J. Mourant [11]

1. Lemmas 2 and 3 show that as is purely periodic and that (p, k) = 1.
Hence

(25) as{n + mp) = as(n), for m, n > 0.

I. Assume mp has j as its last digit. If i is any digit for which i+j<k,
then by Lemma 7,

as(i + mp) = as{mp)a~\j)as{i + j) = aj\j)as(i + ;).

From (25) with n = i it follows that

(26) as(i + j) = as(i)as(j).

In fact this holds for any i, j e [0, k - 1] for which i + j<k. To see this
we need only check that any j is the last digit of mp for suitable m. This
holds whenever mp = j (mod k) and since k and p are relatively prime,
this congruence has a solution m for any j e [0, k - 1].

II. Assume mp has 0; as its last two digits. If /' is any digit for which
i + j >k, Lemma 7 gives

as(i + mp) = as{mp)a~\j)as{\)as{i + j-k)

From (25) with n = i we see that

(27) as(i + j - k) = as(i)as{j)a;\l).

Again, (27) holds for any j , since the congruence mp = O-k + j (mod k2)
is always solvable.

We now define a: Zk -> (f) by a(i) = as(i), 0 < i < k- \. There are
two cases.

Case A: 1 £ 5 . By (24), a,(l) = 1. Here (26) and (27) imply that a
is a homomorphism. But a(l) = 1, so the kernel of a contains all of Zk .
Hence as(i) = 1 for all / e [0, k - 1], 5 is empty by (24), contradicting
our assumption.

Case B: U S . Here as(l) = C*1 # 1. Now (26) implies by induction
that as(j) = C;e' for ; e [0, fc - 1]. For general n = ;,>,_, • • -j0 (base fc),
Lemma 7 gives

_ rU,+Jl-i+-+J(S)el _
~ s — s >

where <r(n) = ;, + ;,_, + •• • + j o = el(n) + 2e2(n) + --- + (k- l )e f c_,(«). By
assumption, a(n)el has least period p (mod r). With g = (r, e , ) , this says
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[12] Digit patterns and transcendental numbers 227

ff(n) has least period p (mod r), where r = r/g. We write as{n) = Cf(n),

where Ci = Cx is a primitive r'th root of unity. Using (27), we have

1 = as(0) = as(k - 1 + 1 - k)

= as(k-i)as(i)a;\i) = t;{k-l)e> = i;k
l-

1

which implies that r = r/(r, e{) divides k - 1.
From the fact that a{n) = n (mod r), if r divides k - 1, it follows that

the least period of a{n) (mod r) is r and hence p = r = r/(r, e{). The
characterization of the set S follows from the formula

<

COROLLARY 1. The only k, i, and r > 2 for which ai = C,e> can be
periodic are k = 3, i = 1, and r = 2. In this case e{ (base 3) is periodic
(mod 2) with period 2.

PROOF. If at = C{ is periodic, then Theorem 2 implies that / = 1 (so
that el ^ 0) and

ex(n) = a(n) (mod r) , for n > 0.

Thus we have

(28) 2e2(n) + --- + (k- l ) ^ . , ( n ) = 0 (modr) , for « > 0.

Note that fc > 3, since fc = 2 would give r = 1. Setting n = 2 in (28)
gives 2 = 0 (mod r ) , and so r = 2. It now follows easily that k = 3 , for if
k > 4, putting n = 3 in (28) gives 3 = 0 (mod 2).

The following additive form of Theorem 2 will be useful.

COROLLARY 2. Let S be a non-empty set of nonzero digits base k, and
es-J2 eiei (mod r) > forn>0,

i€S

where e, ^ 0 (mod r). Then the sequence es is not ultimately periodic
(mod r) unless es(n) = exa(n) (mod r) and r](r, ej)|(fc - 1).

COROLLARY 3. If S is a non-empty set of nonzero digits base k, and et

is a nonzero integer for i e S, then the integer sequence

ies
is not ultimately periodic.
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PROOF. Let r be a prime larger than max(/c, e , , . . . , £k_x). If es is ulti-
mately periodic, then es is ultimately periodic (mod r ) . This is impossible
by Corollary 2, since r > k - \ .

THEOREM 3. Let £ be an rth root of unity. If a e Afc((£)) is ulti-
mately periodic, then a is purely periodic with period equal to bM(a), where
b\(r, k - 1). / / (r, k - 1) = 1, then a has period M{a).

PROOF. Assume a e Ak((Q) is ultimately periodic, and a(0) = 1. Then

a is purely periodic, and for some q, Xq = {Xq
n} e Ak({Qk ) is periodic

with period p , where (p , k) = I, and M = M{Xq) = 1, by Lemma 6.
Set

(29) Yn = {Xl)-'X9
n.

Then M{{Yn}) = 1, Yo is the identity in G = {C.f, and {Yn} has least
period pq.

Now let (p{\ G —» (Q be the projection homomorphism of G which takes
a vector to its rth coordinate, and define the sequence a; by

Since <pt: G -> (C), a, e ^((C)) by results of [13] (equations (34) and
(34')). It is easily checked that M(a() = 1 and that a, is periodic with

By results of [13] (see Theorem 7), M(a() = 1 implies that a, is a product
of pattern sequences a , where j runs over a set S of digits base k:

yes1

Since a ; is periodic, Theorem 2 now gives that p{ai)\(r, k - 1). But since

we have /74 = 1. c. m.[/?(aj), and therefore />9|(r, A; - 1). It follows that
pq = bq = b, by Lemma 6, and so Lemma 3 gives that p(a) = bM(a), where
6 | ( * l )

REMARK. Exactly the same proof shows that any ultimately periodic se-
quence in Afc(Z) is purely periodic with period equal to M(a), a power of
k, and that a periodic sequence a in Afc(Zr) has a least period of the form
bM(a), where 6 | ( r , fc - 1).
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In [13, Theorem 8] it was proved that

(30) ep = e0P + elp + --- + e{k_l)p,

where P is a pattern base k and iP is the pattern consisting of the digit
i followed by P. The following theorem complements this result and gen-
eralizes [13, Theorem 10]. We recall from [13] the notation v(P), which
denotes the value of P considered as an integer base k.

THEOREM 4. If P is a nonzero pattern base k of length d and Pi is the
pattern consisting of the pattern P followed by the digit i, then the sequence

hP — ep-ePQ-epl
 ep(k-\)

in Afc(Z) is periodic with period kd and we have

(3D M») = (° ""*"<" >
P \ 1 ifn = v(P) (mod kd).

The sequences hp together with the constant sequences generate Hk(Z),
the subgroup of periodic sequences in Ak(Z). If (r, k - 1) = 1, the sequences

i (r) (r) (r) (r) (r)
p — ep epQ epi

 ep(k

generate Hk(Zr).

PROOF. Equation (31) follows from the fact that the occurrences of P
in the fc-adic expression for n coincide with the occurrences of Pi for
0 < i < k - 1, with the possible exception of an occurrence of P at the end.
The latter can occur if and only if n = v(P) (mod kd).

Now let a be any sequence in Hk(Z). By the remark following Theorem
3, a is purely periodic, with period equal to M(a) = kd for some d. It
then follows easily from (31) that

where P runs over all nonzero patterns base k of length d. Exactly the
same argument works for the group Hk{Zr).

REMARK. If P = 0*, the pattern consisting of d 0's, then in place of (31)
we have

f 0 if n = 0 (mod kd),
«n. («) = < i0 \ - 1 if « ^ d

Let £ ^ 1 be any rth root of unity for which (r, k - 1) = 1 and let
ap(n) = CeF(n) • We define

(32) bP{n) = ap{n)a~l{n)a~l{n) • • • a'Plk_x){n).
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By (31)
/ 1 ifn^v(P) (modkd),

Op n = < .
p [C if n = v(P) (modkd).

COROLLARY TO THEOREM 4. If (r, k - 1) = 1 the sequences bp, together
with the constant sequences in Ffc((£)), generate the subgroup Hk((Q) of
periodic sequences in Ak((Q).

The proof is analogous to the proof of Theorem 4.
The next theorem extends Corollary 1 of Theorem 2 to patterns of length

greater than 1.

THEOREM 5. Let P be a nonzero pattern of digits base k having length
'p

r) nor apd > 1. If C is an rth root of unity then neither ep
r) nor ap = (C)ep is

periodic.

PROOF. We show that ep is not periodic (mod r), where P has d digits.
If ep is periodic (mod r), Theorem 3 implies that ej>r) is purely periodic
with period bM{e{

p
r)), where b\k-l. From [13] we know that M{eP

r))\kd~l.
Therefore Lemma 5(b) implies that the period pd_l of the sequence X ~x =
{Xd~1} is b, and hence that k - 1 is a period of Xd~x. But since

Xd
n~

x = (ep
r\nkd-l),ep

r\nkd-1 + 1), . . . , e(?{nkd~x
 +kd~l - 1)),

we have that

for n > 0 a n d 0 < ; < kd ' - 1.

Case 1. If the base k representation of P is 0p2p3 •• -pd , choose n and
;' with base k representations

n = 1 1 • • • 10, with d + 1 digits, and j = P2PT,---Pd-

Then the base k representations of nk ~x+j and (n + k-l)k ~l+j are,
respectively,

1 1 • • • 1 0 / > 2 / > 3 • • • p d a n d 1 1 • • • \ { k - l ) p 2 p 3 • • • p d .

Thus
ep(nkd~l + j) = eP((n + k- l)kd~x + j) + 1.

Hence (33) cannot hold.
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Case 2. If the base k representation of P is PXP2P3 • • -pd , with pl > 1,
choose n and j with base k representations

n = 1 O-'-OO/jj, with d + 2 digits, and j =p2p3---pd-

Then the base k representations of nkd~l+j and (n + k - l)kd~l + j are,
respectively,

I0---00plp2p3---pd and 1 0 - •0l(p1 - l)p2p3 •• -pd.

The same conclusion holds as in Case 1 unless \{px - l)p2p3 • • -Pd_x = P •
In this case replace j by j = j + 1 if prf = 0 or by / = j - 1 if pd > 1.
Then clearly

/id— 1 . ' \ / / i * \ * d— 1 ./v .

ep(«/c + ; ) = ep((/J + Ac - 1)K + j ) - l .
Hence (33) cannot hold in this case either, and ep cannot be periodic
(mod r).

LEMMA 8. If P is any pattern base k. Then

The same relationship exists between h\p and hp^.

This is immediate from (30) and the definition of hp (see Theorem 4).

LEMMA 9. The sequences ep^, for patterns P (base k) with no leading
zeros, are independent in AA.(Zr).

PROOF. We have to show that

p

implies all cp = 0 (mod r). But this follows easily from the fact that ep{n) =
1 if n = v(P) and ep(n) = 0 if n < v(P). (See also the argument in the
proof of Theorem 9 in [13].)

DEFINITION. Fix k and let P = {P} be a set of nonzero patterns base k
with no leading zeros. Then P is called a a set of independence if it has the
property that for all patterns P base k there exists a digit i (base k) so
that Pi i P .

THEOREM 6. If (r, k - I) - 1 and P is a set of independence then
{ep^; P G P} is a set of independent elements in the quotient group

Ak(Zr)/Hk(Zr).

https://doi.org/10.1017/S1446788700034200 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034200


232 Patrick Morton and W. J. Mourant [17]

PROOF. We have to show that

(34) ^2 cpep
] e Hk(Zr), cpeZr,

P6P

implies cp = 0 (mod r) for all P e P . Assume (34) holds. Then by Theorem
4 and Lemma 8 we can write

P€V Q

where the sum is over all patterns Q base k with no leading zeros, and only
a finite number of dQ are nonzero (mod r). Rewriting the right side of
(35) gives

per Q Q

where Q = Q'i for some / . Suppose some dQ ^ 0 (mod r). By assumption
on P there is a digit j base k such that Qj $ P. Moreover there exist
digits jl(= ; ) , ; 2 , • • • , j n , for all n > 0, such that Qn = QjJ2•••jn $. P.
Thus Lemma 9 gives that dQ -dQ = 0 (mod r), for all n > 1. Therefore
dQ = dQ = •• • = dQ ^ 0 (mod r) for all n, and so there are infinitely
many nonzero dQ 's. This contradiction shows that all dQ = 0 (mod r) in
(35), which implies all cp = 0 (mod r).

5. Transcendence results

Theorems 7 and 8 in this section are immediate consequences of Theorem
1, the results of Section 4, and the Loxton and van der Poorten theorem.
Theorem 7 is concerned with sequences defined by single digit patterns, while
Theorem 8 gives a necessary and sufficient condition for the number n(e) in
(6) to be transcendental, where e is a sequence in Ak(Zr) with (r, k-l) = 1.
From Corollary 2 to Theorem 2 we have

THEOREM 7. Let S be a non-empty set of nonzero digits base k, and

where es(n) e [0, r - 1] and e( ^ 0 (mod r). If either
(A) (r, k - 1) > 1 and es{n) ^ ea(n) (mod r) ./or any integer e

(mod r) (vwY/z a ay in Theorem 2), or
(B) (r, fc- 1) = 1, then

n=0
a transcendental number.
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REMARK. If 1 £ 5 , then condition (A) holds.

COROLLARY. / / e([\n) is defined as in (1) with P = i, a digit base k,
then unless (k, i, r) = (3, 1, 2) the number

(37)

is transcendental. If (k, i, r) = (3, 1, 2), then

oo{n) - v 1

THEOREM 8. If e £ Afc(Zr) w/iere e(«) e [0, r - 1], then the number n{e)
defined as in (6) is transcendental if e £ Hk(Zr) and rational if e e Hk(Zr).
If (r, k - 1) = 1 then e e ^ ( Z r ) if and only if e can be expressed as

where hQ = eQ-eQ0-eQl
 eQ{k-\) > for Patterns Q base k, all having

the same length.

COROLLARY. If P is any nonzero pattern of digits base k having length
at least 2, and if e{p{n) is defined as in (1), then the number

n=0

is transcendental.

This corollary follows immediately from Theorem 5.

THEOREM 9.1ff is a set of independence for the base k, and (r, k - 1)
1, then the set

{n(ei, ): P e P} U {1}

is linearly independent over Q. Moreover every finite sum

E c nip \ r G- (TT)

«transcendental.
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PROOF. Assume there is a dependence among 1 and the n(ep^):

(38)

where, without loss of generality, cp e Z for P e P , not all cp = 0 (mod r),
and c e Q . Rewriting (38) gives

(39)

By Theorem 1, each of the sequences ef1 is fc-automatic, and so the sequence

cpep
}

P6P

is also ^-automatic. Note that the values a(n) do not necessarily lie in
[0, r - 1], but that they are from a finite set. By Theorem 6, a is not peri-
odic (mod r) and therefore is not a periodic sequence. The Loxton and van
der Poorten theorem now shows that (39) is impossible. The transcendence
statement follows in the same way.

We now prove the following multiplicative result.

THEOREM 10. Let P be an arbitrary nonzero pattern base k with at least
2 digits, and let ap(n) = {C,)ep(n), as before, where £ is a primitive rth root
of unity. Then at least one of the series

(40) E ^ ? 1 ' Ml<i<r-l,
n=0

is transcendental.

PROOF. The key to the proof lies in relating (40) to the number

r
n=0

and appealing to the corollary to Theorem 8. In general, suppose a(n) =
Ce{n), where e(n) e {0, 1, . . . , r - 1} . Then

r - l

<?(«) = X^.a'(n)
(=0

for suitable constants c, e Q(£) (independent of the particular sequence
e{n)), as is easily seen by replacing e(n) by its r possible values 0, . . . ,
r - 1 and solving the resulting linear system, whose determinant is a nonzero
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yandermonde determinant. Hence

~ co
r

r" ~ co r _ \ + 2^ ci 2^ r"
n=0 i=l n=0

Since the number on the left is transcendental, at least one of the numbers
an the right is transcendental. This proves Theorem 10.

COROLLARY. If r = 2 or 3 in Theorem 10, then Y^=oap{n)lr" is tran-
scendental.

Our last result deals with sequences of the kind considered in Theorem 2.

THEOREM 11. If as is defined by (24), then

(«•> E ^
n=0

is transcendental if and only if as does not have the form as = Cl°, where
Ej ^ 0 (mod r), r/(r, e{)\(k - 1), and a is the sequence defined in Theorem
2. Otherwise (41) represents a number in Q(C)-

PROOF. This is a consequence of [10, Theorem 1]. To see this, let

n=0

Since M(as) = 1, it is clear that as(nk + j) - as(n)as{j), for 0 < ;' < k - 1,
by Lemma 7. Thus

j=0 n=0 j=0 n=0

where p{z) is a polynomial of degree k - 1. Since the constant term of
p(z) is as(0) = 1, p(0) / 0. Further, the leading term of p{z) is as(k - 1),
so p{z) has no rational roots other than ± 1 , since its constant and leading
terms are roots of unity and therefore units in the ring Z[£]. This shows
that any positive rational number a < 1/2 is admissible in the sense of
[10] (taking Tz = zk and A{z) = p{z) in [10]). By Theorem 1 of [10],
/(1/r) is transcendental if and only if f(z) is a transcendental function.
Since the coefficients of / (z) are from a finite set, Szego's theorem (see
Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, page 315) implies that
f(z) is transcendental if and only if the coefficient sequence {as{n)} is not
ultimately periodic. Theorem 11 now follows from Theorem 2.
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