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CONVOLUTION PROPERTIES OF A CLASS OF BOUNDED
ANALYTIC FUNCTIONS

Zou ZHONGZHU AND SHIGEYOSHI OWA

Let A be the class of functions f(z) which are analytic in the unit disk U with
/(0) = /'(0) - 1 = 0. A subclass S(A, M) (A > 0, M > 0) of A is introduced.
The object of the present paper is to prove some interesting convolution properties
of functions f(z) belonging to the class S(A, M). Also a certain integral operator
J for f(z) in the class A is considered.

1. INTRODUCTION AND LEMMAS

Let A denote the class of analytic functions of the form

71=2

in the unit disk U = {z: \z\ < 1}. We denote by S*(p) and K(p) the subclasses of A
whose members are starlike and convex of order p (0 ^ p < 1).

For a function f(z) £ A, we say that f(z) is in the class S(A, M) if and only if it
satisfies the condition

\f(z) + Xzf"(z)-l\<M (z€U)

for some A (A > 0) and M (M > 0).
In the present paper, we prove some convolution properties of functions f(z) be-

longing to the class S(A, M). Some inclusion relations between S(A, M) and other
subclasses of A are obtained. We also obtain some new sufficient conditions for
f(z) G S*(p). Finally, we discuss a class of certain integral operators on A.

We need the following lemmas to derive our results.
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LEMMA 1. Let A ̂  0 and M > 0. If p(z) is analytic in U with p(0) = 1 and
satisfies

(1)

til en we have

(2)

(3)

and

W

w
if*
z Jo

h Azp'(z)

, ) - l | <

[t)dt - 1

-Viz) <

- 1 | <

M
1 + A

<
<2(1

(3
2(1 +

M (z

M

+ A) (

+ 2A)M
A)(1+2A)

e u),

U).

Inequalities in ("2̂ ) and (3^ cannot be improved.

PROOF: Let us define the function p(z) by

M
(5)

where to(z) is analytic in U with to(0) = 0. We wish to show that |'
z S U. If this is not true, then there exists a point z0 G U satisfying

max \w(z)\ = |io(zo)| = 1.

Then, by Jack's Lemma [1], we can write

zow'(zo) = kw(z0),

where k is real and k ^ 1. It follows that

, kM

and
\P(Z0)-

< 1 for all

This contradicts the condition (1), and hence we conclude that |w(z)| < 1 for all z £ U.
Therefore, by using (5), we know that (2) holds true.

In view of Schwarz' Lemma and (2), we have

M
1*1 (* 6 U),
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and

This

hence

implies

Further

z
p{t)dt — z

that

,let

1 fz

- / p(t)dt - 1
2 Jo

^ J
M

^ 2 ( 1 +A)

M
1 + A

tdi

eu)

M hi2

2(1 + A ) 1 " 1

(6)

where ia(z) is analytic in U with tw(0) = 0. We can prove that \w[z)\ < 1 for all
z £ U. In fact, if this is not true, then using the same way as in the above there exists
a point 2 O e U (z0 i1 0) such that |w(zo)| = 1 and zow'(zo) = kw(z0), where k ^ 1.
From (1) and (6), we obtain

(3 + 2A)A(fe1 /"z°
- / V{i)dtzo Jo

that is,

fz°

Jo
- I p(t)dt-l +

0

Hence, we have

if:
zo 7o

3 + 2A

- 1

2A)

3 + 2A
2(TTA)

(1 + A + k\)Mw(zo)

M-M =
M

2(1 + A)'

This contradicts (3) and hence \w(z)\ < 1 for all z e U. This follows (4) with (6).

Since the function po(z) = 1 + (Af/(1 + A))z satisfies the condition (1), we see

that the inequalities in (2) and (3) cannot be improved. Thus we complete the proof of

Lemma 1.

Let An = (a%j)nn denote the real symmetrical matrix of order n. Jian Huaiyu has

showed that \An\ ^ 0, if An satisfies the conditions:

(i) aij ^ aij+1 ^ 0 (i = 1, 2, 3, ...,n;i < j < n - l ) ,
(ii) ai+n+i^au (» = 1, 2, 3, . . . , n - 1),

(iii) dij^ai-xj (i = 1, 2, 3, ...,n;i < j < n ) ,
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and

(iv) dij - o , ; + i ^ a ;-! ,• - at_! j+1 (i = 1, 2, 3, . . . , n; i ^ j < n - 1).

In fact, the case a n = 0 is trivial. If a n > 0, then we have

0 a22

0 a'

aln

a'2n

X2n

where

~ *' J = !> 2> 3> • • • > «)•

By the hypothesis, we see that

a22 a'2n

a n 2 • • • a *

is a real symmetrical matrix of order n — 1 and satisfies the conditions (i) - (iv). Hence
we can prove that |^4n| ^ 0 by mathematical induction. U

LEMMA 2 . Let b0 > 0, 6n > 0, and 6n_! -bn^bn- bn+1 ^ 0, n = 1, 2, 3, . . . .
If

then Re (p (z ) )>0 (*eU) .

PROOF: We can write

n = l

n = l

with cn = 2bn/bo (n = 1, 2, 3, . . . ) . Adopting the convention that Co = 2, c_n = cn

(n ^ 1), we have that

/ CO C\ C2

c\ Co C\

\ Cm Cm-1 Cm_2

cm \
cm_i
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is a real symmetrical matrix of order m + 1, and satisfies the conditions (i) - (iv).
Hence we can prove that Am+i is a semi-positive definite matrix by the mathematical
induction.

Since, for m = 1, 2, 3, . . . and A* G C (0 ^ k < m), we have

A,
fc=0 9=0

A =

A o \

Ai

and hence 0; this implies that

(*€U) ,
n = l

so Lemma 2 is completed.

EXAMPLE. If A ^ 0 and

n = 2
— A + nX

then

(7) Re
4A2 + 3A + 1

U).
2(1 + A)(1+2A)

PROOF: Let b0 = (1+ 3A)/((1 + A)(l + 2A)) and bn = 1/(1+nA), n =
1, 2, 3, Clearly, the sequence {6n}o° satisfies the conditions in Lemma 2, and
hence

1+3A
(8) Re

2A) zn\ > 0 u).
The conclusion follows from (8) at once.

2. THE CLASS S(A, M)

Let a function f(z) be in the class S(A, M). Setting p(z) = f'(z) in Lemma 1,
by (2) and (3), we obtain

(9)

and

(10) ^^- - 1/(*)

M

M

2(1+A)

(*eu)

{z e u),

https://doi.org/10.1017/S0004972700036960 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036960


14 Z. Zhongzhu and S. Owa [6]

respectively. Prom (10), we see that S(A, M) is a class of bounded analytic functions
in U . If M ^ 1 -|- A, by (9), S(A, M) C C, the usual class of close-to-convex functions
in U . From (9), we also obtain

P R O P O S I T I O N 1 . Let 0 ^ A2 < \\ and Ai > 0 . Then

S(Alt M) C S(A2, M) .

THEOREM 2 . Let f(z) G S(A, M) and g(z) G A with Re{g(z)/z} > 1/2
(z G U ) ; then h(z) = ( / * g)(z) G S(A, M), where (f * g)(z) denotes the convolution
(or Hadamard product) of functions f(z) and g(z).

PROOF: According to Herglotz Theorem, we have

where /x is a probability measure on the unit circle T. Since

h'(z) + \zh"{z) - 1 = (/'(*) + Xzf(z) - 1) *

we obtain

fc'(z) + Azft"(z) - 1 = / (f'{rz) + \rzf\rz) -
JT

Moreover, we have

\h\z) + Xzh"{z) - 1| < / Md/x(T) = M,
JT

which shows h(z) G S(A, M). D

COROLLARY 1 . Let f(z) G S(A, A/), g(z) e S(A, M) and M < 1 + A. Tien
h(z) = ( / * g)(z) G S(A,M) , that is, S(A, M) is closed for the convolution (or
Hadamard product) when M ^ 1 + A.

PROOF: By means of (10), we have Re{/(z)/z} > 1/2 (z G U ) , and hence the
conclusion immediately follows from Theorem 2. U

Next, we derive

THEOREM 3 . Let f(z) G S(A, M), g(z) e S(A, M) , and h(z) = (f* g)(z).

(i) If M < 1 + A, then h(z) G S*(0) and satisfies

zh'(z)
- 1 < 1 (z G U).

h(z)

(ii) If either A ̂  1/3 with M < (1 + A)/%/2, or 0 < A ̂  1/3 with M

V/2A(1 + A), then ft(z) G K(0).
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PROOF: Defining the functions f(z) and g(z) by f(z) — z+ ^ anzTl a11^ 9{z)
n=2

oo

z + Y, &n2™, respectively, we have
n=2

n = 2

n=2

(i) From (9), we obtain that

(11)

Hence

(12)

Similarly, we have

(13)

By means of the Cauchy-Schwarz inequality, we obtain

(14)

n = 2

n = 2

oo \ •*/ * / oo
I | 2 1

1/2

n = 2

Therefore, we know that h(z) G S*(0), so h{z)/z ^ 0 ( J £ U ) . It follows from (14)
that

or
n = 2

2 (» - !) \a"
n=2

This implies that

-Ei
n=2

n = 2 n = 2

(* e u),
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that is, that

*•(,) - Mf) h(z)
(z G U).

Consequently, we obtain that

Hz)
< 1 (* e u).

(ii) Since /(z) G S(A, M), we have

n = 2

< M G U),

and hence

n(l - A + n\)anz
n-1

n=2 n = 2

Since A > 1/3 with Af < (1 + A)/\/2, or 0 < A < 1/3 with M < y/2X(l + X), we can
prove that (1 - A + nX)2 ^ nM2 for every n ^ 2, and hence by (15) we have

n = 2

Similarly

Therefore, we see that

n = 2

1/2 1/2

< L

n = 2

This implies that h(z) belongs to the class K(0).

From the proof of (i) in Theorem 3, we have

COROLLARY 2 . If

D

71=2
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is in the class A with

then n = 2

zF'(z)
F(z)

- 1 < 1 e u).

Letting A — M — 1 — 0 in (i) of Theorem 3, we have

COROLLARY 3 . Let f(z) G A and g(z) G A with \f'(z) - 1| < 1 (z G U) and
\gl{z)-l\<l ( zGU) . Then M')

- 1
h(z)

< 1 (z G U).

THEOREM 4 . Let /(z) e S(A, M).

(i) If M ^ 2(1 + A)/v/5, then f(z) G S*(0).
(ii) HM^ (1 + 2A)/2, then \zf'(z)/f(z) - 1| < 1 (2 € U).

(iii) If M < 2(1 + A)(l + 2A)/(5 + 6A), then f(z) G S*(l/2).

PROOF: (i) Since M/(l + A) < 2/\/5 < 1, in view of (9), we obtain Re{/'(z)} >
0 (z<EU),and

By (10), we have Re{f(z)/z} > 0 (z G U), and

arg

Noting that

we have

arg

sin

«/'(*)

in ( sin"1 ( —= ) + sin"1 ( —= ) ) = 1 ,

<|arg/ ' (z) | argJ o (* e u),

which implies f(z) G S*(0).
(ii) Setting p(z) = f'(z) in Lemma 1, we have by (4)

/(*) 3 + 2A
4(1 +A) (* e u).
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Since (10) gives

/(*) 1 + 2A 3 + 2A

4(1+A) 4(1 +A)
(z G U),

we have

which proves

/(*) /(*) (z G U),

< 1 (z£ U).

(iii) It is sufficient to prove that

*/'(*)
/(*)

- 1
zf'(z)
/(*)

Since (10) leads to

/(*) 4(1

5 + 6A

(z € U).

(z G U),

we see that f(z)/z ^ 0 (z G U). Therefore, we only need to show that

(16) < \f(z)\ (z G U).

With the aid of (4) and (9), we obtain

/'(*) - /(*) 3 + 2A
5 + 6A

and

Thus we prove the inequality (16). D

REMARK. Taking A = 0 and M = 1 in (i) of Theorem 4, we obtain Theorem 2 and
Theorem 3 by Mocanu [2]. Further, letting M = 1 in (ii) of Theorem 4, we obtain the
main result by Mocanu [2], that is, Theorem 4.

Making A = 0 in (iii) of Theorem 4, we have

COROLLARY 4 . S(0, 2/5) c S*(l/2).

By Corollary 4, we see
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COROLLARY 5 . S(l, 2/5) c K(l/2).

Next, in view of (9), we derive

THEOREM 5 . If zf'{z) £ S(A, M), then f{z) e S(l, M/(l + A)). Conversely,
if f(z) e S(A, M), then zf'(z) e S(0, 2M/A(1 + A)) when 0 < A ̂  1, and zf'(z) G
S(0, 2M/(1 + A)) when A ^ 1.

THEOREM 6. Let

Jfc=2

belong to the class S(A, M). Then, for every n ^ 1, the n th partial sum fn{z) of f(z)
satisfies

(i)

and

where A ̂  1.

PROOF: We define the function g(z) by g(z) = log (1/(1 - z)). Then, we have
g(z) e K(l/2), and Re{gn{z)/z} > 1/2 (z 6 U) by Singh [3, Theorem 2], where gn{z)
denotes the nth partial sum of g(z).

(i) Since f(z) £ S(A, M), by (9) and the equality

/»(
z

\fU

')

*)

- 1

- 1

M
< 1 + A

< M

(z€U)

(z e u),

- 1 = ( / • ( , ) - 1 ) . ^ (* e u),

in the same method as Theorem 2, we obtain
M

- 1 1 + A
(z 6 U) .

(ii) By Proposition 1, we see that f(z) E S(l, M), and hence

< M (z 6 U),
A=2

Since

Jb=2

9n(z) (Z G U),

by the same way as the part (i), we obtain

for all A ^ 1. D
COROLLARY 6 . If / (*) e S(A, 1), tAen fn(z) e C for all X^ 1 and for every

n > 1.
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3. INTEGRAL OPERATORS

We now discuss integral operators

(17) g(z) = /(/)(,) = I ± l jf* ti-
lf(t)dt (7 > -1)

for f(z) G A . Writing 7 = I/A - 1 (A > 0), we see that

(18) /(*) = (1 - X)g(z) + \zg\z)

and

(19) f'(z) = g'(z) + Xzg"(z).

Clearly, if A > 0 and g{z) G S(A, M), then we observe that f(z) defined by (17) is in
the class S(0, M). Conversely, we have

THEOREM 7 . The integral operator J defined by (17) satisfies

J: S ( l / (1 + 7 ) , M) —+ S(l /(1 + 7), (1 + 7 ) M / ( 2 + 7)).

PROOF: Setting A = 1/(1 + 7) and p(z) - g'(z) + Xzg"(z), we see from (19) that

f'(z) + \zf\z) - 1 = p(z) + Xzp'(z) - 1.

Suppose that f{z) € S(A, M) = S ( l / (1 + 7 ) , M). Then it follows from (2) that

I ( ) 1 | ( U )

and hence g(z) G S(A, Af/(1 + A)). This completes the proof of Theorem 7. D

THEOREM 8 . Let M ^ 1 + A, - 1 < 7 = I/A - 1 < 0, and A ^ 1. If f(z) G

S(A, M) and g{z) is defined by (17), then (g * h)(z) G K(0) for every h(z) G S(A, M).

PROOF: Defining the functions g(z) and h(z) by

00 00

g(z) = z + ] P anz
n and h(z) = z + ̂  bnz

n',
n=2 n=2

(18) leads to
00

f(z) = ^ + ^ ( l - A + nA)an*
n G S(A, M).

n=2
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Therefore, from (12), we have

n=2

Noting that A ̂  1, we have

f>3|an|2<l.
n=2

Further, by (12) we obtain

n=2

Consequently, we know that

n=2

which implies that {g * h)(z) £ K(0). D

Next, we prove

THEOREM 9 . If f(z) e A satisfies Re{f{z)/z} > p ( p < l ; z G U ) , then the

function g(z) defined by (17) satisfies

2 + 4p + 5p1 + fn
2 . , ^ __ ^ n ,

L + 2p + 2(yy
I 3 + 2p

for z G U .

P R O O F : Letting
oo

g{z) = z + Y, *nz"
n=2

and 7 = I/A - 1 (A > 0), (18) gives

= Re j ! + £ ( ! - A + ^K*""1 f >P

Hence we have

(20) Re
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Note that
(21)

Thus (7) leads to

(22) ^ { 1 +
Combining (20), (21) and (22), in a similar way to Theorem 2, we obtain

for all A > 0, that is,

(2+7)(3+7) l

for all 7 > - 1 . But for 7 > 0, that is, for 0 < A < 1, we have

2 + Ap + 5p-f + p-j1 1 + 2p + 2p7
<

Applying Jack's Lemma [1], we can prove

(23) B . { ia} > i i^ Q (,6U)

f o r 7 > 0 . D

REMARK. The above inequality (23) was recently proved by Owa and Nunokawa [4]

when 0 < p < 1 and 7 > —1.

With the help of the proof of Theorem 9, we have

THEOREM 1 0 . If f(z) e A satisfies Re{f'{z)} > p ( p < l ; * e U ) , then the

function g{z) defined by (17) satisfies

for zeV.

REMARK. The second inequality in Theorem 10 was proved by Owa and Nunokawa [4]

when 0 ^ p < 1 and 7 > — 1 .
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