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FAMILIES OF AFFINE RULED SURFACES:
EXISTENCE OF CYLINDERS

ADRIEN DUBOULOZ and TAKASHI KISHIMOTO

Abstract. We show that the generic fiber of a family f :X → S of smooth

A1-ruled affine surfaces always carries an A1-fibration, possibly after a finite

extension of the base S. In the particular case where the general fibers of

the family are irrational surfaces, we establish that up to shrinking S, such

a family actually factors through an A1-fibration ρ :X → Y over a certain S-

scheme Y → S induced by the MRC-fibration of a relative smooth projective

model of X over S. For affine threefolds X equipped with a fibration f :X →B

by irrational A1-ruled surfaces over a smooth curve B, the induced A1-fibration

ρ :X → Y can also be recovered from a relative minimal model program applied

to a smooth projective model of X over B.

Introduction

The general structure of smooth noncomplete surfaces X with negative

(logarithmic) Kodaira dimension is not fully understood yet. For say smooth

quasi-projective surfaces over an algebraically closed field of characteristic

zero, it was established by Keel and McKernan [10] that the negativity of the

Kodaira dimension is equivalent to the fact that X is generically covered

by images of the affine line A1 in the sense that the set of points x ∈X
with the property that there exists a nonconstant morphism f : A1→X

such that x ∈ f(A1) is dense in X with respect to the Zariski topology.

This property, called A1-uniruledness is equivalent to the existence of an

open embedding X ↪→ (X, B) into a complete variety X covered by proper

rational curves meeting the boundary B =X \X in at most one point. In

the case where X is smooth and affine, an earlier deep result of Miyanishi–

Sugie and Fujita [14] asserts the stronger property that X is A1-ruled: there
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2 A. DUBOULOZ AND T. KISHIMOTO

exists a Zariski dense open subset U ⊂X of the form U ' Z × A1 for a

suitable smooth curve Z. Equivalently, X admits a surjective flat morphism

ρ :X → C to an open subset C of a smooth projective model Z of Z, whose

generic fiber is isomorphic to the affine line over the function field of C.

Such a morphism ρ :X → C is called an A1-fibration, and ρ is said to be of

affine type or complete type when the base curve C is affine or complete,

respectively.

Smooth A1-uniruled but not A1-ruled affine varieties are known to exist

in every dimension > 3 [1]. Many examples of A1-uniruled affine threefolds

can be constructed in the form of flat families f :X →B of smooth A1-ruled

affine surfaces parametrized by a smooth base curve B. For instance, the

complementX of a smooth cubic surface S ⊂ P3
C is the total space of a family

f :X → A1 = Spec(C[t]) of A1-ruled surfaces induced by the restriction of

a pencil f : P3 99K P1 on P3 generated by S and three times a tangent

hyperplane H to S whose intersection with S consists of a cuspidal cubic

curve. The general fibers of f have negative Kodaira dimension, carrying A1-

fibrations of complete type only, and the failure of A1-ruledness is intimately

related to the fact that the generic fiber Xη of f , which is a surface defined

over the field K = C(t), does not admit any A1-fibration defined over C(t).

Nevertheless, it was noticed in [3, Theorem 6.1] that one can infer straight

from the construction of f :X → A1 the existence of a finite base extension

Spec(L)→ Spec(K) for which the surface Xη ×Spec(K) Spec(L) carries an

A1-fibration ρ :Xη ×Spec(K) Spec(L)→ P1
L defined over the field L.

A natural question is then to decide whether this phenomenon holds

in general for families f :X →B of A1-ruled affine surfaces parameterized

by a smooth base curve B, namely, does the existence of A1-fibrations

on the general fibers of f imply the existence of one on the generic fiber

of f , possibly after a finite extension of the base B? A partial positive

answer is given by Gurjar et al. [3, Theorem 3.8] under the additional

assumption that the general fibers of f carry A1-fibrations of affine type.

The main result in Gurjar et al. [3, Theorem 3.8] is derived from the

study of log-deformations of suitable relative normal projective models

f : (X, D)→B of X over B with appropriate boundaries D. It is established

in particular that the structure of the boundary divisor of a well-chosen

smooth projective completion of a general closed fiber Xs is stable under

small deformations, a property which implies in turn, possibly after a finite

extension of the base B, the existence of an A1-fibration of affine type

on the generic fiber of f . This log-deformation theoretic approach is also
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FAMILIES OF AFFINE RULED SURFACES 3

central in the related recent work of Flenner et al. [2] on the classification

of normal affine surfaces with A1-fibrations of affine type up to a certain

notion of deformation equivalence, defined for families which admit suitable

relative projective models satisfying Kamawata’s axioms of logarithmic

deformations of pairs [8]. The fact that the A1-fibrations under consideration

are of affine type plays again a crucial role and, in contrast with the situation

considered in [3], the restrictions imposed on the families imply the existence

of A1-fibrations of affine type on their generic fibers.

Our main result (Theorem 7) consists of a generalization of the results

in [3] to families f :X → S of A1-ruled surfaces over an arbitrary normal

base S, which also includes the case where a general closed fiber Xs of f

admits A1-fibrations of complete type only. In particular, we obtain the

following positive answer to [3, Conjecture 6.2]:

Theorem. Let f :X → S be a dominant morphism between normal

complex algebraic varieties whose general fibers are smooth A1-ruled affine

surfaces. Then there exist a dense open subset S∗ ⊂ S, a finite étale

morphism T → S∗ and a normal T -scheme h : Y → T such that the induced

morphism fT = prT :XT =X ×S∗ T → T factors as

fT = h ◦ ρ :XT
ρ−→ Y

h−→ T,

where ρ :XT → Y is an A1-fibration.

In contrast with the log-deformation theoretic strategy used in [3], which

involves the study of certain Hilbert schemes of rational curves on well-

chosen relative normal projective models f : (X, B)→ S of X over S, our

approach is more elementary, based on the notion of Kodaira dimension [7]

adapted to the case of geometrically connected varieties defined over

arbitrary base fields of characteristic zero. Indeed, the hypothesis means

equivalently that the general fibers of f have negative Kodaira dimension.

This property is in turn inherited by the generic fiber of f , which is a smooth

affine surface defined over the function field of S, thanks to a standard

Lefschetz principle argument. Then we are left with checking that a smooth

affine surface X defined over an arbitrary base field k of characteristic zero

and with negative Kodaira dimension admits an A1-fibration, possibly after

a suitable finite base extension Spec(k0)→ Spec(k), a fact which ultimately

follows from finite type hypotheses and the aforementioned characterization

of Miyanishi and Sugie [14].
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4 A. DUBOULOZ AND T. KISHIMOTO

The article is organized as follows. The first section contains a review of

the structure of smooth affine surfaces of negative Kodaira dimension over

arbitrary base fields k of characteristic zero. We show in particular that every

such surfaceX admits an A1-fibration after a finite extension of the base field

k, and we give criteria for the existence of A1-fibrations defined over k. These

results are then applied in the second section to the study of deformations f :

X → S of smooth A1-ruled affine surfaces: after giving the proof of the main

result, Theorem 7, we consider in more detail the particular situation where

the general fibers of f :X → S are irrational. In this case, after shrinking

S if necessary, we show that the morphism f actually factors through an

A1-fibration ρ :X → Y over an S-scheme h : Y → S which coincides, up to

birational equivalence, with the maximally rationally connected quotient of

a relative smooth projective model f :X → S of X over S. The last section is

devoted to the case of affine threefolds equipped with a fibration f :X →B

by irrational A1-ruled surfaces over a smooth base curve B: we explain in

particular how to construct an A1-fibration ρ :X → Y factoring f by means

of a relative minimal model program applied to a smooth projective model

f :X →B of X over B.

§1. A1-ruledness of affine surfaces over nonclosed field

In what follows, the term k-variety refers to a geometrically integral

scheme of finite type over a base field k of characteristic zero. A k-variety X

is said to be k-rational if it is birationally isomorphic over k to the projective

space Pnk , where n= dimk X. When no particular base field is indicated, we

use simply the term rational to refer to a geometrically rational variety. We

call a variety irrational if it is not rational in the previous sense.

1.1 Logarithmic Kodaira dimension

1.1.1. Let X be a smooth algebraic variety defined over a field k of

characteristic zero. By virtue of Nagata compactification [15] and Hironaka

desingularization [5] theorems, there exists an open immersion X ↪→ (X, B)

into a smooth complete algebraic variety X with reduced SNC boundary

divisor B =X \X. The (logarithmic) Kodaira dimension κ(X) of X is

then defined as the Iitaka dimension [6] of the pair (X; ωX(log B)), where

ωX(log B) = (det Ω1
X/k

)⊗OX(B). So letting

R(X, B) =
⊕
m>0

H0(X, ωX(log B)⊗m),
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we have κ(X) = tr. degk R(X, B)− 1 if H0(X, ωX(log B)⊗m) 6= 0 for suf-

ficiently large m. Otherwise, if H0(X, ωX(log B)⊗m) = 0 for every m> 1,

we set by convention κ(X) =−∞ and we say that κ(X) is negative. The

so-defined element κ(X) ∈ {−∞} ∪ {0, . . . , dimkX} is independent of the

choice of a smooth complete model (X, B) [7].

Furthermore, the Kodaira dimension of X is invariant under arbitrary

extensions of the base field k. Indeed, given an extension k ⊂ k′, the pair

(Xk′ , Bk′) obtained by the base change Spec(k′)→ Spec(k) is a smooth

complete model of Xk′ =X ×Spec(k) Spec(k′) with reduced SNC boundary

Bk′ . Furthermore letting π :Xk′ →X be the corresponding faithfully flat

morphism, we have ωXk′
(log Bk′)' π∗ωX(log B) and so R(Xk′)'R(X)⊗k

k′ by the flat base change theorem [4, Proposition III.9.3]. Thus κ(X) =

κ(Xk′).

Example 1. The affine line A1
k is the only smooth geometrically

connected noncomplete curve C with negative Kodaira dimension. Indeed,

let C be a smooth projective model of C and let Ck be the curve obtained

by the base change to an algebraic closure k of k. Since C is noncomplete,

B = Ck \ Ck consists of a finite collection of closed points p1, . . . , ps, s> 1,

on which the Galois group Gal(k/k) acts by k-automorphisms of Ck.

Clearly, H0(Ck, ωC̄k
(log B)⊗m) 6= 0 unless Ck ' P1

k
and s= 1. Since p1 is

then necessarily Gal(k/k)-invariant, C \ C consists of unique k-rational

point, showing that C ' P1
k and C ' A1

k.

1.2 Smooth affine surfaces with negative Kodaira dimension

Recall that by virtue of [14], a smooth affine surface X defined over

an algebraically closed field of characteristic zero has negative Kodaira

dimension if and only if it is A1-ruled: there exists a Zariski dense open

subset U ⊂X of the form U ' Z × A1 for a suitable smooth curve Z. In

fact, the projection prZ : U ' Z × A1→ Z always extends to an A1-fibration

ρ :X → C over an open subset C of a smooth projective model Z of Z.

This characterization admits the following straightforward generalization

to arbitrary base fields of characteristic zero:

Theorem 2. Let X be a smooth geometrically connected affine surface

defined over a field k of characteristic zero. Then the following are equiva-

lent:

(a) The Kodaira dimension κ(X) of X is negative.
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6 A. DUBOULOZ AND T. KISHIMOTO

(b) For some finite extension k0 of k, the surface Xk0 contains an open

subset U ' Z × A1
k0

for some smooth curve Z defined over k0.

(c) There exist a finite extension k0 of k and an A1-fibration ρ :Xk0 → C0

over a smooth curve C0 defined over k0.

Proof. Clearly (c) implies (b) and (b) implies (a). To show that (a)

implies (c), we observe that letting k be an algebraic closure of k, we

have κ(Xk) = κ(X)< 0. It then follows from the aforementioned result of

Miyanishi and Sugie [14] that Xk admits an A1-fibration q :Xk→ C over a

smooth curve C, with smooth projective model C. Since Xk and C are of

finite type over k, there exists a finite extension k ⊂ k0 such that q :Xk→ C

is obtained from a morphism ρ :Xk0 → C0 to a smooth projective curve C0

defined over k0 by the base extension Spec(k)→ Spec(k0). By virtue of

Example 1, ρ :Xk0 → C0 is an A1-fibration.

Examples of smooth affine surfaces X of negative Kodaira dimension

without any A1-fibration defined over the base field but admitting A1-

fibrations of complete type after a finite base extension were already

constructed in [1]. The following example illustrates the fact that a similar

phenomenon occurs for A1-fibrations of affine type, providing in particular

a negative answer to [3, Problem 3.13].

Example 3. Let B ⊂ P2
k = Proj(k[x, y, z]) be a smooth conic without

k-rational point defined by a quadratic form q = x2 + ay2 + bz2, where

a, b ∈ k∗, and let X ⊂ P3
k = Proj(k[x, y, z, t]) be the smooth quadric surface

defined by the equation q(x, y, z)− t2 = 0. The complement X ⊂X of

the hyperplane section {t= 0} is a k-rational smooth affine surface with

κ(X)< 0, which does not admit any A1-fibration ρ :X → C over a smooth,

affine or projective curve C. Indeed, if such a fibration existed then a smooth

projective model of C would be isomorphic to P1
k; since the fiber of ρ over

a general k-rational point of C is isomorphic to A1
k, its closure in X would

intersect the boundary X \X 'B in a unique point, necessarily k-rational,

in contradiction with the choice of B.

In contrast, for a suitable finite extension k ⊂ k′, the surface Xk′ becomes

isomorphic to the complement of the diagonal in Xk′ ' P1
k′ × P1

k′ and hence,

it admits at least two distinct A1-fibrations over P1
k′ , induced by the

restriction of the first and second projections from Xk′ . Furthermore, since

Xk′ is isomorphic to the smooth affine quadric in A3
k′ = Spec(k′[u, v, w])

with equation uv − w2 = 1, it also admits two distinct A1-fibrations over

A1
k′ , induced by the restrictions of the projections pru and prv.
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1.3 Existence of A1-fibrations defined over the base field

1.3.1. The previous example illustrates the general fact that if X is a smooth

geometrically connected affine surface with κ(X)< 0 which does not admit

any A1-fibration, then there exists a finite extension k′ of k such that Xk′

admits at least two A1-fibrations of the same type, either affine or complete,

with distinct general fibers. Indeed, by virtue of Theorem 2, there exists a

finite extension k0 of k such that Xk0 admits an A1-fibration ρ :Xk0 → C.

Let k′ be the Galois closure of k0 in an algebraic closure of k and let ρk′ :

Xk′ → Ck′ be the A1-fibration deduced from ρ. If ρk′ :Xk′ → Ck′ is globally

invariant under the action of the Galois group Gal(k′/k) on Xk′ , in the sense

that for every Φ ∈Gal(k′/k) considered as a Galois automorphism of Xk′

there exists a commutative diagram

Xk′
Φ //

ρk′

��

Xk′

ρk′

��
Ck′

ϕ
// Ck′

for a certain k′-automorphism ϕ of Ck′ , then we would obtain a Galois

action of Gal(k′/k) on Ck′ for which ρk′ :Xk′ → Ck′ becomes an equivariant

morphism. Since Ck′ is quasi-projective and ρ′k is affine, it would follow from

Galois descent that there exist a curve C̃ defined over k and a morphism

q :X → C̃ defined over k such that ρk′ :Xk′ → Ck′ is obtained from q by the

base change Spec(k′)→ Spec(k). Since by virtue of Example 1 the affine

line does not have any nontrivial form, the generic fiber of q would be

isomorphic to the affine line over the field of rational functions of C̃ and so,

q :X → C̃ would be an A1-fibration defined over k, in contradiction with

our hypothesis. So there exists at least an element Φ ∈Gal(k′/k) considered

as a k-automorphism of Xk′ such that the A1-fibrations ρk′ :Xk′ → Ck′ and

ρk′ ◦ ϕ :Xk′ → Ck′ have distinct general fibers.

Arguing backward, we obtain the following criterion:

Proposition 4. Let X be a smooth geometrically connected affine

surface with κ(X)< 0. If there exists a finite Galois extension k′ of k such

that Xk′ admits a unique A1-fibration ρ′ :Xk′ → Ck′ up to composition by

automorphisms of Ck′, then ρ′ :Xk′ → Ck′ is obtained by base extension from

an A1-fibration ρ :X → C defined over k.
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Corollary 5. A smooth geometrically connected irrational affine sur-

face X has negative Kodaira dimension if and only if it admits an A1-

fibration ρ :X → C over a smooth irrational curve C defined over the base

field k. Furthermore for every extension k′ of k, ρk′ :Xk′ → Ck′ is the unique

A1-fibration on Xk′ up to composition by automorphisms of Ck′.

Proof. Uniqueness is clear since otherwise Ck′ would be dominated by a

general fiber of another A1-fibration on Xk′ , and hence would be rational,

implying in turn the rationality of X. By virtue of Theorem 2, there exist

a finite Galois extension k′ of k and an A1-fibration ρ′ :Xk′ → C ′ over a

smooth curve C ′. The latter is irrational as X is irrational, which implies

that ρ′ :Xk′ → C ′ is the unique A1-fibration on Xk′ . So ρ′ descend to an

A1-fibration ρ :X → C over a smooth irrational curve C defined over k.

The following example shows that the irrationality hypothesis cannot be

weakened to the property thatX is geometrically rational but not k-rational.

Example 6. Let a ∈Q be a rational number which is not a cube and

let S = Sa ⊂ P3
Q = ProjQ(Q[x, y, z, t]) be the smooth cubic surface defined

by the equation x3 + y3 + z3 + at3 = 0. All lines on S are defined over the

splitting field K of the polynomial u3 + a ∈Q[u], and one checks by direct

computation that no orbit of the action of the Galois group Gal(K/Q)'S3

on SK consists of a disjoint union of such lines. It follows that the Picard

number ρ(S) of S is equal to 1, hence by Segree–Manin Theorem that S

is rational but not Q-rational (see e.g., [12, Exercise 2.18 and Theorem

2.1]). Let H = {x+ y = 0} ⊂ P3
Q be the tangent hyperplane to S at the point

p= [1 :−1 : 0 : 0] and let X = S \ (H ∩ S). So X is a smooth affine surface

defined over Q, and since the intersection of HC with SC consists of three

lines meeting at the Eckardt point p, one checks easily that κ(X) = κ(XC) =

−∞. Thus XC admits an A1-fibration by virtue of [14], but we claim that

X does not admit any such fibration defined over Q. Indeed, suppose on the

contrary that π :X → C is an A1-fibration over a smooth curve defined over

Q. Since C is geometrically rational and contains a Q-rational point, for

instance the image by π of the point [0 :−1 : 1 : 0] ∈X(Q), it is Q-rational.

But then X whence S would be Q-rational, a contradiction.

§2. Families of A1-ruled affine surfaces

2.1 Existence of étale A1-cylinders

This subsection is devoted to the proof of the following:
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Theorem 7. Let X and S be normal algebraic varieties defined over

a field k of infinite transcendence degree over Q, and let f :X → S be a

dominant affine morphism with the property that for a general closed point

s ∈ S, the fiber Xs is a smooth geometrically connected affine surface with

negative Kodaira dimension. Then there exist an open subset S∗ ⊂ S, a finite

étale morphism T → S∗ and a normal T -scheme h : Y → T such that fT =

prT :XT =X ×S∗ T → T factors as

fT = h ◦ ρ :XT
ρ−→ Y

h−→ T

where ρ :XT → Y is an A1-fibration.

Proof. Shrinking S if necessary, we may assume that S is affine, that

f :X → S is smooth and that κ(Xs)< 0 for every closed point s ∈ S. It

is enough to show that the fiber Xη of f over the generic point η of S

is geometrically connected, with negative Kodaira dimension. Indeed, if

so, then by Theorem 2 above, there exist a finite extension L of K =

Frac(Γ(S,OS)) and an A1-fibration ρ :Xη ×Spec(K) Spec(L)→ C onto a

smooth curve C defined over L. Letting T be the normalization of S in

L and shrinking T again if necessary, we obtain a finite étale morphism

T → S such that the generic fiber of prT :XT → T is isomorphic to the A1-

fibered surface ρ :Xη ×Spec(K) Spec(L)→ C and then the assertion follows

from Lemma 8 below.

The properties of being geometrically connectedness and having negative

Kodaira dimension are invariant under finite algebraic extensions of the

base field. So letting k be an algebraic closure of k, it is enough to show

that the generic fiber of the induced morphism fk :Xk→ Sk is geometrically

connected, of negative Kodaira dimension. We may thus assume from now

on that k is algebraically closed. Since X and S are affine and of finite type

over k, there exist a subfield k0 of k of finite transcendence degree over Q,

and a smooth morphism f0 :X0→ S0 of k0-varieties such that f :X → S

is obtained from f0 :X0→ S0 by the base extension Spec (k)→ Spec(k0).

The field K0 = Frac(Γ(S0,OS0)) has finite transcendence degree over Q
and hence, it admits a k0-embedding ξ :K0 ↪→ k. Letting (X0)η0 be the

fiber of f0 over the generic point η0 : Spec(K0)→ S0 of S0, the composition

Γ(S0,OS0) ↪→K0 ↪→ k induces a k-homomorphism Γ(S0,OS0)⊗k0 k→ k

defining a closed point s : Spec(k)→ Spec(Γ(S0,OS0)⊗k0 k) = S of S for

which we obtain the following commutative diagram
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10 A. DUBOULOZ AND T. KISHIMOTO

Xs

��

��

// X

��
f

��

(X0)η0
//

��

X0

f0

��

Spec(k)

ξ∗

��

s // S //

��

Spec(k)

��
Spec(K0)

η0
// S0

// Spec(k0)

The bottom square of the cube being Cartesian by construction, we deduce

that

(X0)η0 ×Spec(K0) Spec(k)'X0 ×S0 Spec(k)'X ×S Spec(k) =Xs.

Since by assumption, Xs is geometrically connected with κ(Xs)< 0, we

conclude that (X0)η0 is geometrically connected and has negative Kodaira

dimension. This implies in turn that Xη is geometrically connected and that

κ(Xη)< 0 as desired.

In the proof of the above theorem, we used the following lemma:

Lemma 8. Let f :X → S be a dominant affine morphism between nor-

mal varieties defined over a field k of characteristic zero. Then the following

are equivalent:

(a) The generic fiber Xη of f admits an A1-fibration q :Xη→ C over a

smooth curve C defined over the fraction field K of S.

(b) There exist an open subset S∗ of S and a normal S∗-scheme h : Y → S∗
of relative dimension 1 such that the restriction of f to V = f−1(S∗)

factors as f |V = h ◦ ρ : V → Y → S∗ where ρ : V → Y is an A1-fibration.

Proof. If (b) holds then letting L be the fraction field of Y , we have a

commutative diagram
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Vξ =Xξ
//

ρξ
��

Vη =Xη
//

ρη

��

V

ρ

��
Spec(L)

ξ
// C = Yη

hη
��

// Y

h

��
Spec(K)

η
// S∗

in which each square is Cartesian. It follows that hη : C→ Spec(K) is a

normal whence smooth curve defined over K and that ρη :Xη→ C is an A1-

fibration. Conversely, suppose that Xη admits an A1-fibration q :Xη→ C

and let C be a smooth projective model of C over K. Then there exist an

open subset S0 of S and a projective S0-scheme h : Y → S0 whose generic

fiber is isomorphic to C. After shrinking S0 if necessary, the rational map

ρ : V 99K Y of S0-schemes induced by q becomes a morphism and we obtain a

factorization f |V = h ◦ ρ. By construction, the generic fiber Vξ of ρ : V → Y

is isomorphic to

V ×Y Spec(L)' (V ×Y C)×C Spec(L)'Xη ×C Spec(L)' A1
L

since V ×Y C ' Vη 'Xη and ρ :Xη→ C ↪→ C is an A1-fibration. So ρ : V →
Y is an A1-fibration.

Example 9. Let R= C[s±1, t±1], S = Spec(R) and let D be the rel-

atively ample divisor in P2
S = ProjR(R[x, y, z]) defined by the equation

x2 + sy2 + tz2 = 0. The restriction h :X = P2
S \D→ S of the structure

morphism defines a family of smooth affine surfaces with the property that

for every closed point s ∈ S, Xs is isomorphic to the complement in P2
C of the

smooth conic Ds. In particular, Xs admits a continuum of pairwise distinct

A1-fibrations Xs→ A1
C, induced by the restrictions to Xs of the rational

pencils on P2
C generated by Ds and twice its tangent line at an arbitrary

closed point ps ∈Ds. On the other hand, the fiber of D over the generic

point η of S is a conic without C(s, t)-rational point in P2
C(s,t) and hence,

we conclude by a similar argument as in Example 3 that Xη does not admit

any A1-fibration defined over C(s, t). Therefore there is no open subset S∗
of S over which h can be factored through an A1-fibration.
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12 A. DUBOULOZ AND T. KISHIMOTO

2.2 Deformations of irrational A1-ruled affine surfaces

In this subsection, we consider the particular situation of a flat family f :

X → S over a normal variety S whose general fibers are irrational A1-ruled

affine surfaces. A combination of Corollary 5 and Theorem 7 above implies

that if f :X → S is smooth and defined over a field of infinite transcendence

degree over Q, then the generic fiber Xη of f is A1-ruled. Equivalently,

there exist an open subset S∗ ⊂ S and a normal S∗-scheme h : Y → S∗ such

that the restriction of f to X∗ =X ×S S∗ factors through an A1-fibration

ρ :X∗→ Y (see Lemma 8). The restriction of ρ to the fiber of f over a general

closed point s ∈ S0 is an A1-fibration ρs :Xs→ Ys over the normal, whence

smooth, curve Ys. Since Xs is irrational, Ys is irrational, and so ρs :Xs→
Ys is the unique A1-fibration on Xs up to composition by automorphisms

of Ys. So in this case, we can identify ρs :Xs→ Ys with the Maximally

Rationally Connected fibration (MRC-fibration) ϕ :Xs 99K Ys of a smooth

projective model Xs of Xs in the sense of [11, IV.5]: recall that ϕ is unique,

characterized by the property that its general fibers are rationally connected

and that for a very general point y ∈ Ys any rational curve in Xs which meets

Xy is actually contained in Xy. The A1-fibration ρ :X∗→ Y can therefore

be re-interpreted as being the MRC-fibration of a relative smooth projective

model X of X over S.

Reversing the argument, general existence and uniqueness results for

MRC-fibrations allow actually to get rid of the smoothness hypothesis of

a general fiber of f :X → S and to extend the conclusion of Theorem 7 to

arbitrary base fields of characteristic zero. Namely, we obtain the following

characterization:

Theorem 10. Let X and S be normal varieties defined over a field k of

characteristic zero and let f :X → S be a dominant affine morphism with

the property that for a general closed point s ∈ S, the fiber Xs is an irrational

A1-ruled surface. Then there exist a dense open subset S∗ of S and a normal

S∗-scheme h : Y → S∗ such that the restriction of f to X∗ =X ×S S∗ factors

as

f |X∗= h ◦ ρ :X∗
ρ−→ Y

h−→ S∗

where ρ :X∗→ Y is an A1-fibration.

Proof. Shrinking S if necessary, we may assume that it is smooth and

that for every closed point s ∈ S, Xs is irrational and A1-ruled, hence

carrying a unique A1-fibration πs :Xs→ Cs over an irrational normal curve

Cs. Since f :X → S is affine, there exist a normal projective S-scheme
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X → S and an open embedding X ↪→X of schemes over S. Letting W →X

be a resolution of the singularities of X, hence in particular of those of

X, we may assume up to shrinking S again if necessary that W → S

is a smooth morphism. We let j :X 99KW be the birational map of S-

schemes induced by the embedding X ↪→X. By virtue of [11, Theorem

5.9], there exist an open subset W ′ of W , an S-scheme h : Z→ S and

a proper morphism q :W ′→ Z such that for every s ∈ S, the induced

rational map qs :Ws 99K Zs is the MRC-fibration for Ws. On the other

hand, since Ws is a smooth projective model of Xs, the induced rational

map πs :Xs 99K Cs is the MRC-fibration for Ws. Consequently, for a

general closed point z ∈ Z with h(z) = s, the fiber Wz of qs, which is an

irreducible proper rational curve contained in Ws, must coincide with the

closure of the image by j of a general closed fiber of πs. The latter being

isomorphic to the affine line A1
κ over the residue field κ of the corresponding

point of Cs, we conclude that there exists an affine open subset U of X

on which the composition q ◦ j : U → Z is a well-defined morphism with

general closed fibers isomorphic to affine lines over the corresponding

residue fields. So q ◦ j : U → Z is an A1-fibration by virtue of [9]. The

generic fiber of f :X → S is thus A1-ruled and the assertion follows from

Lemma 8 above.

Example 11. Let h : Y → S be a smooth family of complex projective

curves of genus g > 2 over a normal affine base S and let TY/S be the

relative tangent sheaf of h. Since by Riemman–Roch H0(Ys, TY/S,s) = 0 and

dimH1(Ys, TY/S,s) = 3g − 3 for every point s ∈ S, h∗TY/S,s = 0, R1h∗TY/S
is locally free of rank 3g − 3 [4, Corollary III.12.9] and so, H1(Y, TY/S)'
H0(S, R1h∗TY/S) by the Leray spectral sequence. Replacing S by an open

subset, we may assume that R1h∗TY/S admits a nowhere vanishing global

section σ. Via the isomorphism H1(Y, TY/S)' Ext1
Y (OY , TY/S), we may

interpret this section as the class of a nontrivial extension 0→TY/S →
E →OY → 0 of locally free sheaves over Y . The inclusion TY/S →E defines

a section D of the locally trivial P1-bundle ρ :X = Proj(SymOY E
∨)→ Y

and the nonvanishing of σ guarantees that D is the support of an S-ample

divisor. Indeed the S-ampleness of D is equivalent to the property that for

every s ∈ S the induced section Ds of the P1 -bundle ρs :Xs→ Ys over the

smooth projective curve Ys is ample. Since by construction, ρs |Xs\Ds :Xs \
Ds→ Ys is a nontrivial torsor under the line bundle Spec(SymT ∨Ys)→ Ys,

it follows that Ds intersects positively every section D of ρs except maybe
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14 A. DUBOULOZ AND T. KISHIMOTO

Ds itself. On the other hand, we have (D2
s) =−deg TYs = 2g(Ys)− 2> 0,

and so the ampleness of Ds follows from the Nakai–Moishezon criterion and

the description of the cone effective cycles on an irrational projective ruled

surface given in [4, Propositions 2.20–2.21].

Letting X =X \D, we obtain a smooth family

f = g ◦ ρ |X :X
ρ|X−→ Y

h→ S

where ρ |X :X → Y is a nontrivial, locally trivial, A1-bundle such that for

every s ∈ S, Xs is an affine surface with an A1-fibration ρs :Xs→ Ys of

complete type.

In contrast with the previous example, the following proposition shows

in particular that if the total space of a family of irrational A1-ruled affine

surfaces f :X → S has finite divisor class group, then the induced A1-

fibration on a general fiber of f :X → S is necessarily of affine type.

Proposition 12. Let X be a geometrically integral normal affine

variety with finite divisor class group Cl(X) and let f :X → S be a dominant

affine morphism to a normal variety S with the property that for a general

closed point s ∈ S, the fiber Xs is an irrational A1-ruled surface, say with

unique A1-fibration πs :Xs→ Cs. Then there exists an effective action of

the additive group scheme Ga,S on X such that for a general closed point

s ∈ S, the A1-fibration πs :Xs→ Cs factors through the algebraic quotient

ρs :Xs→Xs//Ga,s = Spec(Γ(Xs,OXs)Ga,s).

Proof. Let f |X∗= h ◦ ρ :X∗
ρ−→ Y

h−→ S∗ be as in Theorem 10. Since

ρ is an A1-fibration, there exists an affine open subset U ⊂ Y such that

ρ−1(U)' U × A1 as schemes over U . Since ρ−1(U) is affine, its complement

in X is of pure codimension 1, and the finiteness of Cl(X) implies that

it is actually the support of an effective principal divisor divX(a) for some

a ∈ Γ(X,OX). Let ∂0 be the locally nilpotent derivation of Γ(ρ−1(U),OX)'
Γ(X,OX)a corresponding to the Ga,U -action by translations on the second

factor. Since a is invertible in Γ(ρ−1(U),OX), it belongs to the kernel of ∂0,

and the finite generation of Γ(X,OX) guarantees that for a suitably chosen

n> 0, an∂0 is a locally nilpotent derivation ∂ of Γ(X,OX). By construction,

the restriction of f to the dense open subset ρ−1(U) of X is invariant

under the corresponding Ga-action, and so f :X → S is Ga-invariant. For a

general closed point s ∈ S, the induced Ga-action on Xs is nontrivial, and its

algebraic quotient ρs :Xs→Xs//Ga = Spec(Γ(Xs,OXs)Ga) is a surjective
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A1-fibration onto a normal affine curve Xs//Ga. Since Cs is irrational, the

general fibers of ρs and πs must coincide. It follows that πs is Ga-invariant,

whence factors through ρs.

§3. Affine threefolds fibered in irrational A1-ruled surfaces

In this section, we consider in more detail the case of normal complex

affine threefolds X admitting a fibration f :X →B by irrational A1-ruled

surfaces, over a smooth curve B. We explain how to derive the variety

h : Y →B for which f factors through an A1-fibration ρ :X → Y from a

relative minimal model program applied to a suitable projective model of

X over B. In the case where the divisor class group of X is finite, we provide

a complete classification of such fibrations in terms of additive group actions

on X.

3.1 A1-cylinders via relative minimal model program

Let X be a normal complex affine threefold and let f :X →B be a flat

morphism onto a smooth curve B with the property that a general closed

fiber Xb of f is an irreducible irrational A1-ruled surface. We let f :W →B

be a smooth projective model of X over B obtained from an arbitrary

normal relative projective completion X ↪→X of X over B by resolving the

singularities. We let j :X 99KW be the birational map induced by the open

immersion X ↪→X.

By applying a minimal model program for W over B, we obtain a

sequence of birational B-maps

W =W0
ϕ1
99KW1

ϕ2
99KW2 99K · · · 99KW`−1

ϕ`
99KW` =W ′,

between B-schemes f i :Wi→B, where ϕi :Wi 99KWi+1 is either a divisorial

contraction or a flip, and the rightmost variety W ′ is the output of a minimal

model program over B. The hypotheses imply that W ′ has the structure

of a Mori conic bundle ρ :W ′→ Y over a projective B-scheme h : Y →B

corresponding to the contraction of an extremal ray of NE(W ′/B). Indeed,

a general fiber of f being a birationally ruled projective surface, the output

W ′ is not a minimal model of W over B. So W ′ is either a Mori conic

bundle over a B-scheme Y of dimension 2 or a del Pezzo fibration over B,

the second case being excluded by the fact that the general fibers of f are

irrational.

Proposition 13. The induced map ρ= ρ |X :X 99K Y is a rational A1-

fibration.
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Proof. Since a general closed fiber Xb is a normal affine surface with

an A1-fibration πb :Xb→ Cb over a certain irrational smooth curve Cb, it

follows that there exists a unique maximal affine open subset Ub of Cb such

that π−1
b (Ub)' Ub × A1 and such that the rational map jb : π−1

b (Ub) 99K
Wb induced by j is regular, inducing an isomorphism between π−1

b (Ub)

and its image. Each step ϕi :Wi 99KWi+1 consists of either a flip whose

flipping and flipped curves are contained in fibers of f i :Wi→B and

f i+1 :Wi+1→B respectively, or a divisorial contraction whose exceptional

divisor is contained in a fiber of f i :Wi→B, or a divisorial contraction

whose exceptional divisor intersects a general fiber of f i :Wi→B. Clearly,

a general closed fiber of f i :Wi→B is not affected by the first two types of

birational maps. On the other hand, if ϕi :Wi→Wi+1 is the contraction of a

divisor Ei ⊂Wi which dominates B, then a general fiber of ϕi |Ei is a smooth

proper rational curve. The intersection of Ei with a general closed fiber Wi,b

of f i thus consists of proper rational curves, and its intersection with the

image of the maximal affine cylinder like open subset π−1
b (Ub) of Xb is either

empty or composed of affine rational curves. Since Ub is an irrational curve,

it follows that each irreducible component of Ei ∩ (π−1
b (Ub)) is contained in

a fiber of πb. This implies that there exists an open subset Ub,0 of Ub with

the property that for every i= 1, . . . , `, the restriction of ϕi ◦ · · · ◦ ϕ1 ◦ j to

π−1
b (Ub,0)⊂Xb is an isomorphism onto its image in Wi,b. A general fiber of

ρ :W ′→ Y over a closed point y ∈ Y being a smooth proper rational curve,

its intersection with π−1
h(y)(Uh(y),0) viewed as an open subset of W ′h(y), is

thus either empty or equal to a fiber of πh(y). So by virtue of [9], there

exists an open subset V of X on which ρ restricts to an A1-fibration

ρ |V : V → Y .

Corollary 14. Let X be a normal complex affine threefold X equipped

with a morphism f :X →B onto a smooth curve B whose general closed

fibers are irrational A1-ruled surfaces. Then X is birationally equivalent to

the product of P1 with a family h0 : C0→B0 of smooth projective curves of

genus g > 1 over an open subset B0 ⊂B.

Proof. By the previous Proposition, X has the structure of a rational

A1-fibration ρ :X 99K Y over a 2-dimensional normal proper B-scheme h :

Y →B. In particular, X is birational to Y × P1. On the other hand, for a

general closed point b ∈B, the curve Yb is birational to the base Cb of the

unique A1-fibration πb :Xb→ Cb on the irrational affine surface Xb. Letting

σ : Ỹ → Y be a desingularization of Y , there exists an open subset B0 of
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B over which the composition h ◦ σ : Ỹ → Y restricts to a smooth family

h0 : C0→B0 of projective curves of a certain genus g > 1. By construction,

X is birational to C0 × P1.

Remark 15. Example 11 above shows conversely that for every smooth

family h : C →B of projective curves of genus g > 2, there exists a smooth

A1-ruled affine threefold X birationally equivalent to C × P1. Actually, in

the setting of the previous Corollary 14, if we assume further that a general

fiber of f :X →B carries an A1-fibration πb :Xb→ Cb over a smooth curve

Cb whose smooth projective model has genus g > 2, then there exists a

uniquely determined family h : C →B of proper stable curves of genus g

such that X is birationally equivalent to C × P1: indeed, the moduli stack

Mg of stable curves of genus g > 2 being proper and separated, the smooth

family h0 : C0→B0 extends in a unique way to a family h : C →B of stable

curves of genus g.

3.2 Factorial affine threefolds

Proposition 16. Let X be a normal affine threefold with finite divisor

class group Cl(X) and let f :X →B be a morphism onto a smooth curve B

whose general closed fibers are irrational A1-ruled surfaces. Then there exists

a factorization f = h ◦ ρ :X → Y →B where ρ :X → Y is the algebraic

quotient morphism of an effective Ga,B-action on X. In particular, a general

fiber of f admits an A1-fibration of affine type.

Proof. By virtue of Proposition 12, there exists an effective Ga,B-action

onX such that for a general closed point b ∈B, the A1-fibration πb :Xb→ Cb
on Xb factors through the algebraic quotient

ρb :Xb→Xb//Ga,b = Spec(Γ(Xb,OXb)
Ga,b).

Since X is a threefold, the ring of invariants Γ(X,OX)Ga,B is finitely

generated [16]. The quotient morphism ρ :X → Y = Spec(Γ(X,OX)Ga,B ) is

an A1-fibration, and since Y is a categorical quotient in the category of

algebraic varieties, the invariant morphism f :X →B factors through ρ.

Corollary 17. Let f : A3→B be a morphism onto a smooth curve

B with irrational A1-ruled general fibers. Then B is isomorphic to either

P1 or A1 and there exists a factorization f = h ◦ ρ : A3→ A2→B, where

ρ : A3→ A2 is the quotient morphism of an effective Ga,B-action on A3.
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Proof. Since B is dominated by a general line in A3, it is necessarily

isomorphic to P1 or A1. The second assertion follows from Proposition 16

and the fact that the algebraic quotient of every nontrivial Ga-action on A3

is isomorphic to A2 [13].

Example 18. In Corollary 17 above, the base curve B need not be

affine. For instance, the morphism

f : A3 = Spec(C[x, y, z])−→ P1, (x, y, z) 7→ [(xz − y2)x2 + 1 : (xz − y2)3]

defines a family whose general member is isomorphic to the product Cλ ×
A1 where Cλ ⊂ A2 = Spec(C[xz − y2, x]) is the affine elliptic curve with

equation (xz − y2)3 + λ((xz − y2)x2 + 1) = 0. The subring C[xz − y2, x] of

C[x, y, z] coincides with the ring of invariants of the Ga-action associated

with the locally nilpotent C[x]-derivation x∂y + 2y∂z and f is the composi-

tion of the quotient morphism ρ : A3→ A2 = A3//Ga = Spec(C[u, v]) defined

by (x, y, z) 7→ (xz − y2, x) and of the morphism h : A2 = Spec(C[u, v])→ P1

defined by (u, v) 7→ [uv2 + 1 : u3].

Corollary 17 above implies in particular that if a general fiber of a regular

function f : A3→ A1 is irrational and admits an A1-fibration, then the latter

is necessarily of affine type. In contrast, regular functions f : A3→ A1 whose

general fibers are rational and equipped with A1-fibrations of complete type

only do exist, as illustrated by the following example.

Example 19. Let f = x3 − y3 + z(z + 1) ∈ C[x, y, z] and let f : A3 =

Spec(C[x, y, z])→ A1 = Spec(C[λ]) be the corresponding morphism. The

closure Sλ in P3 = Proj(C[x, y, z, t]) of a general fiber Sλ = f∗(λ) of f is

a smooth cubic surface which intersects the hyperplane H∞ = {t= 0} along

the union Bλ of three lines meeting at the Eckardt point p= [0 : 0 : 1 : 0].

Thus Sλ is rational and a direct computation reveals that κ(Sλ) =−∞. So

by virtue of [14], Sλ admits an A1-fibration πλ : Sλ→ Cλ over a smooth

rational curve Cλ. If Cλ was affine, then there would exist a nontrivial

Ga-action on Sλ having the general fibers of πλ as general orbits. But

it is straightforward to check that every automorphism of Sλ considered

as a birational self-map of Sλ is in fact a biregular automorphism of Sλ
preserving the boundary Bλ. So the automorphism group of Sλ injects

into the group Aut(Sλ, Bλ) of automorphisms of the pair (Sλ, Bλ). The

latter being a finite group, we conclude that no such Ga-action exists,

and hence that Sλ only admits A1-fibrations of complete type. An A1-

fibration πλ : Sλ→ P1 can be obtained as follows: letting Bλ = L1 ∪ L2 ∪ L3,
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L1 is a member of a 6-tuple of pairwise disjoint lines whose simultaneous

contraction realizes Sλ as a blow-up σ : Sλ→ P2 of P2 in such a way that

σ(L2) and σ(L3) are respectively a smooth conic and its tangent line at the

point p= σ(L1). The birational transform πλ : Sλ 99K P1 on Sλ of the pencil

generated by σ(L2) and 2σ(L3) restricts to an A1-fibration πλ : Sλ→ P1 with

two degenerate fibers: an irreducible one, of multiplicity two, consisting of

the intersection with Sλ of the unique exceptional divisor of σ whose center

is supported on σ(L3) \ {p}, and a smooth one consisting of the intersection

with Sλ of the four exceptional divisors of σ with centers supported on

σ(L2) \ {p}.
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