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Understanding elementary mechanisms behind the solid-state phase transformations and reactions is a 
key to developing and advancing technological applications ranging from battery and fuel cell operation 
to formation and operation of electro-resistive devices. Recent advances in (scanning) transmission 
electron microscopy ((S)TEM) allow the visualization of solid-state transformations in materials via 
observations of atomic motion induced by thermal or chemical stimuli or electron beam in real time. Yet 
despite large volumes of data generated in STEM experiments, the available to date analytical tools do 
not allow to learn much from the collected data. Here we developed a deep-learning-based approach for 
elucidating the solid-state transformations and reaction pathways from dynamic STEM data on 2-
dimensional Mo-doped WS2. 
 
We adopt a deep convolutional neural network that can output pixel-wise classification maps and train it 
to find defects that break lattice periodicity. Specifically, we train a convolutional neural network using 
only the (properly augmented) 1st frame from the dynamic STEM experiment, when macroscopic 
periodicity is still maintained, and each defect can be readily discovered providing the “ground truth” for 
network training. Thus trained network then uses its generalization abilities [1] to discover other lattice 
defects in the rest of the frames which may not necessarily be a part of the initial training set [2]. 
 
The trained deep learning model allows extracting 103-104 defects from the typical dynamic STEM 
dataset, which can be studied further by categorizing them into different types (classes) using 
unsupervised learning algorithms such as k-means and Gaussian mixture models. We then proceed to 
analyzing changes in the concentration of each defect type as a function of time and trajectories of the 
defects, which are a key for understanding physiochemical processes in the solid-state matter under the 
e-beam irradiation. The defects show wide range of behaviors, including the evolving coupling between 
defects of different types (e.g., coupling between Mo dopants and S vacancies). In addition, because 
each class contains sufficiently large number of individual images of isolated defect it becomes possible 
to search for statistically significant distortions of an average “unit cell” structure for selected 
defects. We specifically demonstrate how to use the principal component analysis to search for 
distortions from average “unit cell” for defects associated with Mo dopant. 
 
Finally, we discuss steps necessary for including specific theory constraints, such as transition 
probabilities between defect structures, explicitly into our deep-leaning-based modelling. Because the 
current methods treat observed lattice defects as collections of pixels, without “understanding” the 
physics behind the observations, we propose improving a classification accuracy is by integrating 
Markov model into the search and identification/classification of atomic and defect structures. The 
Markov model can be guided by the theoretical calculations of interaction potentials on the atomic level, 
enforcing physical constraints to transition probabilities of various atomic and molecular configurations 
and effects of electron beam on the matter. This would be an important step towards creating a fully-
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autonomous, AI microscope that is making decisions based on the knowledge of physics that it was 
“taught” [3]. 
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Figure 1. (a) Using a deep learning model to identify positions of defects that break lattice periodicity 
from STEM data on WS2. (b) Hierarchical clustering dendrogram describing different classes of defects 
extracted from STEM movie on WS2 (~ 100 frames). 
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