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Harmonic forcing of a laminar bluff body wake
with rear pitching flaps
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A numerical study on the response of a two-dimensional bluff body wake subjected to
harmonic forcing imposed by two rear pitching flaps is performed. The wake is generated
by a rectangle at a height-based Reynolds number Re = 100, characterised by laminar
vortex shedding. Two forcing strategies are examined corresponding to in-phase ‘snaking’
and out-of-phase ‘clapping.’ The effects of the bluff body aspect ratio (AR = 1, 2, 4),
flapping frequency, flapping amplitude, flap length and Reynolds number are investigated.
For the snaking motion, a strong fundamental resonance of the root mean square (r.m.s.)
drag is observed when the wake is forced near the vortex shedding frequency. For the
clapping motion, a weak subharmonic resonance is observed when the forcing is applied
near twice the vortex shedding frequency resulting in an increase of the lift r.m.s. whereas
the drag r.m.s. remains unaffected. Both resonances intensify the vortex shedding and a
concomitant mean drag increase is observed for the snaking motion. Forcing away from
the resonant regimes, both motions result in considerable drag reduction through wake
symmetrisation and propulsion mechanisms. The formation of two vortex dipoles per
oscillation period due to the flapping motion, which weaken the natural vortex shedding,
has been identified as the main symmetrisation mechanism. A single scaling parameter is
proposed to collapse the mean drag reduction of the forced flow for both motions over a
wide range of flapping frequencies, amplitudes and flap lengths. Finally, the assessment of
the performance of the forcing strategies has revealed that clapping is more effective than
snaking.

Key words: drag reduction, vortex shedding, vortex dynamics

1. Introduction

Bluff body flows at low Reynolds numbers result in a steady laminar regime. With
the increase of the Reynolds number past its critical value Rec, a supercritical Hopf
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bifurcation gives rise to periodic vortex shedding for canonical geometries such as circular
(Rec = 47) or square (Rec = 46) cylinders (Provansal, Mathis & Boyer 1987; Jiang &
Cheng 2018). The vortex shedding mechanism persists at turbulent regimes as it has been
demonstrated experimentally for spanwise-symmetric bodies (cylinders) (Tudball-Smith
et al. 2012), three-dimensional axisymmetric wakes (Rigas et al. 2014) and square-back
bodies (Grandemange, Gohlke & Cadot 2013). Vortex shedding plays a key role in
engineering applications as it can cause a considerable increase in the mean drag and lift
fluctuations, structural vibrations, resonance and even acoustic noise. Hence, numerous
attempts have been made to control and/or suppress it via passive and active techniques
(Choi, Jeon & Kim 2008).

Among the various active control methods which have achieved drag reduction are bluff
body streamwise or transverse oscillations (Carberry, Sheridan & Rockwell 2003, 2005)
and rotational oscillations of the cylinder (Poncet 2002). In the numerical study of Kim &
Choi (2005), spanwise blowing/suction was applied over a circular cylinder to reduce the
drag. It was found that in-phase forcing (between the upper and lower blowing/suction
profiles) resulted in significant drag reduction for a wide range of Reynolds numbers
whereas out-of-phase forcing achieved drag reduction only for high Reynolds numbers.
Further, the mechanism responsible for the drag reduction by the in-phase forcing was
reported to be the attenuation of the vortex shedding caused by a phase mismatch along
the spanwise direction. Contrarily, the drag reduction by the out-of-phase forcing was
attributed to the spatial delay of the vortex shedding and the distortion of the separating
shear layer.

Wood (1964) and Bearman (1967) experimentally achieved drag reduction by active
base bleed from the trailing edge of the bluff body which resulted in the weakening
of the vortex shedding. However, Howell, Sheppard & Blakemore (2003) noted that the
positive effects of the base bleed can be negated by the power required to generate the
bleed flow for the flow over a bluff body with a car-like shape. Littlewood & Passmore
(2012) reduced (experimentally) the drag of a simplified 1/4 scale square-back vehicle
by applying steady blowing at various angles on the roof of the trailing edge in order to
increase the base pressure. However, it was reported that the large mass flow rates required
limit the implementation of the technique to road vehicles.

The boat-tail configuration, where fixed flaps are introduced in the rear of the bluff
body (Lanser, Ross & Kaufman 1991), has been extensively studied in the literature. This
passive device creates a rear cavity which increases the base pressure and results in a
drag reduction by pushing the recirculation bubble downstream and reducing its size (by
deflecting the flow inward from the trailing edge), as demonstrated by the experimental
and numerical study of Khalighi et al. (2001) and the numerical study of Verzicco et al.
(2002). The angle of the flaps can be varied and an optimum angle exists for which the
drag reduction is maximum as shown by Browand, Radovich & Boivin (2005) for field
tests with a semitrailer. De la Cruz, Brackston & Morrison (2017) optimised the lateral
flap angles of the flat square-back Ahmed body under cross-wind conditions showing that
significant improvement in the drag reduction can be achieved at non-zero yaw angles.
Beaudoin & Aider (2008) experimentally obtained a drag reduction of 17.6 % by placing
a pair of fixed lateral flaps around the rear slant of a modified Ahmed body at Re = 1.4 ×
106, which caused the flow to separate and suppressed the longitudinal vortices.

Successful flow control of turbulent bluff body wakes at high Reynolds numbers has
been experimentally obtained through rear forcing applied via harmonically pulsating jets
by many researchers. Li et al. (2016) used a feedback controller for the actuated jets in order
to symmetrise the turbulent square-back Ahmed body at Re = 6 × 105. Li et al. (2019)
demonstrated that bifrequency control is more effective than the single high-frequency
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forcing for a square-back Ahmed body and identified that the wake symmetrisation reduces
the global production of turbulent kinetic energy in the shear layers. Pastoor et al. (2008)
used a zero-net-mass-flux actuation through slots on the upper and lower trailing edges
of a D-shaped bluff body for Reynolds numbers ranging between 23 000 and 70 000
in order to reduce drag. In-phase forcing synchronised the vortices from the upper and
lower edges which significantly delayed the vortex street, increased the base pressure
and resulted in considerable drag reduction (15 %). However, the antiphase forcing did
not result in an efficient drag reduction. Barros et al. (2016a) experimentally forced the
turbulent bluff body wake of an Ahmed body by pulsed jets, and identified two resonances.
A subharmonic resonance was observed when symmetric forcing was applied and a
harmonic one with antisymmetric forcing. Rigas, Morgans & Morrison (2017) showed
that the subharmonic resonance is due to a triadic interaction between the forcing and the
vortex shedding and derived a weakly nonlinear model to capture the behaviour of the
forced flow.

Recently, Brackston et al. (2016) utilised rear pitching flaps to suppress the
symmetry-breaking modes responsible for the bistability of the turbulent Ahmed body
wake and obtained a power efficient drag reduction via a feedback controller. The authors
also noted that by open loop harmonic forcing, a considerable drag increase could be
achieved, and a marginal drag decrease for low frequencies for the specific length of the
flaps tested. However, an understanding of the flow mechanisms during the interaction of
the pitching flaps with the bluff body wake is lacking, which is a necessary requirement to
further improve the aerodynamic performance of bluff bodies.

The flow dynamics past single flapping foils have been extensively studied (Wu et al.
2020) but rarely in the presence of an upstream bluff body wake. For a single pitching
foil with high span-to-chord ratio, four different regimes are present depending on the
peak-to-peak amplitude of oscillations and the Strouhal number (Godoy-Diana et al. 2009;
Andersen et al. 2017; Lagopoulos, Weymouth & Ganapathisubramani 2019). In the first
regime, characterised by positive drag, the Bénard–von Kármán (BvK) street is observed.
In the second regime, characterised by zero drag, the vortices being shed are aligned with
respect to the foil span. In the third regime, a reverse BvK appears (De & Sarkar 2021)
and in the fourth the reversed BvK street is deflected and an asymmetric wake is produced.
The last two regimes are associated with the generation of thrust (propulsion regime). The
addition of a second flapping foil (side-by-side) significantly alters the wake dynamics
and the propulsive performance (Bao et al. 2017; Gungor & Hemmati 2020). Martin et al.
(2017) compared the propulsive performance of the ‘flapping’ motion generated by a single
pitching flap and the ‘clapping’ motion generated by periodic contractions of two flaps.
The flapping propulsion was identified as the most effective one for Reynolds numbers
in the range of 1880 ≤ Re ≤ 11 260. However, the effect of the distance between the two
flaps on the propulsive performance remains to be in investigated.

In the present study, we investigate the interacting flow dynamics of a bluff body wake
generated by a rectangular bluff body with a pair of rear pitching flaps via direct numerical
simulations (DNS). This numerical study is focused on low Reynolds numbers 80 ≤ Re ≤
200, where the vortex shedding is present but the flow remains laminar. An extensive study
of a wide range of the following parameters is performed: aspect ratio of the bluff body;
flapping frequency; flap length; pitching amplitude; and Reynolds number. By studying
the flapping dynamics in the presence of a laminar bluff body wake, we aim to unravel
the fundamental flow mechanisms capable of altering the mean and unsteady drag and lift
forces.

The paper is organised as follows. In § 2, the details for the DNS of the flow around the
rectangular body with and without flaps are given. Section 3.1 presents the response of
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the forced flow over a wide range of flapping Strouhal numbers, along with a description
of the physical mechanisms responsible for the drag reduction/increase of each forcing
strategy. Further, §§ 3.2 and 3.3 cover the effects of the pitching amplitude and Reynolds
number dependency, respectively. Section 3.4 proposes a simple scaling parameter of the
mean drag reduction based on the geometric and dynamic characteristics of the flaps while
§ 3.5 examines the performance of each forcing strategy. Finally, the main conclusions are
summarised in § 4 along with a description of the future outlook.

2. Numerical modelling

The flow over the rectangular bluff body is described by the incompressible Navier–Stokes
equations, solved with high-order finite-difference schemes on a Cartesian mesh. An
immersed boundary method is used to represent the effect of the solid boundaries
on the fluid. Here, the alternating direction reconstruction immersed boundary method
(ADR-IBM) developed by Giannenas & Laizet (2021) is used. The ADR-IBM allows the
simulation of multiple thin and moving boundaries by introducing an extra forcing term f
in the governing equations

∂u
∂t

+ 1
2

[∇(u ⊗ u) + (u·∇)u] + 1
ρ

∇p − ν∇2u = f , (2.1)

∇·u = 0, (2.2)

where u(x, t) is the velocity field, p(x, t) is the pressure field, ρ is the constant density
of the fluid and ν is the kinematic viscosity. The forcing term f imposes the required
boundary conditions on the velocity field: no-slip boundary condition for the fixed bluff
body and a prescribed velocity for the oscillating flaps. Finally, it should be noted that
the equations are written in skew-symmetric form in order to reduce aliasing errors
(Kravchenko & Moin 1997) and to ensure the conservation of the kinetic energy (in the
limit of zero time discretisation error and viscosity).

The high-fidelity open-source flow solver Incompact3d is used for the present
simulations. It is one of the high-order finite-difference solvers of the framework
Xcompact3d (Bartholomew et al. 2020) which is dedicated to the study of turbulent flows
on a Cartesian mesh. Sixth-order accurate compact finite-difference schemes are employed
for the spatial discretisation of the convective and diffusive terms. Their ability to provide
accurate results using a moderate number of degrees of freedom when compared with
low-order schemes makes them desirable for DNS and large-eddy simulations (LES). A
three-step fractional step method is employed for the time integration of the momentum
equation (2.1) and a second-order explicit Adams–Bashforth scheme is used for all
simulations. In order to obtain the pressure field, a modified (to ensure compatibility
with the IBM as detailed in Giannenas & Laizet (2021)) Poisson’s equation is solved in
Fourier space on a half-staggered mesh. Strictly equivalent operators to the sixth-order
compact schemes (up to machine accuracy) can be defined in Fourier space by leveraging
the concept of modified wavenumbers (Lele 1992). A validation of the ADR-IBM for
the flow over a flat plate undergoing a pitching manoeuvre at Re = 100 is presented in
Appendix A. A more thorough validation of the ADR-IBM is presented by Giannenas &
Laizet (2021). For further details on the numerical methods implemented in Xcompact3d,
the interested reader is referred to Laizet & Lamballais (2009).

In this study, the velocities are non-dimensionalised with the free stream velocity U∞,
all lengths with the rectangular body height HC, time with U∞/HC and frequencies are
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expressed as Strouhal number

St = fHC

U∞
. (2.3)

The drag and lift coefficients are calculated via a momentum balance in a control volume
surrounding the solid body and are defined as

CD = FD
1
2ρU2∞HC

, CL = FL
1
2ρU2∞HC

, (2.4a,b)

where FD and FL correspond to the drag and lift forces. It should be reported that the size
of the control volume used for the calculation of the hydrodynamic coefficients has no
influence on the results.

2.1. Natural flow
Here, the natural (unforced) unsteady flow around a rectangular bluff body with varying
aspect ratios 0.25 ≤ AR = LC/HC ≤ 2.0 (where LC is the bluff body’s length) at a
height-based Reynolds number Re = 100 is studied. At Rec ∼ 46 (for AR = 1) a Hopf
bifurcation gives rise to period vortex shedding (Park & Yang 2016; Jiang & Cheng 2018;
Jiang, Cheng & An 2018). The flow exhibits a laminar vortex shedding regime at Rec �
Re � 166 where the well known von Kármán vortex street can be observed (Sohankar,
Norberg & Davidson 1998; Bai & Alam 2018). A rectangular computational domain with
length LD = 40HC and height HD = 20HC is selected for all simulations. A resolution
of nx × ny = 1025 × 512 mesh nodes with a stretched mesh in the vertical direction
towards the centre of the domain (with the smallest mesh spacing in the vertical direction
being �ymin = 0.026HC) is used along with a time step of �t = 5.0 × 10−4HC/U∞. The
selection of the domain size and resolution is based on a convergence study which is
presented in the subsequent paragraphs. A uniform velocity is imposed at the inlet and a
one-dimensional convection equation is imposed at the outlet which is defined as

u|t+�t
nx

− u|tnx

�t
= −U∞

u|tnx
− u|tnx−1

�x
, (2.5)

where u|nx is the outlet velocity, u|nx−1 the velocity one mesh node before the outlet and
�x is the mesh spacing in the streamwise direction. Periodic boundary conditions are
imposed in the vertical direction. The velocity flow field is initialised with random noise
which follows a Gaussian distribution in space with its peak located at the centre of the
domain in the y direction (maximum intensity of 0.1 % of U∞). The bluff body is placed
at (x0, y0) = (10HC, 10HC) and the simulations are terminated after 150 non-dimensional
time-units.

Table 1 summarises the results of a convergence study performed for two different
domain sizes (LD, HD). In more detail, the mean drag coefficient, lift coefficient r.m.s.
(CL r.m.s.) and Strouhal number (St) are presented for various mesh resolutions and
corresponding mesh spacings. As the mesh resolution is increased, a convergence of
all quantities can be observed for both computational domain sizes considered. The
results obtained with the two finest resolutions are nearly identical for the larger domain
(LD, HD = 40, 20). For this study a domain size of LD, HD = 40, 20 and a mesh resolution
of nx × ny = 1025 × 512 have been selected based on this convergence study.

Table 2 compares the hydrodynamic coefficients and Strouhal numbers obtained in
the present study with the values reported in the literature for the natural flow over a
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Study LD, HD nx × ny �x × �y|min CD CL r.m.s. St

Present 40, 20 513 × 256 0.078 × 0.053 1.511 0.187 0.147
Present 40, 20 769 × 384 0.052 × 0.035 1.518 0.190 0.147
Present 40, 20 1025 × 512 0.039 × 0.026 1.489 0.188 0.148
Present 40, 20 1537 × 768 0.026 × 0.017 1.504 0.190 0.148

Present 25, 15 257 × 128 0.097 × 0.087 1.586 0.201 0.151
Present 25, 15 513 × 256 0.048 × 0.044 1.537 0.200 0.150
Present 25, 15 1025 × 512 0.024 × 0.022 1.531 0.194 0.150

Table 1. Mean drag coefficient, root mean square (r.m.s.) lift coefficient and Strouhal number for the flow
over a fixed rectangular bluff body (AR = 1) at Re = 100 for different domain sizes and mesh resolutions.

Study Re CD CL r.m.s. St

Sharma & Eswaran (2004) 80 1.533 0.148 0.140
Sen, Mittal & Biswas (2011) 80 1.566 0.147 0.140
Present 80 1.553 0.148 0.140

Sohankar et al. (1998) 100 1.447 0.156 0.146
Sharma & Eswaran (2004) 100 1.494 0.192 0.149
Singh et al. (2009) 100 1.510 0.160 0.147
Sahu, Chhabra & Eswaran (2009) 100 1.489 — 0.148
Sen et al. (2011) 100 1.528 0.192 0.145
Present 100 1.489 0.188 0.148

Sharma & Eswaran (2004) 120 1.474 0.229 0.155
Sen et al. (2011) 120 1.511 0.234 0.154
Present 120 1.474 0.223 0.154

Sharma & Eswaran (2004) 140 1.466 0.268 0.158
Sen et al. (2011) 140 1.506 0.275 0.158
Present 140 1.465 0.264 0.158

Sharma & Eswaran (2004) 160 1.470 0.317 0.159
Sahu et al. (2009) 160 1.461 0.306 0.159
Present 160 1.467 0.313 0.159

Present 180 1.477 0.379 0.157

Sohankar, Norbergb & Davidson (1997) 200 1.445 0.360 0.149
Islam et al. (2014) 200 1.519 0.450 0.157
Present 200 1.493 0.471 0.151

Table 2. Mean drag coefficients, lift coefficient r.m.s. and Strouhal numbers for the flow over a rectangular
bluff body (AR = 1) at 80 ≤ Re ≤ 200.

rectangular bluff body with an aspect ratio AR = 1 at Re = 80–200. The mean drag
coefficient, lift coefficient r.m.s. and Strouhal numbers are in good agreement with the
results reported in the literature for all Reynolds numbers considered in the present study.

Figure 1 compares the evolution of the Strouhal number, CD and CL r.m.s. for a wide
range of aspect ratios 0.25 ≤ AR ≤ 4.0 with the results reported by Yang & Wu (2013),
Islam et al. (2012) and Sohankar et al. (1997). Again, the mean drag, lift r.m.s. and Strouhal
number are in good agreement with the reported studies.

945 A5-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

52
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.520


Harmonic forcing of a bluff body wake with pitching flaps

0.20 2.5 0.5

0.4

0.3

0.2

0.1

2.0

1.5

1.0

0.5

0.18

0.16

0.14

0.12

0.10
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

AR AR AR

St CD

C
L 

r.
m

.s
.

Islam et al. (2012)
Sohankar et al. (1997)
Yang & Wu (2013)
Present

(a) (b) (c)

Figure 1. Strouhal number (a), mean drag coefficient (b) and lift coefficient r.m.s. (c) against aspect ratio AR,
for the unforced flow around a rectangular bluff body at Re = 100.
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Figure 2. Instantaneous vorticity contours for the unforced flow over a rectangular bluff body at Re = 100
with aspect ratios AR = 1 (a) and AR = 4 (b) at time t = 150.

Furthermore, figure 2 shows instantaneous vorticity contours at t = 150 for aspect ratios
AR = 1 and AR = 4. By increasing the aspect ratio, the shed vortices are weakened and
the dead water (recirculation) region is increased, which results in an increase in the base
pressure (Sohankar et al. 1997) and a subsequent drag reduction.

To identify the forced flow mechanisms giving rise to a drag reduction (which will be
presented in the subsequent sections), we have calculated the reference drag reduction
that can be achieved by solely eliminating the vortex shedding. This will be used as
a reference in cases where the forcing is sufficiently strong, in order to symmetrise
the flow by suppressing the vortex shedding. In the absence of forcing, the mean drag
can be decomposed into the base flow drag (the drag of the bluff body at the same
Reynolds number with a steady and y-symmetric flow) and the shedding induced drag
as described by Protas & Wesfreid (2002). In this context, the maximum (reference) drag
reduction that can be achieved by the elimination of the vortex shedding is limited by
the symmetric base drag at the same Reynolds number (i.e. by the drag of the base flow
which is linearly unstable above Rec). In order to identify this limit, simulations of the
flow over a rectangular bluff body with aspect ratios AR = 1, 2, 4 are performed with
the aforementioned set-up with the exception that no numerical noise is used for the
initialisation of the velocity flow field. Since no disturbance is added into the flow at the
start of the simulation to trigger vortex shedding, the flow remains steady and symmetric.
The accumulation of numerical errors will eventually trigger the instability but this only
happens well after the symmetric flow is effectively converged.

The drag coefficients obtained with the steady symmetric flow for AR = 1, 2, 4 at Re =
100 are CDst = 1.305, 1.251, 1.282, respectively. By comparing the steady coefficients
with the mean drag of the natural flow for each aspect ratio (CD0 = 1.489, 1.339, 1.304)
the maximum (reference) drag reductions based on a wake symmetrisation technique are
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(a) (b) (c)
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Figure 3. Schematic demonstrating the in-phase snaking (a), full clapping (FC) (b) and constrained clapping
(CC) (c) motions. The flow is going from left to right.

�CDsym = (CD0 − CDst)/CD0 = 12.4 %, 6.6 %, 1.7 %, respectively. As can be observed,
the maximum drag reduction with a wake symmetrisation technique becomes smaller with
increasing AR. In the case of full elimination of the vortex shedding, any further deviations
from the base flow drag are primarily attributed to mean flow modifications due to the
flapping motion.

2.2. Forced flow
Here, the different forcing strategies are presented. The harmonic forcing is applied by
two, thin and pitching flaps attached to the rear of the body. Figure 3 shows the three flap
motions considered, with the flow going from left to right. In the ‘snaking’ motion, both
flaps move in-phase and in the same direction (sinuous mode). Contrarily, the flaps move
in opposite directions (out-of-phase) to create the ‘clapping’ motions (varicose mode).
Here, two out-of-phase clapping motions are considered: full clapping (FC), where the
flaps exceed the vertical level of the bluff body and penetrate the free shear layer (which
develops over the upper and lower sides of the body); and constrained clapping (CC),
where the flaps are not allowed to penetrate the free shear layer.

In all cases, the flaps follow a harmonic pitching motion. The instantaneous flap angle
θ(t) of the top and bottom flaps for the snaking, FC and CC motions is described as

snaking θ =
{

θo sin(2π Stf t), top flap
θo sin(2π Stf t), bottom flap

FC θ =
{

θo sin(2π Stf t), top flap
−θo sin(2π Stf t), bottom flap

CC θ =
{

θo sin(2π Stf t) − θo, top flap
−θo sin(2π Stf t) − θo, bottom flap

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

where θo is the flapping amplitude and Stf the flapping frequency, non-dimensionalised
with the body height and free stream velocity. Further, the length of the flaps lf is
non-dimensionalised with the bluff body height. A constant flap thickness of 5 % of the
bluff body height is considered, as it is a good compromise between an appropriate time to
solution (170 CPU hours on a single core) and the required mesh resolution to accurately
capture the fluid motions close to the flaps (600 simulations have been performed for this
numerical study).
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Study LD, HD nx × ny �x × �y|min CD CD r.m.s. CL r.m.s.

Present 40, 20 257 × 192 0.156 × 0.071 1.33 0.15 1.01
Present 40, 20 513 × 384 0.078 × 0.035 1.30 0.11 1.09
Present 40, 20 769 × 512 0.052 × 0.026 1.30 0.12 1.22
Present 40, 20 1025 × 768 0.039 × 0.017 1.30 0.12 1.19

Table 3. Mean and r.m.s. aerodynamic force coefficients with in-phase snaking forcing for various mesh
resolutions (AR = 4, Re = 100, lf = 0.6, Stf = 0.30).

Table 3 summarises a convergence study for the forced flow over a rectangular bluff
body with AR = 4, lf = 0.6, Stf = 0.30 with the in-phase snaking motion and a time step
of �t = 5.0 × 10−4HC/U∞. The values of the mean and r.m.s. force coefficients change
less than 2.5 % between the two finest resolutions. For this study, the finest resolution of
nx × ny = 1025 × 768 is selected along with a domain size of LD × HD = 40HC × 20HC.

3. Results

3.1. Frequency response
Here, the response of the bluff body wake to in-phase snaking and out-of-phase clapping
harmonic forcing is studied for a wide range of flapping Strouhal numbers. Results are
shown for a constant amplitude of flap oscillations (θo = 20◦), for different flap lengths
(lf = 0.4, 0.6, 0.8, 1.0) and bluff body aspect ratios (AR = 1, 2, 4). The flap length for the
constrained clapping is limited to lf = 0.4, 0.6 to avoid the collision of the top and bottom
flaps.

3.1.1. Snaking motion
Figures 4 and 5 show the periodic steady-state response to snaking of the normalised
r.m.s. of the lift and drag and mean drag coefficients. The mean drag coefficient has been
normalised by the mean drag coefficient of the natural flow CD0 = 1.489, 1.339, 1.304
for AR = 1, 2, 4, respectively. Similar normalisations are performed for the r.m.s. values.
Two regimes can be identified based on the mean drag: a drag reduction regime and a drag
increase one.

A distinct peak on the drag r.m.s. and a trough on the lift r.m.s. occur when forcing
is applied near the Strouhal number of the natural flow St0 = 0.148, 0.136, 0.12 for
AR = 1, 2, 4, respectively. This is the result of a fundamental resonance which arises
from the interaction between the antisymmetric oscillatory vortex shedding mode and
the antisymmetric flap oscillation, which induces an amplification of the vortex shedding
mode. The resonance is termed fundamental since the natural vortex shedding instability
and the forcing are at the same frequency and share the same symmetry. A similar sharp
peak is present on the mean drag which corresponds to a significant drag increase (of
more than 40 % for some cases). The mean flow modification, or equivalently the mean
drag increase, is a second-order effect arising from the nonlinear interactions of the
forcing and shedding mode (see, for example, Sipp (2012) for their prediction based on
a weakly nonlinear expansion). Increasing the flap length results in an increase in the
peak magnitude of the mean and r.m.s. of the drag coefficient (for AR = 2, CD/CD0 =
1.09, 1.50 with lf = 0.4, 1.0, respectively). The increase by an order of magnitude of the
drag r.m.s. when the aspect ratio is doubled, is a direct consequence of the behaviour
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Figure 4. Normalised r.m.s. of the drag (a–c) and lift (d–f ) coefficients for in-phase snaking for a range of
flapping frequencies Stf . Here, AR = 1 (a,d), AR = 2 (b,e) and AR = 4 (c, f ), each for different flap lengths lf .
The vertical dashed lines indicate the natural Strouhal number.
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of the natural flow where the drag r.m.s. decreases by an order of magnitude each time
the aspect ratio is doubled (CD0 r.m.s. = 4.9 × 10−3, 5.6 × 10−4, 5.9 × 10−5 for AR =
1, 2, 4, respectively).

Figure 6 shows instantaneous vorticity contours for the forced flow with in-phase
snaking motion for AR = 1 and lf = 0.6 at different flapping Strouhal numbers. At
Stf = 0.165, where the fundamental resonance occurs, the vortex shedding amplification
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Figure 6. Instantaneous vorticity fields at t = 5T/8 with in-phase snaking motion for a range of flapping
frequencies (AR = 1, Re = 100, lf = 1.0). The vorticity field of the natural flow is repeated in panel (c) for
comparison.

can be observed along with a considerable increase in the vorticity magnitude (compared
with smaller and larger flapping Strouhal numbers and to the natural flow). The drag r.m.s.
peak is the result of the vortex shedding amplification. The amplified vortices result in
a large pressure drop on the body’s rear surface which is discussed in further detail in
Appendix D.

The fundamental resonance mechanism has been identified previously in fully
turbulent regimes. Barros et al. (2016a) observed a similar harmonic resonance of the
antisymmetrically forced via pulsed jets turbulent wake over an Ahmed body at 3 × 105 ≤
Re ≤ 6 × 105, which amplified the vortex shedding. Similarly, in the experimental study
of Pastoor et al. (2008), where the turbulent wake of a D-shaped body was harmonically
forced by loudspeakers at 23 000 ≤ Re ≤ 70 000, a fundamental resonance resulted in a
sudden drop of the base pressure, producing a significant drag increase.

The resonant peaks/troughs in figures 4 and 5 do not occur exactly at the natural Strouhal
number St0. Instead, they are shifted towards higher Strouhal numbers. Further, stronger
shifts are exhibited with the increase in the forcing due to the increasing flap length. As
an example, for AR = 1, the mean drag peak is located at Stf ≈ 0.155 when lf = 0.4 and
at Stf ≈ 0.165 for lf = 1.0. The shift of the peaks is typical of nonlinear oscillators forced
near their fundamental primary resonant frequency (see Kovacic & Brennan (2011) for
further details) and has also been observed in turbulent regimes for three-dimensional
bluff bodies in experiments by Brackston et al. (2016). The nonlinear shift of the peaks
can also be predicted by the forced Stuart–Landau equation as it has been demonstrated
by Le Gal, Nadim & Thompson (2001) and Rigas et al. (2017).

Considerable drag reductions (CD0 − CD)/CD0 = 26.5 %, 18.2 %, 12.0 % for AR =
1, 2, 4, respectively, can be obtained by all flap lengths for all three aspect ratios, as
observed in figure 5. For small flapping Strouhal numbers away from the resonant region,
Stf ≤ St0, a small drag reduction is achieved solely for AR = 1 for the range of frequencies
examined. Contrarily, at high Strouhal numbers a drag reduction is obtained for all aspect
ratios and flap lengths, with larger flaps resulting in larger drag reductions. Figure 6 for
Stf = 0.20, 0.40 indicates that a gradual symmetrisation of the wake by the stabilisation
of the unsteady vortex shedding, is responsible for the observed drag reduction. However,
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Figure 7. Instantaneous vorticity fields with the in-phase snaking motion for a range of flap phases (AR = 4,
Re = 100, lf = 1.0, Stf = 0.40).

the drag reductions observed in figure 5 are greater than the maximum (reference) drag
reduction allowed by the symmetrisation of the wake �CDsym (see § 2.1). Hence, the
excess drag reduction beyond the symmetrised regime can be attributed to a propulsion
mechanism due to the thrust produced by the pitching flaps (Gazzola, Argentina &
Mahadevan 2014). The thrust generated by the flaps is due to the acceleration of a mass of
fluid which by action/reaction propels the bluff body in the opposite direction and reduces
its mean drag (Floryan, Van Buren & Smits 2019).

In order to gain insight into the wake symmetrisation mechanism, instantaneous
vorticity contours at various phases of the snaking motion with AR = 4, lf = 1.0 and Stf =
0.40 are presented in figure 7. For these forcing parameters, the wake symmetrisation
extends ∼13HC body heights downstream. The method used for the calculation of the
extent of the wake symmetrisation is presented in Appendix C. During a flap oscillation
cycle, alternating shedding of two vortex dipoles (VDs) is observed. One VD is formed on
and shed from the top flap and another from the bottom flap.

In the following, we focus on the description of the formation of the dipole from the
bottom flap only, since the same process is followed from the top flap with a time lag T/2.
At t = T/4 the bottom flap is in its uppermost position. As the bottom flap starts moving
downwards, T/4 < t < 3T/4, two counter-rotating vortices are generated. A primary bluff
body vortex V1, shown in blue, is created as the flap pitches against the free shear layer
which has been developed on the lower side of the bluff body (see t = T/2). A secondary
flap vortex V2, shown in red, is also created on the upper side of the bottom flap due to the
flap pitching motion (see t = 3T/8). As the bottom flap continues its downward motion,
both vortices grow in size and intensity. After t = 3T/4, the flap’s motion is reversed and
the flap starts moving upwards. Due to this reversal, the secondary vortex V2 rolls off the
bottom flap (see t = 7T/8). At t = T both the primary and secondary vortices are ejected,
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Harmonic forcing of a bluff body wake with pitching flaps

thus creating a VD (i.e. a counter-rotating vortex pair). The same process is repeated with
the upper flap, which leads to the ejection of the second VD at t = T/2.

The secondary vortex V2 plays a crucial role in the wake symmetrisation as it
considerably weakens the primary vortex V1 which is responsible for the vortex shedding.
Hence, the extent of the wake symmetrisation is highly dependent on the intensity of
the secondary vortex, compared with the intensity of the corresponding primary one. The
intensity of the secondary vortex is dependent on the strength of the forcing (i.e. flap length
and flapping Strouhal number) whereas it remains largely unaffected by the aspect ratio
of the body. When the forcing is weak (see figure 6 for Stf = 0.20) the primary vortex
dominates over the considerably weaker secondary one. Contrarily, the intensity of the
primary vortex decreases significantly with increasing aspect ratio. The weaker primary
vortices generated by larger aspect ratios allow the wake to be symmetrised with weaker
forcing by the flaps (see figure 6 for Stf = 0.40 and figure 7 for comparison).

In summary, the forced bluff body wake with the in-phase snaking motion results in two
flow regimes. The first regime corresponds to a gradual wake symmetrisation, the extent
of which is dependent on the amplitude of the forcing. For flapping Strouhal numbers
smaller and away from the resonant range, the weak forcing is insufficient to alter the
vortex shedding of the bluff body. For Stf > St0, the strong forcing exerted by the flaps
generates a VD which eventually leads to the symmetrisation of the wake (the extent of
which depends on the exact set-up) and significant drag reduction. In the second regime,
the forcing enhances the vortex shedding through a resonance mechanism which results in
a substantial drag increase. The resonance occurs near the Strouhal number of the natural
(unforced) flow St0.

3.1.2. Clapping motion
Figures 8 and 9 show the frequency response to harmonic out-of-phase forcing with the FC
and CC motions of the mean drag and lift/drag r.m.s. coefficients. Contrary to the snaking
motion, no harmonic resonance is observed when forcing near the Strouhal number of the
natural flow. Instead, a subharmonic resonance of the vortex shedding can be identified as
a distinct peak on the lift r.m.s. coefficient and subsequently on the mean drag when the
forcing is applied near twice the vortex shedding frequency of the natural flow, Stf ≈ 2St0.
The subharmonic resonance is identified for both the FC and CC motions. However, the
r.m.s. and mean CC resonant amplitudes are considerably smaller compared with the
FC ones. Interestingly, no peak is present on the drag coefficient r.m.s. The resonant
peaks observed on the mean drag coefficient near 2St0 have smaller amplitudes compared
with the harmonic resonance ones (see figures 5 and 9), indicating that the fundamental
resonance mechanism is more efficient in amplifying the vortex shedding mode compared
with the parametric subharmonic one.

The parametric subharmonic instability has been observed in forced transitional
and turbulent regimes. Williams, Mansy & Amato (1992) reported the existence of a
subharmonic resonant interaction between symmetric unsteady bleed forcing and the
primary vortex shedding mode for the flow past a circular cylinder at Re = 470 when
the wake was forced at twice the frequency of the natural flow. Similar resonances are also
observed in both circular and square cylinders undergoing forced streamwise oscillations
(Tudball-Smith et al. 2012). Barros et al. (2016a) also observed a subharmonic resonance
at twice the vortex shedding frequency of the unforced flow which was associated with
a base pressure drop and an increase in the pressure drag for the turbulent forced flow
over an Ahmed body at 3 × 105 ≤ Re ≤ 6 × 105 when symmetric forcing was applied.
This subharmonic resonance was attributed to an amplification of the global oscillatory
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mode of the laminar regime which persists at high Reynolds numbers. Rigas et al. (2017)
observed a similar subharmonic resonance when the turbulent wake of an axisymmetric
bluff body with a blunt trailing edge at Re = 1.88 × 105 was forced at twice the shedding
frequency with axisymmetric blowing/suction. This parametric subharmonic resonance,
which occurs when the frequency of the global mode locks-in to one half of the driving
frequency, was attributed to a nonlinear triadic interaction between the forcing and
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the shedding. Herrmann et al. (2020) experimentally examined the forced flow over a
D-shaped bluff body with periodic blowing at Re = 5.62 × 104 and confirmed the triadic
subharmonic resonant interaction which occurred when symmetric forcing was applied.
Even though the above studies apply jet forcing to excite the wake, the resonant response
of the antisymmetric vortex shedding mode depends on the spatial symmetry of the forcing
regardless of the means through which the perturbation was generated (flaps or jets). In
fact, equivalent resonances between the driving and global frequencies have also been
observed for inline oscillating circular cylinders (Leontini, Jacono & Thompson 2011).

Figure 10 shows instantaneous vorticity contours for AR = 1, lf = 0.6 for various
Strouhal numbers before, at and after the subharmonic resonance with the FC and CC
motions. Similar to the snaking motion, a secondary flap vortex with opposite vorticity
with respect to the primary bluff body vortex is generated and a VD emerges. For Stf =
0.15, the secondary vortices are weak and the primary vortices dominate the flow. With
the increase in the flapping Strouhal number to Stf = 0.25 (i.e. increase in the forcing) the
intensity of the secondary vortices increases, which results in the symmetrisation of the
near wake. Consequently, a modest (∼10 %) mean drag reduction is achieved (see figure 9).
Near the subharmonic resonance at Stf = 0.29 	 2St0, the vortex shedding is amplified,
which results in a considerable increase in the lift r.m.s. (see figure 8) and a subsequent
increase in the mean drag. Due to the symmetry of the forcing, the subharmonic resonance
cannot amplify the vortex shedding as effectively as the fundamental resonance. This is
evident by the relatively weaker vortices produced by the flaps (see the corresponding
figure for the instantaneous pressure contours presented in Appendix D). These vortices
cannot produce a large enough pressure drop on the body’s rear surface. Hence, the
subharmonic resonance does not produce a drag r.m.s. peak. Finally, at Stf = 0.40 the
wake symmetrisation extends farther downstream of the flaps and results in a subsequent
reduction in the mean drag (∼20 %) and lift r.m.s.

For the CC motion, minimal differences in the vorticity fields are observed between
Stf = 0.15 and Stf = 0.29. Since the flaps do not interact with the high-speed shear layer
regions due to their angular constraint within the recirculation region, the resonant peaks
at Stf 	 2St0 are significantly smaller than the ones observed for the FC motion. For
frequencies Stf > 2St0, the CC results in higher drag reduction compared with the FC
motion for all aspect ratios and flap lengths considered. This is demonstrated at Stf = 0.40
where the wake symmetrisation effect is more pronounced for the CC than for the FC
motion.

Figure 11 shows instantaneous vorticity contours for the FC and CC motions with
AR = 4 and lf = 0.6 for various flapping Strouhal numbers. For the FC motion, a weak
symmetrisation of the wake is observed for Stf = 0.10 and Stf = 0.20, accompanied
by drag reduction. When forcing at twice the shedding frequency, Stf = 0.24, the
subharmonic resonant effect can be observed through the enhancement of the vortex
shedding mode, which results in the increased mean drag coefficient but still an overall
drag reduction. Finally, at Stf = 0.40 the wake is symmetrised, resulting in a significant
drag reduction. For the CC motion on the other hand, the wake has been fully symmetrised
at Stf = 0.20. Hence, there is no enhancement of the primary vortex shedding mode at
Stf = 0.24 as it has been fully suppressed.

The subharmonic resonance (see mean drag coefficient in figure 9) disappears by
increasing the flap length for all aspect ratios considered. The extension of the flap
length increases the effective aspect ratio of the bluff body, which reduces the vortex
shedding amplitude and consequently the resonant interaction with the forcing. As shown
in § 2.1, the natural vortex shedding in the absence of forcing is weakened by increasing
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Figure 10. Instantaneous vorticity field with out-of-phase FC at t = T/2 (a–d) and CC at t = T/4 (e–h) for a
range of flapping frequencies (AR = 1, Re = 100, lf = 0.6).
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Figure 11. Instantaneous vorticity field with out-of-phase FC at t = T/4 (a–d) and CC at t = T/2 (e–h) for a
range of flapping frequencies (AR = 4, Re = 100, lf = 0.6).
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Figure 12. Instantaneous vorticity field with out-of-phase CC motion for a range of flap phases (AR = 2,
Re = 100, lf = 1.0, Stf = 0.40).

the aspect ratio of the bluff body. Further, due to the weakened vortex shedding, the
clapping motion is capable of symmetrising the wake and eliminating the global instability
entirely with weaker forcing when larger flap lengths are considered. Hence, as the flap
length is increased, the resonant peaks become smaller in amplitude due to the gradual
symmetrisation of the wake. Eventually, the subharmonic resonance cannot occur as the
vortex shedding instability has been suppressed. The resonant peaks observed with the
constraint clapping motion are significantly smaller than the ones with the FC motion.
Since the flaps with the FC motion can penetrate the high-speed region of the shear layer,
intense primary vortices are generated which require secondary vortices with the same
intensity for the symmetrisation of the wake.

Similar to the snaking motion, two VD are being shed by the flaps in each cycle.
However, unlike the snaking which resulted in the asynchronous shedding of the dipoles
at t = T/2, T the clapping motion results in the simultaneous ejection of both dipoles at
t = T/2 as shown in figure 12 for the FC motion with AR = 2, lf = 1.0 and Stf = 0.40.
These parameters correspond to a drag reduction of more than 80 %. The mechanisms
which give rise to the primary (bluff body) and secondary (flap) vortices remain the same
as those described for the snaking motion.

In summary, the forced bluff body wake with the clapping motion results in two
flow regimes. The first regime corresponds to wake symmetrisation, the extent of which
depends on the strength of the forcing. In this regime, drag reduction is achieved for almost
all aspect ratios and flap lengths apart from cases where the forcing is very weak (small flap
length and Stf ). The second regime is related to the nonlinear triadic resonant interaction
between the forcing and the primary vortex shedding instability which occurs at twice the
natural Strouhal number 2St0. Even though the mean drag exhibits a resonant peak, drag
reduction is still observed for most aspect ratios and flap lengths. Both FC and CC motions
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Figure 13. Time-averaged streamwise velocity profiles with the snaking (a) and FC (b) motions. The solid
lines correspond to the forced flow and the dashed ones to the natural one. Time-averaged streamwise velocity
difference profiles between forced and natural cases with snaking (c) and FC (d). Here AR = 4, lf = 1.0,
Stf = 0.40.

result in drag savings much greater than the maximum (reference) drag reduction which
can be achieved by a wake symmetrisation mechanism (see § 2.1). Hence, any further drag
reduction than �CDsym , is is attributed to propulsion mechanisms.

3.1.3. Wake profiles
The wake velocity profiles are shown in figure 13 for the snaking and FC motions in order
to quantify the effect of the forcing on the base flow and clarify the propulsion mechanism
that results in considerable mean drag reduction.

Figure 13(a,b) compares the time-averaged streamwise velocity profiles along the
vertical direction of the natural flow (dashed lines) with the ones of the forced flow (solid
lines) by the snaking and FC motions with AR = 4, lf = 1.0, Stf = 0.40. In figure 13(c,d)
the natural velocity profiles are subtracted from the forced ones in order to extract the
mean flow modification due to the forcing. The snaking motion for this case corresponds
to a drag reduction of 12 % whereas the FC to a drag reduction of 75 %. As it can be
observed in the figure, the snaking motion does not affect the Blasius-like profile which
develops over the length of the body, whereas the clapping motion produces a very small
modification near the flaps.

Both motions result in a significant modification of the wake profiles for a short distance
downstream of the flaps (∼1.5Hc). Further, the forced flow produces a larger wake deficit
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than the natural flow at the centreline of the body (y = 0) just downstream of the flaps. This
is the result of the strong primary vortices which are generated when the flaps reach their
maximum amplitude at t = T/4, 3T/4 for the snaking and at t = T/4 for the FC motion.
As the flaps move back towards the θ = 0◦ position, a secondary and counter-rotating
vortex is generated which is shed at t = T/2, T for the in-phase and at t = T/2 for the
out-of-phase motions. The pair of the counter-rotating vortices is propelled downstream
and accelerates the flow. This results in a decrease in the drag deficit near the maximum
position of the flaps which is observed in figure 13. In the region after two body-heights
(2Hc) downstream of the flaps, the forced profiles generated with the snaking motion are
nearly identical to the natural ones. Contrarily, the effects of the forcing for the FC motion
persist (even up to four body-heights downstream of the flaps) and produce a significantly
smaller drag deficit.

Regardless of the forcing strategy, each flap generates a single jet-like profile which is
very similar to the velocity profiles of single pitching foils (Van Buren et al. 2018). The jet
profiles indicate the existence of the reverse BvK vortex street produced by each pitching
flap (Taylor 2018). The snaking motion results in a velocity profile with only two peaks
which accelerate the flow for a short distance downstream of the flaps. Contrarily, the
contracting motion of the flaps with the out-of-phase clapping motion results in a pressure
increase inside the cavity which leads to a high-speed ejection of fluid at the centreline
(see figure 12 at t = 5T/8). This creates a third peak in the velocity profiles which is
maintained for a long distance downstream of the flaps. No wake deflection (similar to the
one observed for by Godoy-Diana et al. (2009) for a single flapping foil and by Gungor &
Hemmati (2020) for side-by-side foils) has been observed for either the snaking or clapping
motions.

The thrust produced by the pitching flaps is a direct consequence of the jet-wakes which
are characterised by a reverse BvK vortex street (see figure 1c in Taylor (2018)). The fact
that the jet profiles for the clapping persist farther downstream than the snaking ones,
suggests that the clapping motion is more effective compared with the snaking one in
producing high thrust in order to considerably reduce the mean drag once the wake has
been fully symmetrised. This is in line with the observations of Dewey et al. (2014)
who noted that in-phase oscillating side-by-side hydrofoils exhibit enhanced propulsive
efficiency and reduced thrust whereas out-of-phase ones exhibit enhanced thrust while
maintaining their propulsive efficiency. At this point it should be noted that the flaps do
not generate enough propulsive forces in order to produce a net thrust (i.e. the drag ratio
does not become negative) for the range of parameters studied (see figures 5 and 9).

3.2. Amplitude response
Here, the effect of the forcing amplitude θo is investigated for various aspect
ratios and a fixed flap length of lf = 0.6 with the snaking and clapping
motions. A wide range of amplitudes (5◦ ≤ θo ≤ 35◦) is studied for two flapping
Strouhal numbers (snaking – Stf |AR=1 = 0.16, 0.30, Stf |AR=2 = 0.145, 0.30, Stf |AR=4 =
0.14, 0.30; clapping – Stf |AR=1 = 0.28, 0.35, Stf |AR=2 = 0.26, 0.35, Stf |AR=4 = 0.24, 0.35).
The selected frequencies cover both the nonlinear resonant regions (harmonic for the
snaking and subharmonic for the clapping) where significant drag increase is observed
and the regions where drag reduction through the wake symmetrisation and propulsion
mechanisms is achieved.

Figure 14, shows the response of the mean drag for different forcing amplitudes and
frequencies. When forcing of small amplitude (5◦ ≤ θo ≤ 10◦) is applied with the snaking
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Figure 14. Normalised mean drag coefficient with AR = 1 (a), AR = 2 (b) and AR = 4 (c) for a range of
forcing amplitudes θo with in-phase snaking and out-of-phase clapping motions. The solid horizontal lines
correspond to a unity ratio.

motion near the fundamental frequency Stf = 0.16 for AR = 1, the mean drag shows
very small variations. However, as the amplitude is increased for θo ≥ 15◦, the drag ratio
increases rapidly, suggesting that a minimum threshold exists below which the flow cannot
lock-in the frequency of the vortex shedding in order to interact with the primary instability
and enhance it (i.e. for the fundamental resonance to occur). Brackston et al. (2016) and
Rigas et al. (2017) noted a similar threshold in turbulent forced wakes.

Regarding the clapping motions, when the excitation is applied near/at twice the
frequency of the natural flow (subharmonic resonance), Stf = 0.28, 0.265, 0.24 for AR =
1, 2, 4, respectively, the mean drag ratio remains almost constant for a wide range of
amplitudes and eventually starts decreasing for θo � 25◦. The fact that the mean drag
does not increase with increasing amplitude may appear counter-intuitive but can be
explained when the competing mechanisms of the nonlinear subharmonic resonance and
the drag reduction mechanisms of propulsion and wake-symmetrisation are considered.
While the subharmonic triadic resonance attempts to increase the drag, the increased
forcing (due to the increased amplitude) counteracts this effect via the propulsion and wake
symmetrisation mechanisms. This competition is also (partly) responsible for the transition
of the mean drag peaks to smoothed humps and eventually their complete elimination that
was observed in figure 9.

3.3. Reynolds number dependence
In this section the Reynolds number dependence of the forced flow with the snaking and
clapping motions is evaluated. First, the dependence is investigated for a fixed aspect ratio
AR = 1, flap length lf = 0.6 and flapping Strouhal number Stf = 0.40 with the snaking,
FC and CC motions for 80 ≤ Re ≤ 200. The mean drag ratio between forced and natural
cases presented in figure 15 shows a favourable decrease as Re increases for all three
motions.

The decrease of the mean drag ratio is the result of the increase of the thrust generated
by the flaps with increasing Re. In order to illustrate this, let us consider the case of the FC
motion for AR = 1, lf = 0.8 where drag ratios of CD/CD0 = 0.65, 0.49 are obtained for
Re = 80 120, respectively. For this case it can be deduced that the drag of the natural flow
does not contribute to the decrease of the drag ratio as its value at Re = 120 is lower than
that at Re = 80 (see table 2). By inspecting the instantaneous vorticity contours for the
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Figure 15. (a) Mean drag ratio for a range of Reynolds numbers for AR = 1, with the snaking and clapping
motions at Stf = 0.40 with various flap lengths. (b,c) Instantaneous vorticity fields at t = T with out-of-phase
FC motion (AR = 1, Re = 80 (b) and Re = 120 (c), lf = 0.8).

forced flow with the FC motion at the same Reynolds numbers (see figure 15), it is clear
that both wakes are fully symmetrised. Hence, it can be concluded that the increased thrust
produced by the flaps (i.e. the propulsive mechanism) is responsible for the drag reduction.
The increase of the thrust with increasing Reynolds number has also been observed for
single pitching foils (Senturk & Smits 2019).

The CC motion shows less sensitivity as the flaps operate in the recirculation bubble
and avoid the interaction with the high-speed shear layer regions. Further, two more cases
are considered in order to investigate the Reynolds dependency for different flap lengths.
Figure 15 shows the FC motion with lf = 0.8 and the snaking motion with lf = 1.0. As it
can be seen, the forced flow becomes more sensitive to the Reynolds number for larger flap
lengths. Further, similar to the observations of § 3.1, larger drag reductions are obtained
with larger flaps.

The critical Reynolds number of the secondary (mode A) wake instability is estimated at
Re ∼ 166 and the onset of the mode B instability occurs at Re � 185–210 (Jiang & Cheng
2018). Hence, the results presented in this section for Re > 160 are only representative of
the two-dimensional periodic base-flow and further three-dimensional simulations would
be required to evaluate the effect of the flaps in the presence of spanwise flow variation.

3.4. Drag reduction scaling
Here, the scaling of the mean drag reduction for all flap lengths, forcing amplitudes and
aspect ratios is presented. To begin with, each plate produces thrust which in turn results
in a subsequent drag reduction for the bluff body. Since the thrust produced by each flap is
proportional to the product of the tip velocity squared and the flap length (i.e. U2

tiplf ) (Beal
et al. 2006; Gazzola et al. 2014; Floryan, Van Buren & Smits 2020) then it follows that the
drag reduction should scale as

CD/C∗
D0

∼ U2
tiplf . (3.1)

The tip-speed velocity of the flap is given by Utip = ωlf , where the angular velocity of the
flap is ω = dθ/dt = 2πStf θo cos(2πStf t). Hence, all the design parameters of the system
(θo, lf , f ) are present in the proposed scaling parameter. The overbar over the tip-speed and
angular velocity represents mean quantities. Here, the normalisation of CD/C∗

D0
is used,

where C∗
D0

corresponds to the mean coefficient of the unforced flow with an effective
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Figure 16. Scaled behaviour of the mean normalised drag CD/C∗
D0

with AR = 1, 2, 4 for the out-of-phase FC
and CC motions (a) and the snaking motion (b) for the data presented in figures 5, 9 and 14.

aspect ratio, AR∗ = AR + lf . This modified normalisation solely influences the level of
the normalised mean drag and allows the collapse of data with different aspect ratios. It
should be highlighted that while the normalisation of the drag with CD0 could also be
used, the collapse of the data shown in figure 16 would not be satisfactory with the data of
each aspect ratio being shifted vertically. As it will be demonstrated in the subsequent
paragraphs, the new scaling can be used to collapse the mean drag reduction outside
of the resonant regions even when both the symmetrisation and propulsive mechanisms
contribute to the obtained drag reduction.

Figure 16 shows the scaled behaviour of the FC and CC and snaking motions
presented in figures 5 and 9. Further, the amplitude response data of figure 14 have
also been included. The drag ratios collapse well over a large range of flap lengths lf =
0.4, 0.6, 0.8, 1.0, Strouhal numbers 0.025 ≤ Stf ≤ 0.40 and aspect ratios AR = 1, 2, 4 for
both forcing motions and there is a linear relationship between the two parameters. This
linearity can be seen more clearly in the corresponding figure in Appendix E. The resonant
regions do not collapse due to the strong nonlinear effects, which are more pronounced
for the snaking motion. Since the scaling is based on propulsion arguments, it cannot
describe the nonlinear resonant interactions between the forcing and the vortex shedding.
However, the resonant regions are always known (being near St0 for snaking and 2 × St0
for clapping).

3.5. Performance
Finally, an investigation on the performance of the clapping and snaking forcing strategies
for various Strouhal numbers and flap lengths is presented. The performance is assessed
by the effectiveness ratio E which is defined as the power ratio between drag power saved,
Psave, and power input to the flaps, Pin:

E = Psave

Pin
= (FD − FDF )U∞

Tω
, (3.2)

where FDF is the drag with fixed rear flaps at an angle θf = 0 (see Appendix B) and
Pin = Tω is the time-averaged input power required to overcome the hydrodynamic forces
acting on the flaps. Here, T represents the torque and ω the rotational velocity of the
flaps. The torque is calculated by the product of the normal forces acting on the flaps
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Figure 17. Effectiveness ratio for the snaking and clapping strategies with AR = 1 and lf = 0.4 (a) and lf =
0.6 (b) for a wide range of flapping Strouhal numbers. The two vertical dashed lines indicate the natural Strouhal
numbers St0 and 2 × St0, whereas the solid horizontal ones correspond to a unity ratio.

and the distance from the hinge to the centre of gravity which is the half-flap-length:
T = (FD sin(θ) + FL cos(θ))lf /2. Here, θ represents the instantaneous angle of each
pitching flap (a detailed description of the definition of θ is presented in § 2.2). The
input power does not account for any losses such as electromechanical ones related to flap
actuation. The hydrodynamic forces acting on each flap are calculated via a momentum
balance in a control volume surrounding only the individual flap of interest. Equation (3.2)
is essentially the same as the propulsion efficiency commonly used for pitching foils
(Buchholz & Smits 2008; Taylor 2018; Wu et al. 2020), which is defined as the ratio of the
thrust to the input power. Here, instead of thrust we use the drag saving in the nominator of
(3.2), which is commonly used for the quantification of performance of active flow control
(Choi et al. 2008; Barros et al. 2016b). The drag saving definition allows the comparison
of the active control technique via rear pitching flaps and the passive technique of fixed
rear flaps.

The effectiveness ratio can take any real value. When the forcing strategy results in a
drag increase, the ratio becomes negative. Contrarily, when a drag reduction is achieved
but more energy has to be spent compared with the power saving, the effectiveness takes
values between zero and one. Finally, for effectiveness values greater than unity, the
forcing strategy is beneficial and suggests that a net energy saving can potentially be
achieved. Effectiveness values smaller than minus one indicate that an energy efficient
deceleration (braking) can be achieved.

Figure 17 shows the effectiveness with the snaking and clapping forcing strategies with
flap lengths of lf = 0.4, 0.6 and AR = 1. The strong resonant interaction between the
snaking motion and the vortex shedding results in extremely effective drag increase at
Stf ≈ St0, which increases by increasing the length of the flap.

The FC and snaking strategies show a potential for a net power saving only for a narrow
range of forcing Strouhal numbers with lf = 0.6. In fact, for the smallest flap length
lf = 0.4 these strategies result in effectiveness values below unity for all Stf considered.
Contrarily, the CC emerges as the most efficient drag reduction strategy by consistently
achieving a net energy saving for both flap lengths and for a wide range of Strouhal
numbers. Similar to the propulsive performance of single pitching foils (Taylor 2018) the
effectiveness shows the existence of an optimum Strouhal number. The optimal forcing
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frequency is Stf ≈ 0.3 and Stf ≈ 0.2 for the two flap lengths. The better performance of
this strategy stems from the restricted flap motion that avoids the interaction with the
high-speed shear layer regions.

4. Conclusion and outlook

A numerical study based on nearly 600 high-fidelity simulations on the response of a
two-dimensional laminar bluff body wake subjected to harmonic forcing with two thin
and pitching rear flaps has been presented in this paper. The effects of the flap length,
flapping amplitude, flapping Strouhal number and aspect ratio have been examined along
with the Reynolds number dependency for two different forcing strategies (snaking and
clapping). The flow simulations have been performed with the high-order finite-difference
solver Incompact3d which was combined with the ADR-IBM in order to simulate the
moving flaps and the bluff body.

The snaking motion results in a strong fundamental resonance near the natural
(unforced) Strouhal number of the base flow. This fundamental resonance is the result
of the interaction between the primary vortex shedding mode and the forcing. This
results in the amplification of the former and a significant increase in the r.m.s. of the
drag coefficient and a trough in the lift r.m.s. Subsequently, a considerable increase in
the mean drag occurs. No fundamental resonance has been observed for the clapping
motion. Contrarily, a subharmonic resonance occurs at twice the natural frequency. This
subharmonic resonance which also amplifies the primary vortex shedding mode results in
a sharp increase in the lift r.m.s. and a subsequent increase in the mean drag (the drag
r.m.s. remains unaffected). The clapping motion can produce significant drag reductions
for nearly all Strouhal numbers, flap lengths and aspect ratios. With increased forcing
(due to the flapping Strouhal number and/or flap length) the wake becomes symmetrised
and the resonant effect diminishes. Once the wake has been fully symmetrised, the vortex
shedding instability is suppressed and the subharmonic resonance can no longer occur.

Both forcing strategies are capable of producing considerable drag reductions through
a wake symmetrisation and propulsive mechanisms. An important aspect of the wake
symmetrisation mechanism for both motions is the formation and ejection of a VD which
weakens the primary vortex that gives rise to the vortex shedding.

Further, a scaling parameter based on the propulsive regime has been proposed. The
scaling requires solely two parameters (the flap length and the flap tip velocity), which are
known a priori. A very good collapse of the drag ratio is obtained for all aspect ratios,
flap lengths, flapping Strouhal numbers and pitching amplitudes for both the snaking
and clapping forcing strategies. Finally, an effectiveness ratio is proposed to assess the
performance of each forcing strategy and indicate whether a net energy saving is possible.
The FC and snaking strategies are ineffective for the smallest flap length lf = 0.4 and
only show potential for a very narrow range of Strouhal numbers for the larger flap length
lf = 0.6. Contrarily, the CC motion appears to be the most reliable for the parameter ranges
considered in this study.

The next step is to extend this work to higher Reynolds numbers with three-dimensional
LES in order to study the effect of the spanwise aspect ratio of the body and assess the
validity of the proposed scaling. Further, it will be sought to improve the performance
of the technology further by adding flexibility to the flaps and by adding fluid–structure
interaction capability to Incompact3d. Since flexible pitching flaps have better propulsive
performance compared with rigid ones (Michelin, Llewellyn & Stefan 2009; Wang,
Huang & Lu 2021), they could be highly beneficial for the configuration studied in this
paper.
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Appendix A. Canonical manoeuvre

To further demonstrate the ability and robustness of the ADR-IBM to handle simulations
of thin moving boundaries, the test case of the large amplitude pitch-up, hold, pitch-down
manoeuvre which was introduced by Eldredge, Wang & Ol (2009) is considered. The
manoeuvre which was designed to study separation phenomena in pitching airfoils is
characterised by the angle of attack (AoA) of the flat plate α(t):

α(t) = α0 + αmax
G(t)

max(G(t))
, G(t) = log

[
cosh(a(t − t1)) cosh(a(t − t4))
cosh(a(t − t2)) cosh(a(t − t3))

]
,

(A1a,b)

where the plate starts with an initial AoA α0 = 15◦ and reaches a maximum angle of 25◦
(with the pitching amplitude being αmax = 10◦). The plate pitches about its leading edge
and the parameter a = 11 determines the smoothness of corners of the manoeuvre and
t1 = 1, t2 = 3, t3 = 4, t4 = 6.

The Reynolds number which is based on the chord length (c = 1) of the flat plate
with 1 % thickness is set at Re = 100, and a rectangular domain Lx × Ly = 10c × 6c
is considered with a resolution of nx × ny = 1025 × 768. A stretched mesh is used in
the vertical direction towards the centre of the domain with a minimum mesh spacing
�y = 0.0065c and a time step of �t = 5 × 10−5c/u∞ is selected.

Figure 18 shows the time evolution of the AoA (see (A1a,b)) of the flat plate and
compares the lift coefficient obtained with the ADR-IBM with the DNS results of Brunton
& Rowley (2011) and Brunton, Rowley & Williams (2013). The lift coefficient appears to
be in excellent agreement with both DNS studies.

Appendix B. Fixed flaps

As it has been reported in the literature (Lanser et al. 1991; Khalighi et al. 2001; Storms
et al. 2004; Browand et al. 2005), the addition of fixed flaps at the rear base of a bluff
body (commonly known as boat-tailing devices) can reduce the aerodynamic drag by
altering the wake and increasing the base pressure. In this section, a brief study on the
drag reduction effects of two fixed flaps at the rear of a rectangular bluff body (AR = 1)
are presented for zero yaw angle at Re = 100. The effects of various fixed flap angles
(0◦ ≤ θf ≤ 20◦) for various lengths lf = 0.2, 0.4, 0.6, 0.8, 1.0 are examined.

Figure 19 shows the evolution of the drag ratio for various flap angles. Overall, this
passive device is highly beneficial as it results in considerable drag reductions for all
the parameters studied here. The drag ratio variations which are very small for lf = 0.2
become more significant as the flap length is increased. An optimum angle 7.5◦ �
θopt � 10◦ exists for each length. At this point it should be stressed that even though
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Figure 18. The AoA (a) and lift coefficient CL (b) against convective time for the flow over a flat plate
undergoing a canonical manoeuvre at Re = 100.
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Figure 19. Normalised drag coefficients for the flow over a rectangular bluff body with aspect ratios AR = 1
with fixed rear flaps of varying length and flap angles. The solid horizontal line corresponds to a unity ratio.

significant drag reductions can be obtained with this passive device (as demonstrated
here for a zero yaw angle), unpredictable real life operating conditions could easily result
in suboptimal situations. Hence, only a closed-loop control strategy could ensure the
optimum performance of the design and extend its operational range.

Appendix C. Wake symmetrisation

Here the method which allows the determination of the wake symmetrisation extent is
presented. When the flow has been fully symmetrised, the vertical component of the
velocity v at the body’s centreline is zero. Hence, the assessment of the extent of the
wake’s symmetrisation can be determined based on the values of v downstream of the body
which are a proxy for the unsteady global vortex shedding amplitude. A small threshold
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Figure 20. Evolution of the vertical velocity component along the streamwise direction at the centreline of the
bluff body with the in-phase snaking motion (AR = 4, Re = 100, lf = 1.0, Stf = 0.40) corresponding to the
instantaneous vorticity contours shown in figure 7. The vertical dashed line marks the location of the body’s
rear. The two horizontal dashed lines indicate the symmetrisation threshold.
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Figure 21. Evolution of the vertical velocity component along the streamwise direction at the centreline of
the bluff body with the out-of-phase FC motion (AR = 4, Re = 100, lf = 0.6, Stf = 0.10, 0.20, 0.24, 0.40)
corresponding to the instantaneous vorticity contours shown in figure 11. The vertical dashed line marks the
location of the body’s rear. The two horizontal dashed lines indicate the symmetrisation threshold.

(|v| ≤ 0.07) is selected, below which the wake is considered symmetrised. Figure 20
shows the evolution of v in the streamwise direction and corresponds to the vorticity
contours shown in figure 7 at t = T . As can be seen, the wake is symmetrised between
∼6HC–13HC downstream of the body’s rear. The large velocity amplitudes which are
observed near the body’s rear surface (4.0 ≤ x ≤ 6.0) are a result of the formation of the
strong VD.

Similarly, figure 21 shows that for the out-of-phase FC motion (AR = 4, Re = 100, lf =
0.6), the wake is symmetrised for ∼8.75HC, 13.0HC, 7.0HC for Stf = 0.10, 0.20, 0.24,
respectively. While the symmetrisation extent is increased between Stf = 0.10 and Stf =
0.20, a considerable reduction is observed at Stf = 0.24. This disruption of the gradual
wake symmetrisation is due to the subharmonic resonance which occurs at Stf = 0.24. At
Stf = 0.40 the wake has been fully symmetrised.

Appendix D. Pressure contours

Here instantaneous pressure contours are presented for the in-phase and out-of-phase
motions. Figure 22 shows the pressure fields obtained with the snaking motion (AR = 1,
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Figure 22. Instantaneous pressure fields at t = 5T/8 with the in-phase snaking motion for a range of flapping
frequencies (AR = 1, Re = 100, lf = 1.0).
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Figure 23. Instantaneous pressure fields at t = T/2 with the out-of-phase FC motion for a range of flapping
frequencies (AR = 1, Re = 100, lf = 0.6).
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Figure 24. Scaled behaviour of the mean normalised drag CD/C∗
D0

with AR = 1 (a), AR = 2 (b) and
AR = 4 (c) for the out-of-phase FC motion for the data presented in figure 9.

Re = 100, lf = 1.0) for various Strouhal numbers (see figure 6 for the corresponding
vorticity contours). At Stf = 0.165, a large pressure drop can be observed at the body’s rear
surface (compared with other forcing Strouhal numbers) due to the fundamental resonance
which amplifies the vortex shedding and leads to the generation of very strong vortices.
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Figure 23 shows the pressure fields obtained with the FC motion (AR = 1, Re = 100,
lf = 0.6) for various Strouhal numbers (see figure 10 for the corresponding vorticity
contours). Due to the symmetry of the forcing, the shed vortices are not strong enough
to generate a pressure drop on the body’s rear surface. Instead, the pressure shows a small
increase as the two flaps reduce the size of the rear cavity due to their motion.

Appendix E. Drag reduction scaling

Figure 24 shows the normalised drag coefficient CD/C∗
D0

plotted against the scaling

parameter U2
tiplf for three aspect ratios (AR = 1, 2, 4) and various flap lengths (lf =

0.4, 0.6, 0.8, 1.0) with the out-of-phase FC motion (for the data presented in figure 9).
As it can be seen, there is a linear relationship between the two parameters and the data
collapse well for each aspect ratio.
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