
JFP 13 (1): 17–38, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S0956796803000510 Printed in the United Kingdom

Chapter 3

Expressions

In this chapter, we describe the syntax and informal semantics of Haskell expressions, includ-
ing their translations into the Haskell kernel, where appropriate. Except in the case of let ex-
pressions, these translations preserve both the static and dynamic semantics. Free variables and
constructors used in these translations always refer to entities defined by the Prelude. For ex-
ample, “concatMap” used in the translation of list comprehensions (Section 3.11) means the
concatMap defined by the Prelude, regardless of whether or not the identifier “concatMap”
is in scope where the list comprehension is used, and (if it is in scope) what it is bound to.

In the syntax that follows, there are some families of nonterminals indexed by precedence levels
(written as a superscript). Similarly, the nonterminals ��, �����, and ����� may have a double
index: a letter
 , � , or � for left-, right- or non-associativity and a precedence level. A precedence-
level variable � ranges from 0 to 9; an associativity variable � varies over �
 � � � ��. For example

���� � (������ ����� ���)

actually stands for 30 productions, with 10 substitutions for � and 3 for � .

��� � ���� :: �������� =>� ���� �expression type signature�
� ����

���� � ������ ��������� ������ �
�
����

� �����

���� � �
���� � ������ � �������� ������

���� � - ����

17

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

18 CHAPTER 3. EXPRESSIONS

����� � ������ �������� ������ � ������ �
����� � \ ����� � � � ����� -> ��� �lambda abstraction� � � ! �

� let ���
� in ��� �let expression�
� if ��� then ��� else ��� �conditional�
� case ��� of { �
�� } �case expression�
� do { ��	�� } �do expression�
� ����

���� � ������ ���� �function application�

���� � ���� �variable�
� ���� �general constructor�
�
�����

� (���) �parenthesized expression�
� (���� , � � � , ����) �tuple� " � # �
� [���� , � � � , ����] �list� " � ! �
� [���� �, ���� � .. ����� �] �arithmetic sequence�
� [��� | ���
� , � � � , ���
�] �list comprehension� � � ! �
� (������ ����� ���) �left section�
� (
���� ����
 ���) �left section�

� (���
�����
�-� ������) �right section�

� (���
�� ���
�-� ����

�) �right section�

� ���� { ������ , � � � , ������ } �labeled construction� � � $ �
� ���������� { ������ , � � � , ������ } �labeled update� � � ! �

Expressions involving infix operators are disambiguated by the operator’s fixity (see Section 4.4.2).
Consecutive unparenthesized operators with the same precedence must both be either left or right
associative to avoid a syntax error. Given an unparenthesized expression “� �������� � ������� � %”,
parentheses must be added around either “� �������� �” or “� ������� �%” when � � & unless � � � � �
or � � � � �.

Negation is the only prefix operator in Haskell; it has the same precedence as the infix - operator
defined in the Prelude (see Section 4.4.2, Figure 4.1).

The grammar is ambiguous regarding the extent of lambda abstractions, let expressions, and condi-
tionals. The ambiguity is resolved by the meta-rule that each of these constructs extends as far to
the right as possible.

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.1. ERRORS 19

Sample parses are shown below.

This Parses as
f x + g y (f x) + (g y)
- f x + y (- (f x)) + y
let { ... } in x + y let { ... } in (x + y)
z + let { ... } in x + y z + (let { ... } in (x + y))
f x y :: Int (f x y) :: Int
\ x -> a+b :: Int \ x -> ((a+b) :: Int)

A note about parsing. Expressions that involve the interaction of fixities with the let/lambda
meta-rule may be hard to parse. For example, the expression

let x = True in x == x == True

cannot possibly mean

let x = True in (x == x == True)

because (==) is a non-associative operator; so the expression must parse thus:

(let x = True in (x == x)) == True

However, implementations may well use a post-parsing pass to deal with fixities, so they may well
incorrectly deliver the former parse. Programmers are advised to avoid constructs whose parsing
involves an interaction of (lack of) associativity with the let/lambda meta-rule.

For the sake of clarity, the rest of this section shows the syntax of expressions without their prece-
dences.

3.1 Errors

Errors during expression evaluation, denoted by �, are indistinguishable by a Haskell program
from non-termination. Since Haskell is a non-strict language, all Haskell types include �. That
is, a value of any type may be bound to a computation that, when demanded, results in an error.
When evaluated, errors cause immediate program termination and cannot be caught by the user.
The Prelude provides two functions to directly cause such errors:

error :: String -> a
undefined :: a

A call to error terminates execution of the program and returns an appropriate error indication
to the operating system. It should also display the string in some system-dependent manner. When
undefined is used, the error message is created by the compiler.

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

20 CHAPTER 3. EXPRESSIONS

Translations of Haskell expressions use error and undefined to explicitly indicate where ex-
ecution time errors may occur. The actual program behavior when an error occurs is up to the
implementation. The messages passed to the error function in these translations are only sugges-
tions; implementations may choose to display more or less information when an error occurs.

3.2 Variables, Constructors, Operators, and Literals

���� � ���� �variable�
� ���� �general constructor�
�
�����

���� � ()
� []
� (,�,�)
� ����

��� � ����� � (�����) �variable�
���� � ������ � (������) �qualified variable�
��� � ����� � (�����) �constructor�
���� � ������ � (������) �qualified constructor�
����� � �����	 � ` ����� ` �variable operator�
������ � ������	 � ` ������ ` �qualified variable operator�
����� � �����	 � ` ����� ` �constructor operator�
������ � ������	 � ` ������ ` �qualified constructor operator�
�� � ����� � ����� �operator�
��� � ������ � ������ �qualified operator�
������	 � : � ������	

Haskell provides special syntax to support infix notation. An operator is a function that can be
applied using infix syntax (Section 3.4), or partially applied using a section (Section 3.5).

An operator is either an operator symbol, such as + or $$, or is an ordinary identifier enclosed
in grave accents (backquotes), such as `op̀ . For example, instead of writing the prefix application
op x y, one can write the infix application x `op̀ y. If no fixity declaration is given for `op̀ then
it defaults to highest precedence and left associativity (see Section 4.4.2).

Dually, an operator symbol can be converted to an ordinary identifier by enclosing it in parenthe-
ses. For example, (+) x y is equivalent to x + y, and foldr (*) 1 xs is equivalent to
foldr (\x y -> x*y) 1 xs.

Special syntax is used to name some constructors for some of the built-in types, as found in the
production for ���� and
�����
 . These are described in Section 6.1.

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.3. CURRIED APPLICATIONS AND LAMBDA ABSTRACTIONS 21

An integer literal represents the application of the function fromInteger to the appropriate value
of type Integer. Similarly, a floating point literal stands for an application of fromRational
to a value of type Rational (that is, Ratio Integer).

Translation: The integer literal � is equivalent to fromInteger � , where fromInteger
is a method in class Num (see Section 6.4.1).
The floating point literal � is equivalent to fromRational (� Ratio.% �), where
fromRational is a method in class Fractional and Ratio.% constructs a rational
from two integers, as defined in the Ratio library. The integers � and � are chosen so that
��� � � .

3.3 Curried Applications and Lambda Abstractions

���� � ������ ���� �function application�
��� � \ ����� � � � ����� -> ��� �lambda abstraction� � � ! �

Function application is written �� �� . Application associates to the left, so the parentheses may be
omitted in (f x) y. Because �� could be a data constructor, partial applications of data construc-
tors are allowed.

Lambda abstractions are written \ �� � � � �� -> �, where the �� are patterns. An expression such
as \x:xs->x is syntactically incorrect; it may legally be written as \(x:xs)->x.

The set of patterns must be linear – no variable may appear more than once in the set.

Translation: The following identity holds:

\ �� � � � �� -> � � \ �� � � � �� -> case (��, � � �, ��) of (��, � � �, ��) -> �

where the �� are new identifiers.

Given this translation combined with the semantics of case expressions and pattern matching de-
scribed in Section 3.17.3, if the pattern fails to match, then the result is �.

3.4 Operator Applications

��� � ���� ��� ����
� - ��� �prefix negation�

��� � ������ � ������ �qualified operator�

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

22 CHAPTER 3. EXPRESSIONS

The form �� ��� �� is the infix application of binary operator ��� to expressions �� and �� .

The special form -� denotes prefix negation, the only prefix operator in Haskell, and is syntax for
negate ���. The binary - operator does not necessarily refer to the definition of - in the Prelude;
it may be rebound by the module system. However, unary - will always refer to the negate
function defined in the Prelude. There is no link between the local meaning of the - operator and
unary negation.

Prefix negation has the same precedence as the infix operator - defined in the Prelude (see Table 4.1,
p. 57). Because e1-e2 parses as an infix application of the binary operator -, one must write
e1(-e2) for the alternative parsing. Similarly, (-) is syntax for (\ x y -> x-y), as with
any infix operator, and does not denote (\ x -> -x) – one must use negate for that.

Translation: The following identities hold:

�� �� �� � (��) �� ��
-� � negate ���

3.5 Sections

���� � (������ ����� ���) �left section�
� (
���� ����
 ���) �left section�

� (���
�����
�-� ������) �right section�

� (����� ����-� ����
�) �right section�

Sections are written as (�� �) or (� ��), where �� is a binary operator and � is an expression.
Sections are a convenient syntax for partial application of binary operators.

Syntactic precedence rules apply to sections as follows. (�� �) is legal if and only if (x �� �)
parses in the same way as (x �� (�)); and similarly for (� ��). For example, (*a+b) is syn-
tactically invalid, but (+a*b) and (*(a+b)) are valid. Because (+) is left associative, (a+b+)
is syntactically correct, but (+a+b) is not; the latter may legally be written as (+(a+b)). As
another example, the expression

(let n = 10 in n +)

is invalid because, by the let/lambda meta-rule (Section 3), the expression

(let n = 10 in n + x)

parses as

(let n = 10 in (n + x))

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.6. CONDITIONALS 23

rather than

((let n = 10 in n) + x)

Because - is treated specially in the grammar, (- ���) is not a section, but an application of prefix
negation, as described in the preceding section. However, there is a subtract function defined
in the Prelude such that (subtract ���) is equivalent to the disallowed section. The expression
(+ (- ���)) can serve the same purpose.

Translation: The following identities hold:

(�� �) � \ � -> � �� �
(� ��) � \ � -> � �� �

where �� is a binary operator, � is an expression, and � is a variable that does not occur free in
�.

3.6 Conditionals

��� � if ���� then ���� else ����

A conditional expression has the form if �� then �� else �� and returns the value of �� if the
value of �� is True, �� if �� is False, and � otherwise.

Translation: The following identity holds:

if �� then �� else �� � case �� of { True -> �� ; False -> �� }

where True and False are the two nullary constructors from the type Bool, as defined in the
Prelude. The type of �� must be Bool; �� and �� must have the same type, which is also the
type of the entire conditional expression.

3.7 Lists

��� � ���� ��� ����
���� � [���� , � � � , ����] �" � ! �

� ����

���� � []
� ����

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

24 CHAPTER 3. EXPRESSIONS

���� � (������)
��� � ������

������ � ������	

������	 � :

Lists are written [��, � � �, ��], where " � ! . The list constructor is :, and the empty list is
denoted []. Standard operations on lists are given in the Prelude (see Section 6.1.3, and Chapter 8
notably Section 8.2).

Translation: The following identity holds:

[��, � � �, ��] � �� : (�� : (� � � (�� : [])))

where : and [] are constructors for lists, as defined in the Prelude (see Section 6.1.3). The
types of �� through �� must all be the same (call it �), and the type of the overall expression is
[�] (see Section 4.1.2).

The constructor “:” is reserved solely for list construction; like [], it is considered part of the lan-
guage syntax, and cannot be hidden or redefined. It is a right-associative operator, with precedence
level 5 (Section 4.4.2).

3.8 Tuples

���� � (���� , � � � , ����) �" � # �
� ����

���� � (,�,�)

Tuples are written (��, � � �, ��), and may be of arbitrary length " � # . The constructor for an �-
tuple is denoted by (,. . .,), where there are � � ! commas. Thus (a,b,c) and (,,) a b c
denote the same value. Standard operations on tuples are given in the Prelude (see Section 6.1.4 and
Chapter 8).

Translation: (��, � � �, ��) for " � # is an instance of a " -tuple as defined in the Prelude,
and requires no translation. If �� through �� are the types of �� through �� , respectively, then
the type of the resulting tuple is (��, � � �, ��) (see Section 4.1.2).

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.9. UNIT EXPRESSIONS AND PARENTHESIZED EXPRESSIONS 25

3.9 Unit Expressions and Parenthesized Expressions

���� � ����

� (���)
���� � ()

The form (�) is simply a parenthesized expression, and is equivalent to �. The unit expression ()
has type () (see Section 4.1.2). It is the only member of that type apart from �, and can be thought
of as the “nullary tuple” (see Section 6.1.5).

Translation: (�) is equivalent to �.

3.10 Arithmetic Sequences

���� � [���� �, ���� � .. ����� �]

The arithmetic sequence [��, �� .. ��] denotes a list of values of type � , where each of the ��
has type � , and � is an instance of class Enum.

Translation: Arithmetic sequences satisfy these identities:

[��..] � enumFrom ��
[��,��..] � enumFromThen �� ��
[��..��] � enumFromTo �� ��
[��,��..��] � enumFromThenTo �� �� ��

where enumFrom, enumFromThen, enumFromTo, and enumFromThenTo are class
methods in the class Enum as defined in the Prelude (see Figure 6.1, p. 85).

The semantics of arithmetic sequences therefore depends entirely on the instance declaration for
the type � . See Section 6.3.4 for more details of which Prelude types are in Enum and their
semantics.

3.11 List Comprehensions

���� � [��� | ���
� , � � � , ���
�] �list comprehension� � � ! �
���
 � ��� <- ��� �generator�

� let ���
� �local declaration�
� ��� �guard�

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

26 CHAPTER 3. EXPRESSIONS

A list comprehension has the form [� | ��, � � �, ��]� � � ! � where the �� qualifiers are either

� generators of the form � <- � , where � is a pattern (see Section 3.17) of type � and � is an
expression of type [�]

� guards, which are arbitrary expressions of type Bool

� local bindings that provide new definitions for use in the generated expression � or subsequent
guards and generators.

Such a list comprehension returns the list of elements produced by evaluating � in the successive
environments created by the nested, depth-first evaluation of the generators in the qualifier list.
Binding of variables occurs according to the normal pattern matching rules (see Section 3.17), and
if a match fails then that element of the list is simply skipped over. Thus:

[x | xs <- [[(1,2),(3,4)], [(5,4),(3,2)]],
(3,x) <- xs]

yields the list [4,2]. If a qualifier is a guard, it must evaluate to True for the previous pattern
match to succeed. As usual, bindings in list comprehensions can shadow those in outer scopes; for
example:

[x | x <- x, x <- x] � [z | y <- x, z <- y]

Translation: List comprehensions satisfy these identities, which may be used as a translation
into the kernel:

[� | True] = [�]
[� | �] = [� | �, True]
[� | �, '] = if � then [� | '] else []
[� | � <-
, '] = let ok � = [� | ']

ok _ = []
in concatMap ok

[� | let ���
�, '] = let ���
� in [� | ']

where � ranges over expressions, � over patterns,
 over list-valued expressions, � over boolean
expressions, ���
� over declaration lists, � over qualifiers, and ' over sequences of qualifiers.
ok is a fresh variable. The function concatMap, and boolean value True, are defined in the
Prelude.

As indicated by the translation of list comprehensions, variables bound by let have fully polymor-
phic types while those defined by <- are lambda bound and are thus monomorphic (see Section
4.5.4).

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.12. LET EXPRESSIONS 27

3.12 Let Expressions

��� � let ���
� in ���

Let expressions have the general form let { �� ; � � � ; �� } in �, and introduce a nested, lexically-
scoped, mutually-recursive list of declarations (let is often called letrec in other languages).
The scope of the declarations is the expression � and the right hand side of the declarations. Dec-
larations are described in Chapter 4. Pattern bindings are matched lazily; an implicit ˜ makes these
patterns irrefutable. For example,

let (x,y) = undefined in �

does not cause an execution-time error until x or y is evaluated.

Translation: The dynamic semantics of the expression let { �� ; � � � ; �� } in �� are
captured by this translation: After removing all type signatures, each declaration �� is translated
into an equation of the form �� = �� , where �� and �� are patterns and expressions respectively,
using the translation in Section 4.4.3. Once done, these identities hold, which may be used as a
translation into the kernel:

let {��=��; ... ; ��=��} in �� = let (˜��, ... ,˜��) = (��, ... ,��) in ��

let � = �� in �� = case �� of ˜� -> ��

where no variable in � appears free in ��

let � = �� in �� = let � = fix (\ ˜� -> ��) in ��

where fix is the least fixpoint operator. Note the use of the irrefutable patterns ˜�. This
translation does not preserve the static semantics because the use of case precludes a fully
polymorphic typing of the bound variables. The static semantics of the bindings in a let
expression are described in Section 4.4.3.

3.13 Case Expressions

��� � case ��� of { �
�� }
�
�� � �
�� ; � � � ; �
�� �� � ! �
�
� � ��� -> ��� �where ���
� �

� ��� ����� �where ���
� �
� ��	��� �
����������

����� � �� -> ��� � ����� �
�� � | ����

A case expression has the general form

case � of { �� 	����� ; � � � ; �� 	����� }

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

28 CHAPTER 3. EXPRESSIONS

where each 	����� is of the general form

| ��� -> ���
� � �
| ��
�

-> ��
�

where ���
��

(Notice that in the syntax rule for �� , the “|” is a terminal symbol, not the syntactic metasymbol
for alternation.) Each alternative �� 	����� consists of a pattern �� and its matches, 	����� . Each
match in turn consists of a sequence of pairs of guards ��� and bodies ��� (expressions), followed by
optional bindings (���
��) that scope over all of the guards and expressions of the alternative. An
alternative of the form

��� -> ��� where ���
�

is treated as shorthand for:
��� | True -> ���
where ���
�

A case expression must have at least one alternative and each alternative must have at least one
body. Each body must have the same type, and the type of the whole expression is that type.

A case expression is evaluated by pattern matching the expression � against the individual alterna-
tives. The alternatives are tried sequentially, from top to bottom. If � matches the pattern in the
alternative, the guards for that alternative are tried sequentially from top to bottom, in the envi-
ronment of the case expression extended first by the bindings created during the matching of the
pattern, and then by the ���
�� in the where clause associated with that alternative. If one of the
guards evaluates to True, the corresponding right-hand side is evaluated in the same environment
as the guard. If all the guards evaluate to False, matching continues with the next alternative. If
no match succeeds, the result is �. Pattern matching is described in Section 3.17, with the formal
semantics of case expressions in Section 3.17.3.

A note about parsing. The expression

case x of { (a,_) | let b = not a in b :: Bool -> a }

is tricky to parse correctly. It has a single unambiguous parse, namely

case x of { (a,_) | (let b = not a in b :: Bool) -> a }

However, the phrase Bool -> a is syntactically valid as a type, and parsers with limited looka-
head may incorrectly commit to this choice, and hence reject the program. Programmers are ad-
vised, therefore, to avoid guards that end with a type signature – indeed that is why a �� contains
an ���� not an ���.

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.14. DO EXPRESSIONS 29

3.14 Do Expressions

��� � do { ��	�� } �do expression�
��	�� � ��	�� � � � ��	�� ��� �;� �� � $ �
��	� � ��� ;

� ��� <- ��� ;
� let ���
� ;
� ; ��	��� �����	����

A do expression provides a more conventional syntax for monadic programming. It allows an
expression such as

putStr "x: " >>
getLine >>= \l ->
return (words l)

to be written in a more traditional way as:

do putStr "x: "
l <- getLine
return (words l)

Translation: Do expressions satisfy these identities, which may be used as a translation into
the kernel, after eliminating empty ��	��:

do {�} = �

do {�;��	��} = � >> do {��	��}
do {� <- �; ��	��} = let ok � = do {��	��}

ok _ = fail "..."
in � >>= ok

do {let ���
�; ��	��} = let ���
� in do {��	��}

The ellipsis "..." stands for a compiler-generated error message, passed to fail, preferably
giving some indication of the location of the pattern-match failure; the functions >>, >>=, and
fail are operations in the class Monad, as defined in the Prelude; and ok is a fresh identifier.

As indicated by the translation of do, variables bound by let have fully polymorphic types while
those defined by <- are lambda bound and are thus monomorphic.

3.15 Datatypes with Field Labels

A datatype declaration may optionally define field labels (see Section 4.2.1). These field labels can
be used to construct, select from, and update fields in a manner that is independent of the overall
structure of the datatype.

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

30 CHAPTER 3. EXPRESSIONS

Different datatypes cannot share common field labels in the same scope. A field label can be used
at most once in a constructor. Within a datatype, however, a field label can be used in more than one
constructor provided the field has the same typing in all constructors. To illustrate the last point,
consider:

data S = S1 { x :: Int } | S2 { x :: Int } -- OK
data T = T1 { y :: Int } | T2 { y :: Bool } -- BAD

Here S is legal but T is not, because y is given inconsistent typings in the latter.

3.15.1 Field Selection

���� � ����

Field labels are used as selector functions. When used as a variable, a field label serves as a func-
tion that extracts the field from an object. Selectors are top level bindings and so they may be
shadowed by local variables but cannot conflict with other top level bindings of the same name.
This shadowing only affects selector functions; in record construction (Section 3.15.2) and update
(Section 3.15.3), field labels cannot be confused with ordinary variables.

Translation: A field label � introduces a selector function defined as:

� x = case x of { (� ��� � � � ��� -> �� ; � � � ; (� ��� � � � ��� -> �� }

where (� � � � (� are all the constructors of the datatype containing a field labeled with � , ���
is y when � labels the & th component of (� or _ otherwise, and �� is y when some field in (�

has a label of � or undefined otherwise.

3.15.2 Construction Using Field Labels

���� � ���� { ������ , � � � , ������ } �labeled construction� � � $ �
����� � ���� = ���

A constructor with labeled fields may be used to construct a value in which the components are
specified by name rather than by position. Unlike the braces used in declaration lists, these are not
subject to layout; the { and } characters must be explicit. (This is also true of field updates and field
patterns.) Construction using field labels is subject to the following constraints:

� Only field labels declared with the specified constructor may be mentioned.

� A field label may not be mentioned more than once.

� Fields not mentioned are initialized to �.

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.15. DATATYPES WITH FIELD LABELS 31

� A compile-time error occurs when any strict fields (fields whose declared types are prefixed
by !) are omitted during construction. Strict fields are discussed in Section 4.2.1.

The expression F {}, where F is a data constructor, is legal whether or not F was declared with
record syntax (provided F has no strict fields – see the third bullet above); it denotes F �� � � � �� ,
where � is the arity of F.

Translation: In the binding � = � , the field � labels � .

({ �� } = (����"�� �� undefined� � � � ����"�� �� undefined�

where " is the arity of (.
The auxiliary function ���"�� �� � is defined as follows:

If the � th component of a constructor (has the field label � , and if � � � appears
in the binding list ��, then ���"�� �� � is � . Otherwise, ���"�� �� � is the default
value � .

3.15.3 Updates Using Field Labels

���� � ���������� { ������ , � � � , ������ } �labeled update� � � ! �

Values belonging to a datatype with field labels may be non-destructively updated. This creates
a new value in which the specified field values replace those in the existing value. Updates are
restricted in the following ways:

� All labels must be taken from the same datatype.

� At least one constructor must define all of the labels mentioned in the update.

� No label may be mentioned more than once.

� An execution error occurs when the value being updated does not contain all of the specified
labels.

Translation: Using the prior definition of ���" ,

� { �� } = case � of

(� �� � � � ��� -> (� ����"��

� �� �� � � � � ����"��

��
�� ��� �

...

(� �� � � � ��� -> (� ����"
��

� �� �� � � � � ����"
��

��
�� ��� �

_ -> error "Update error"

where �(� � � � � �(�� is the set of constructors containing all labels in ��, and "� is the arity of
(� .

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

32 CHAPTER 3. EXPRESSIONS

Here are some examples using labeled fields:

data T = C1 {f1,f2 :: Int}
| C2 {f1 :: Int,

f3,f4 :: Char}

Expression Translation
C1 {f1 = 3} C1 3 undefined
C2 {f1 = 1, f4 = ’A’, f3 = ’B’} C2 1 ’B’ ’A’
x {f1 = 1} case x of C1 _ f2 -> C1 1 f2

C2 _ f3 f4 -> C2 1 f3 f4

The field f1 is common to both constructors in T. This example translates expressions using con-
structors in field-label notation into equivalent expressions using the same constructors without field
labels. A compile-time error will result if no single constructor defines the set of field labels used
in an update, such as x {f2 = 1, f3 = ’x’}.

3.16 Expression Type-Signatures

��� � ��� :: �������� =>� ����

Expression type-signatures have the form � :: � , where � is an expression and � is a type (Sec-
tion 4.1.2); they are used to type an expression explicitly and may be used to resolve ambiguous
typings due to overloading (see Section 4.3.4). The value of the expression is just that of ���. As
with normal type signatures (see Section 4.4.1), the declared type may be more specific than the
principal type derivable from ���, but it is an error to give a type that is more general than, or not
comparable to, the principal type.

Translation:

� :: � = let { � :: �; � = � } in �

3.17 Pattern Matching

Patterns appear in lambda abstractions, function definitions, pattern bindings, list comprehensions,
do expressions, and case expressions. However, the first five of these ultimately translate into case
expressions, so defining the semantics of pattern matching for case expressions is sufficient.

3.17.1 Patterns

Patterns have this syntax:

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.17. PATTERN MATCHING 33

��� � ��� + ������� �successor pattern�
� ����

��� � � ��� ��� ������������ ��� ��� �
�
��� �

� ���� �

��� � � �
��� � � ��� ��� � ����������� ��� ���

���� � - �������� � ����� �negative literal�
���� � � ��� ��� ����������� ����� � � ��� ��� �
����� � ����

� ���� ����� � � � ����� �arity ���� � " � " � ! �

���� � ��� � � ���� � �as pattern�
� ���� �arity ���� � $ �
� ���� { ����� , � � � , ����� } �labeled pattern� " � $ �
�
�����

� _ �wildcard�
� (���) �parenthesized pattern�
� (���� , � � � , ����) �tuple pattern� " � # �
� [���� , � � � , ����] �list pattern� " � ! �
� ˜ ���� �irrefutable pattern�

���� � ���� = ���

The arity of a constructor must match the number of sub-patterns associated with it; one cannot
match against a partially-applied constructor.

All patterns must be linear – no variable may appear more than once. For example, this definition
is illegal:

f (x,x) = x -- ILLEGAL; x used twice in pattern

Patterns of the form ���@��� are called as-patterns, and allow one to use ��� as a name for the
value being matched by ��� . For example,

case e of { xs@(x:rest) -> if x==0 then rest else xs }

is equivalent to:

let { xs = e } in
case xs of { (x:rest) -> if x==0 then rest else xs }

Patterns of the form _ are wildcards and are useful when some part of a pattern is not referenced on
the right-hand side. It is as if an identifier not used elsewhere were put in its place. For example,

case e of { [x,_,_] -> if x==0 then True else False }

is equivalent to:

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

34 CHAPTER 3. EXPRESSIONS

case e of { [x,y,z] -> if x==0 then True else False }

3.17.2 Informal Semantics of Pattern Matching

Patterns are matched against values. Attempting to match a pattern can have one of three results:
it may fail; it may succeed, returning a binding for each variable in the pattern; or it may diverge
(i.e. return �). Pattern matching proceeds from left to right, and outside to inside, according to the
following rules:

1. Matching the pattern ��� against a value � always succeeds and binds ��� to � .

2. Matching the pattern ˜���� against a value � always succeeds. The free variables in ���� are
bound to the appropriate values if matching ���� against � would otherwise succeed, and to
� if matching ���� against � fails or diverges. (Binding does not imply evaluation.)

Operationally, this means that no matching is done on a ˜���� pattern until one of the vari-
ables in ���� is used. At that point the entire pattern is matched against the value, and if the
match fails or diverges, so does the overall computation.

3. Matching the wildcard pattern _ against any value always succeeds, and no binding is done.

4. Matching the pattern ��� ��� against a value, where ��� is a constructor defined by newtype,
depends on the value:

� If the value is of the form ��� � , then ��� is matched against � .

� If the value is �, then ��� is matched against �.

That is, constructors associated with newtype serve only to change the type of a value.

5. Matching the pattern ��� ���� � � � ���� against a value, where ��� is a constructor defined
by data, depends on the value:

� If the value is of the form ��� �� � � � �� , sub-patterns are matched left-to-right against
the components of the data value; if all matches succeed, the overall match succeeds;
the first to fail or diverge causes the overall match to fail or diverge, respectively.

� If the value is of the form ���� �� � � � �
 , where ��� is a different constructor to ����,
the match fails.

� If the value is �, the match diverges.

6. Matching against a constructor using labeled fields is the same as matching ordinary con-
structor patterns except that the fields are matched in the order they are named in the field
list. All fields listed must be declared by the constructor; fields may not be named more than
once. Fields not named by the pattern are ignored (matched against _).

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.17. PATTERN MATCHING 35

7. Matching a numeric, character, or string literal pattern " against a value � succeeds if � == " ,
where == is overloaded based on the type of the pattern. The match diverges if this test
diverges.

The interpretation of numeric literals is exactly as described in Section 3.2; that is, the
overloaded function fromInteger or fromRational is applied to an Integer or
Rational literal (resp) to convert it to the appropriate type.

8. Matching an �+" pattern (where � is a variable and " is a positive integer literal) against
a value � succeeds if � >= " , resulting in the binding of � to � - " , and fails otherwise.
Again, the functions >= and - are overloaded, depending on the type of the pattern. The
match diverges if the comparison diverges.

The interpretation of the literal " is the same as in numeric literal patterns, except that only
integer literals are allowed.

9. Matching an as-pattern ���@���� against a value � is the result of matching ���� against � ,
augmented with the binding of ��� to � . If the match of ���� against � fails or diverges, then
so does the overall match.

Aside from the obvious static type constraints (for example, it is a static error to match a character
against a boolean), the following static class constraints hold:

� An integer literal pattern can only be matched against a value in the class Num.

� A floating literal pattern can only be matched against a value in the class Fractional.

� An �+" pattern can only be matched against a value in the class Integral.

Many people feel that �+" patterns should not be used. These patterns may be removed or changed
in future versions of Haskell.

It is sometimes helpful to distinguish two kinds of patterns. Matching an irrefutable pattern is non-
strict: the pattern matches even if the value to be matched is �. Matching a refutable pattern is
strict: if the value to be matched is � the match diverges. The irrefutable patterns are as follows: a
variable, a wildcard,� ���� where � is a constructor defined by newtype and ���� is irrefutable
(see Section 4.2.3), ���@���� where ���� is irrefutable, or of the form ˜���� (whether or not ����
is irrefutable). All other patterns are refutable.

Here are some examples:

1. If the pattern [’a’,’b’] is matched against [’x’,�], then ’a’ ���
� to match against
’x’, and the result is a failed match. But if [’a’,’b’] is matched against [�,’x’], then
attempting to match ’a’ against � causes the match to �������.

2. These examples demonstrate refutable vs. irrefutable matching:

(\ ˜(x,y) -> 0) � 	 0
(\ (x,y) -> 0) � 	 �

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

36 CHAPTER 3. EXPRESSIONS

(\ ˜[x] -> 0) [] 	 0
(\ ˜[x] -> x) [] 	 �

(\ ˜[x,˜(a,b)] -> x) [(0,1),�] 	 (0,1)
(\ ˜[x, (a,b)] -> x) [(0,1),�] 	 �

(\ (x:xs) -> x:x:xs) � 	 �
(\ ˜(x:xs) -> x:x:xs) � 	 �:�:�

3. Consider the following declarations:

newtype N = N Bool
data D = D !Bool

These examples illustrate the difference in pattern matching between types defined by data
and newtype:

(\ (N True) -> True) � 	 �
(\ (D True) -> True) � 	 �

(\ ˜(D True) -> True) � 	 True

Additional examples may be found in Section 4.2.3.

Top level patterns in case expressions and the set of top level patterns in function or pattern bindings
may have zero or more associated guards. A guard is a boolean expression that is evaluated only
after all of the arguments have been successfully matched, and it must be true for the overall pattern
match to succeed. The environment of the guard is the same as the right-hand-side of the case-
expression alternative, function definition, or pattern binding to which it is attached.

The guard semantics have an obvious influence on the strictness characteristics of a function or case
expression. In particular, an otherwise irrefutable pattern may be evaluated because of a guard. For
example, in

f :: (Int,Int,Int) -> [Int] -> Int
f ˜(x,y,z) [a] | (a == y) = 1

both a and y will be evaluated by == in the guard.

3.17.3 Formal Semantics of Pattern Matching

The semantics of all pattern matching constructs other than case expressions are defined by giving
identities that relate those constructs to case expressions. The semantics of case expressions
themselves are in turn given as a series of identities, in Figures 3.1 and 3.2. Any implementation
should behave so that these identities hold; it is not expected that it will use them directly, since that
would generate rather inefficient code.

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

3.17. PATTERN MATCHING 37

(a) case � of { ���� } � (\� -> case � of { ���� }) �

where � is a new variable
(b) case � of { �� 	��
��; � � � ; �� 	��
�� }

� case � of { �� 	��
�� ;
_ -> � � � case � of {

�� 	��
�� ;
_ -> error "No match" }� � �}

where each 	��
�� has the form:
| ���� -> ���� ; � � � ; | �����

-> �����
where {
�
��� }

(c) case � of { � | �� -> �� ; � � �

| �� -> �� where {
�
�� }
_ -> �� }

� case �� of
{� -> (where � is a new variable)
case � of {

� -> let {
�
�� } in
if �� then �� � � � else if �� then �� else � ;

_ -> � }}

(d) case � of { ˜� -> �; _ -> �� }
� (\�� � � � �� -> �) (case � of { � -> �� }) � � � (case � of { � -> ��})
where ��� � � � � �� are all the variables in �

(e) case � of { �@� -> �; _ -> �� }
� case � of { � -> (\ � -> �) � ; _ -> �� }

(f) case � of { _ -> �; _ -> �� } � �

Figure 3.1: Semantics of Case Expressions, Part 1

In Figures 3.1 and 3.2: � , �� and �� are expressions; � and �� are boolean-valued expressions; � and
�� are patterns; � , � , and �� are variables;) and) � are algebraic datatype (data) constructors
(including tuple constructors); and � is a newtype constructor.

Rule (b) matches a general source-language case expression, regardless of whether it actually
includes guards – if no guards are written, then True is substituted for the guards ���� in the	�����
forms. Subsequent identities manipulate the resulting case expression into simpler and simpler
forms.

Rule (h) in Figure 3.2 involves the overloaded operator ==; it is this rule that defines the meaning
of pattern matching against overloaded constants.

These identities all preserve the static semantics. Rules (d), (e), (j), (q), and (s) use a lambda rather
than a let; this indicates that variables bound by case are monomorphically typed (Section 4.1.4).

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

38 CHAPTER 3. EXPRESSIONS

(g) case � of { � �� � � � �� -> �; _ -> �� }
� case � of {

� �� � � ��� -> case �� of {
�� -> � � � case �� of { �� -> � ; _ -> �� } � � �

_ -> �� }
_ -> �� }

at least one of ��� � � � � �� is not a variable; ��� � � � � �� are new variables

(h) case � of { � -> �; _ -> �� } � if (�==�) then � else ��

where � is a numeric, character, or string literal.

(i) case � of { � -> �; _ -> �� } � case � of { � -> � }

(j) case � of { � -> � } � (\ � -> �) �

(k) case � � of { � � -> �; _ -> �� }
� case � of { � -> �; _ -> �� }
where � is a newtype constructor

(l) case � of { � � -> �; _ -> �� } � case � of { � -> � }
where � is a newtype constructor

(m) case � of { � { �� = �� , �� = �� , � � � } -> � ; _ -> �� }
� case �� of {

� ->
case � of {
� { �� = �� } ->

case � of {� { �� = �� , � � � } -> � ; _ -> � };
_ -> � }}

where ��, ��, � � � are fields of constructor �; � is a new variable

(n) case � of { � { � = � } -> � ; _ -> �� }
� case � of {

� �� � � � �� -> � ; _ -> �� }
where �� is � if � labels the �th component of �, _ otherwise

(o) case � of { � {} -> � ; _ -> �� }
� case � of {

� _ � � � _ -> � ; _ -> �� }
(p) case (� � �� � � � ��) of { � �� � � � �� -> �; _ -> �� } � ��

where � and �� are distinct data constructors of arity � and 	, respectively

(q) case (� �� � � � ��) of { � �� � � � �� -> �; _ -> �� }
� �\�� � � ��� -> �� �� � � � ��
where � is a data constructor of arity �

(r) case � of { � �� � � � �� -> �; _ -> �� } � �

where � is a data constructor of arity �

(s) case � of { �+� -> �; _ -> �� }
� if � >= � then (\� -> �) (�-�) else ��

where � is a numeric literal

Figure 3.2: Semantics of Case Expressions, Part 2

https://doi.org/10.1017/S0956796803000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803000510

