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Abstract. In this paper we show that the normal parts of quasisimilar log-
hyponormal operators are unitarily equivalent. A Fuglede-Putnam type theorem for
log-hyponormal operators is proved. Also, it is shown that a log-hyponormal operator
that is quasisimilar to an isometry is unitary and that a log-hyponormal spectral
operator is normal.
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1. Introduction. Let H and K be infinite dimensional complex Hilbert spaces
and let L(H,K) denote the set of bounded linear operators from H to K. If H = K,
we write L(H) in place of L(H,K). Let T ∈ L(H). T is said to be p-hyponormal if
(T∗T) p − (TT∗) p ≥ 0 for some 0 < p ≤ 1. It is known that if T is p-hyponormal and
0 < q < p, then T is q-hyponormal, by the Lowner-Heinz’s inequality [11, 14]. If p = 1,
T is said to be hyponormal and if p = 1/2, T is said to be semi-hyponormal. T is said
to be log-hyponormal if T is invertible and satisfies the following inequality

log(T∗T) ≥ log(TT∗).

It is known that invertible p-hyponormal operators are log-hyponormal but that
the converse is not true [16]. However it is very interesting that we may regard
log-hyponormal operators as 0-hyponormal operators [16, 17]. Let T = U|T | be
the polar decomposition of T . We usually define the Aluthge transform of T by
T̃ = |T |1/2U|T |1/2. Let T̃ = V |T̃ | be the polar decomposition of T̃ , and define the
second Aluthge transform of T by T̂ = |T̃ |1/2V |T̃ |1/2. It is known that if T is log-
hyponormal, then T̃ is semi-hyponormal and T̂ is hyponormal [1, 16, 21]. An operator
X ∈ L(H2,H1) is called a quasiaffinity if X is injective and has dense range R(X).
For T1 ∈ L(H1) and T2 ∈ L(H2), if there exist quasiaffinities X ∈ L(H2,H1) and
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Y ∈ L(H1,H2) such that T1X = XT2 and YT1 = T2Y , then we say that T1 and T2 are
quasisimilar.

Xia [20] investigated properties of hyponormal and semi-hyponormal operators.
Aluthge [1] introduced p-hyponormal operators and investigated their properties using
Aluthge transforms. The idea of a log-hyponormal operator is due to Ando [3] and the
first paper in which log-hyponormality appeared is [9]. See [2, 16, 17, 18] for properties
of log-hyponormal operators.

Jeon and Duggal [13] proved that the normal parts of quasisimilar p-hyponormal
operators are unitarily equivalent, a p-hyponormal operator compactly quasisimilar
to an isometry is unitary, and a p-hyponormal spectral operator is normal.

In this paper we prove that similar results hold for log-hyponormal operators; i.e.,
the normal parts of quasisimilar log-hyponormal operators are unitarily equivalent,
Fuglede-Putnam’s theorem holds for log-hyponormal operators, a log-hyponormal
operator quasisimilar to an isometry is normal, and a log-hyponormal spectral
operator is normal.

2. Normal parts of quasisimilar log-hyponormal operators.

THEOREM 1. LetM be an invariant subspace of a log-hyponormal operator T ∈ L(H)
and T |M the restriction of T to M. If T |M is invertible, then T |M is log-hyponormal.

Proof. Put T = (A
0

B
C) and P = (1

0
0
0) on H = M ⊕ M⊥. Since

log X = lim
p↓0

Xp − 1
p

for an arbitrary positive invertible operator X , we have

P(log T∗T)P = lim
p↓0

(
1 0
0 0

)
(T∗T) p − 1

p

(
1 0
0 0

)
≤ lim

p↓0

1
p

{((
1 0
0 0

)
T∗T

(
1 0
0 0

))p

−
(

1 0
0 0

)}

= lim
p↓0

(
(A∗A) p−1

p 0

0 0

)
=

(
log A∗A 0

0 0

)
,

by Hansen’s inequality [10], and

P(log TT∗)P = lim
p↓0

(
1 0
0 0

)
(TT∗) p − 1

p

(
1 0
0 0

)

≥ lim
p↓0

(
1 0
0 0

) (
T

(
1 0
0 0

)
T∗

)p

− 1

p

(
1 0
0 0

)

= lim
p↓0

(
(AA∗) p−1

p 0

0 0

)
=

(
log AA∗ 0

0 0

)
,
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by Löwner-Heinz’s inequality [11, 14]. Since T is log-hyponormal,(
log AA∗ 0

0 0

)
≤ P(log TT∗)P

≤ P(log T∗T)P ≤
(

log A∗A 0
0 0

)
.

Hence, A = T |M is also log-hyponormal. �
THEOREM 2. Let T ∈ L(H) be log-hyponormal. Then T = T1 ⊕ T2 on the space

H = H1 ⊕ H2, where T1 is normal and T2 is pure and log-hyponormal; i.e., T2 has no
invariant subspace M such that T2|M is normal.

Proof. It is easy to prove that T = T1 ⊕ T2 on H = H1 ⊕ H2, where T1 is normal
and T2 is pure, by [18, Lemma 12]. Since σ (T2) ⊂ σ (T), T2 is invertible and log-
hyponormal, by Theorem 1. �

The next lemma was proved for dominant operators in [15, Theorem 1] and for p-
hyponormal operators in [13]. Recall that an operator T ∈ B(H) is said to be dominant
if for any λ ∈ � there exists an Mλ ≥ 0 such that ‖(T − λ)∗x‖ ≤ Mλ‖(T − λ)x‖, for all
x ∈ H. If Mλ is a constant, then T is said to be M-hyponormal.

LEMMA 3. Let T1 ∈ L(H1) be a log-hyponormal operator and let T2 ∈ L(H2) be a
normal operator. If there exists an operator X ∈ L(H2,H1) with dense range such that
T1X = XT2, then T1 is normal.

Proof. First, we decompose T1 into its normal and pure parts by T1 = T11 ⊕ T12

with respect to a decomposition H1 = H11 ⊕ H12. Let T12 = U12|T12| be the polar
decomposition of T12 and T̃12 = |T12|1/2U12|T12|1/2. Let T̃12 = V12|T̃12| be the polar
decomposition of T̃12 and T̂12 = |T̃12|1/2V12|T̃12|1/2. Since T11 is normal, we have
that T̃1 = T11 ⊕ T̃12 and T̂1 = T11 ⊕ T̂12. Let W = |T̃12|1/2|T12|1/2. Since N(|T12|) =
N(T12) = {0}, by Theorem 2, |T12| 1

2 is a quasiaffinity. Hence T̂12 is injective and W
is a quasiaffinity such that T̂12W = WT12. Let Y = IH11 ⊕ W . Then T̂1 is hyponormal
and Y is a quasiaffinity such that T̂1Y = YT1. Thus we have that T̂1(YX) = (YX)T2

and YX has dense range. Hence T̂1 is normal, by [15, Theorem 1], and so T1 is normal
by [16, Theorem 7]. �

The following lemma is due to Williams [19, Lemma 1.1].

LEMMA 4. [19] Let Ni ∈ L(Hi) be normal for each i = 1, 2. If X ∈ L(H2,H1) and
Y ∈ L(H1,H2) are injective such that N1X = XN2 and YN1 = N2Y, then N1 and N2

are unitarily equivalent.

Conway [4] proved that the normal parts of quasisimilar subnormal operators are
unitarily equivalent and gave an example showing that the pure parts of quasisimilar
subnormal operators need not be quasisimilar. This result was generalized to classes
of dominant operators in [15] and p-hyponormal operators in [13], respectively. We
prove that these results hold for log-hyponormal operators.

THEOREM 5. For each i = 1, 2, let Ti ∈ L(Hi) be log-hyponormal operators and
let Ti = Ni ⊕ Vi on Hi = Hi1 ⊕ Hi2, where Ni and Vi are the normal and pure parts,
respectively, of Ti. If T1 and T2 are quasisimilar, then N1 and N2 are unitarily equivalent
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and there exist X∗ ∈ L(H22,H12) and Y∗ ∈ L(H12,H22) having dense ranges such that
V1X∗ = X∗V2 and Y∗V1 = V2Y∗.

Proof. By hypothesis there exist quasiaffinities X ∈ L(H2,H1) and Y ∈ L(H1,H2)
such that T1X = XT2 and YT1 = T2Y . Let

X =
(

X1 X2

X3 X4

)
and Y =

(
Y1 Y2

Y3 Y4

)
with respect to H2 = H21 ⊕ H22 and H1 = H11 ⊕ H12, respectively. A simple matrix
calculation shows that

V1X3 = X3N2 and V2Y3 = Y3N1.

We claim that X3 = Y3 = 0. Let M = R(X3). Then M is a non-trivial invariant
subspace of V1. Since V∗

1 X3 = X3N∗
2 , by [18, Theorem 3], M is an invariant subspace

of V∗
1 . Hence M reduces V1, σ (V1|M) ⊂ σ (V1) and V1|M is invertible. Let V ′

1 = V1|M
and define an operator X ′

3 : H21 → M by X ′
3x = X3x, for each x ∈ H21. Then V ′

1 is log-
hyponormal, by Theorem 1, so that X ′

3 has dense range and satisfies V ′
1X ′

3 = X ′
3N2.

Hence V ′
1 is normal, by Lemma 3. Since V1 is pure, this implies that M = {0} and

X3 = 0. Similarly, we have Y3 = 0. Hence X1 and Y1 are injective.
Since N1X1 = X1N2 and Y1N1 = N2Y1, N1 and N2 are unitarily equivalent, by

Lemma 4. Also, X4 and Y4 have dense ranges. Hence V1X4 = X4V2 and Y4V1 = V2Y4,
so that the proof is complete. �

COROLLARY 6. Let T1 ∈ L(H1) and T2 ∈ L(H2) be quasisimilar log-hyponormal
operators. If T1 is pure, then T2 is also pure.

COROLLARY 7. Let T1 ∈ L(H1) be log-hyponormal and let T2 ∈ L(H2) be normal. If
T1 and T2 are quasisimilar, then T1 and T2 are unitarily equivalent normal operators.

3. A Fuglede-Putnam type theorem for log-hyponormal operators.

THEOREM 8. Let T1 ∈ L(H1) and T∗
2 ∈ L(H2) be log-hyponormal or p-hyponormal

operators satisfying T1X = XT2, for some operator X ∈ L(H2,H1). Then T∗
1 X =

XT∗
2 , R(X) reduces T1, N(T)⊥ reduces T2, and T1|R(X), T2|N(X)⊥ are unitarily equivalent

normal operators.

Proof. Duggal [5, Theorem7] proved the case in which T1 and T∗
2 are p-hyponormal.

First we prove the case in which T1 and T∗
2 are log-hyponormal. Let T1 = U1|T1|

and T∗
2 = U∗

2 |T∗
2 | be the polar decompositions of T1 and T∗

2 , respectively. Let T̃1 =
|T1|1/2U1|T1|1/2, T̃∗

2 = |T∗
2 |1/2U∗

2 |T∗
2 |1/2 and W = |T1| 1

2 X |T∗
2 | 1

2 . Since T1X = XT2, we
have T̃1W = W (T̃∗

2 )∗. Since T̃1 and T̃∗
2 are semi-hyponormal, by [16], R(W ) reduces

T̃1 and N(W )⊥ reduces (T̃∗
2 )∗. Also T̃1|R(W ) and (T̃∗

2 )∗|N(W )⊥ are unitarily equivalent
normal operators, by [5, Theorem 7]. By [18, Lemma 3], T1 and T∗

2 are of the
forms

T1 = T̃1|R(W ) ⊕ S1 = N1 ⊕ S1 on R(W ) ⊕ R(W )⊥,

T∗
2 = T̃∗

2 |N(W )⊥ ⊕ S∗
2 = N∗

2 ⊕ S∗
2 on N(W )⊥ ⊕ N(W ),
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where N1 and N2 are unitarily equivalent normal operators. Since T1 and T∗
2 are

invertible, N1, N2, S1 and S2 are also invertible. Let

X =
(

X11 X12

X21 X22

)
and W =

(
W11 0

0 0

)
with respect to H1 = R(W ) ⊕ R(W )⊥ and H2 = N(W )⊥ ⊕ N(W ), respectively. Then
W = |T1| 1

2 X |T∗
2 | 1

2 implies that

(
W11 0

0 0

)
=

(
|N1| 1

2 X11|N∗
2 | 1

2 |N1| 1
2 X12|S∗

2 |
1
2

|S1| 1
2 X21|N∗

2 | 1
2 |S1| 1

2 X22|S∗
2 |

1
2

)
. (3.1)

Hence X12 = 0, X21 = 0, X22 = 0 and X11 : N(W )⊥ → R(X) is a quasiaffinity. This
implies that R(X) = R(X11) = R(W ), N(X) = N(W ) and T1|R(X), T2|N(X)⊥ are unitarily
equivalent normal operators. Since T1X = XT2, we have that N1X11 = X11N1. Thus
N∗

1 X11 = X11N∗
1 and T∗

1 X = XT∗
2 .

Next we prove the case in which T1 is p-hyponormal and T∗
2 is log-hyponormal. In

this case we have the equation (3.1), where N2 and S2 are invertible by the argument of
the case above. Since N1 and N2 are unitarily equivalent, N1 is invertible. It follows that
X12 = 0, |S1| 1

2 X21 = 0, |S1| 1
2 X22 = 0 and S1X21 = 0, S1X22 = 0. Then T1X = XT2

implies that (
N1X11 0

0 0

)
=

(
X11N2 0
X21N2 X22S2

)
.

Hence X21 = 0, X22 = 0 and X11 is a quasiaffinity. The rest of the proof is similar to
the case above.

Lastly we prove the case in which T1 is log-hyponormal and T∗
2 is p-hyponormal.

Here we have the equation (3.1), where N1 and S1 are invertible. Since N1 and N2 are
unitarily equivalent, N2 is invertible. Hence X21 = 0, X12|S∗

2 |
1
2 = 0, X22|S∗

2 |
1
2 = 0 and

X12S2 = 0, X22S2 = 0. Then T1X = XT2 implies that(
N1X11 N1X12

0 S1X22

)
=

(
X11N2 0

0 0

)
.

Hence X12 = 0, X22 = 0 and X11 is a quasiaffinity. The rest of the proof is similar to
the case above. �

REMARK. Let T = U|T | be the polar decomposition of T . We define T̃ =
|T | 1

2 U|T | 1
2 . Since T∗ = |T |U∗ = U∗U|T |U∗ = U∗|T∗|, T∗ has the polar decomposi-

tion T∗ = U∗|T∗|. Hence T̃∗ = |T∗| 1
2 U∗|T∗| 1

2 = U(T̃)∗U∗ and (T̃)∗ = U∗T̃∗U . Thus
T̃∗ is log-hyponormal (resp., p-hyponormal) if and only if (T̃)∗ is log-hyponormal
(resp, p-hyponormal).

A generalization to dominant operator is given by the following Corollary.

COROLLARY 9. Let T1 ∈ L(H1) be dominant and T∗
2 ∈ L(H2) log-hyponormal.

If T1X = XT2, for some operator X ∈ L(H2,H1), then T∗
1 X = XT∗

2 , R(X) reduces
T1, N(T)⊥ reduces T2, and T1|R(X), T2|N(X)⊥ are unitarily equivalent normal operators.
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Proof. Decompose T1 and T∗
2 into their normal and pure parts. Then we have

T1 = N1 ⊕ S1 on H1 = H11 ⊕ H12,

T2 = N2 ⊕ S2 on H2 = H21 ⊕ H22,

and

X =
(

X11 X12

X21 X22

)
: H2 = H21 ⊕ H22 → H1 = H11 ⊕ H12,

where N1, N2 are normal, S1 is dominant and S∗
2 is log-hyponormal. Then T1X = XT2

implies that (
N1X11 N1X12

S1X21 S1X22

)
=

(
X11N2 X12S2

X21N2 X22S2

)
.

Let S∗
2 = U∗

2 |S∗
2 | be the polar decomposition of S∗

2 and S̃∗
2 = |S∗

2 |
1
2 U∗

2 |S∗
2 |

1
2 . Let

S̃∗
2 = V∗

2 |S̃∗
2 | be the polar decomposition of S̃∗

2 and Ŝ∗
2 = |S̃∗

2 |
1
2 V∗

2 |S̃∗
2 |

1
2 . Applying

[6, Corollary 1] to

S1X21 = X21N2

and

S1X22|S∗
2 |

1
2 |S̃∗

2 |
1
2 = X22|S∗

2 |
1
2 |S̃∗

2 |
1
2 (Ŝ∗

2)∗

together with Theorem 8 to

N1X12 = X12S2,

we have X21 = 0, X22 = 0, and X12 = 0. The rest of the proof is similar to the proof of
Theorem 8. �

In Theorem 8 above if X is a quasiaffinity then R(X) = H1 and N(X)⊥ = H2.
Hence T1 and T2 are unitarily equivalent normal operators. Thus we can obtain an
improvement to Corollary 7 as follows.

COROLLARY 10. Let T1 ∈ L(H1) be a log-hyponormal operator and let T2 ∈ L(H2)
be a normal operator. If there exists a quasiaffinity X ∈ L(H2,H1) such that T1X = XT2,
then T1 and T2 are unitarily equivalent normal operators.

PROBLEM. Is it possible to replace the normality of T2 in Corollary 10 with an
isometry or a spectral operator?

4. Log-hyponormal operators quasisimilar to isometries or spectral operators.

THEOREM 11. Let T1 ∈ L(H1) be log-hyponormal and let T2 ∈ L(H2) be an isometry.
If T1 and T2 is quasisimilar, then T1 and T2 are unitarily equivalent unitary operators.

Proof. There exist quasiaffinities X and Y such that T1X = XT2 and YT1 = T2Y .
Since T1 is invertible and YT1 = T2Y , T2 has dense range. Hence T2 is unitary. Thus
T1 and T2 are unitarily equivalent unitary operators by Corollary 10. �
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Recall that a spectral operator (in the sense of Dunford) is an operator with a
strongly countably additive resolution of the identity defined on the Borel sets of the
complex plane. If T is spectral, then it has the canonical decomposition T = S + Q,
where S and Q are its scalar and its radical parts, respectively. For a thorough discussion
of spectral operators see [7]. Hoover [12] studied quasisimilar spectral operators. It was
proved that M-hyponormal spectral operators and p-hyponormal spectral operators
are normal in [8] and [13], respectively. We conclude with the result that log-hyponormal
spectral operators are normal.

THEOREM 12. Let T1 ∈ L(H1) be a log-hyponormal operator and let T2 ∈ L(H2)
be a spectral operator. If there exists a quasiaffinity X ∈ L(H2,H1) such that T1X =
XT2, then T1 is normal, T2 is a scalar operator, and T2 is similar to T1.

Proof. There exists a quasiaffinity Y such that T̃1Y = YT1, by the same arguments
as in the proof of Lemma 3, and so we have that T̃1(YX) = (YX)T2. Hence YX is
also a quasiaffinity and so T̃1 is normal by [8, Corollary 4]. If follows that T1(= T̃1)
is normal by [16]. Thus T2 is a scalar-type spectral operator and similar to T1 by
[9, Corollary 4]. �

COROLLARY 13. If T ∈ L(H) is a log-hyponormal spectral operator, then T is
normal.
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