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Recent developments revealed an error in Lerisson et al. (2020), which propagates into
Ledda et al. (2020). The mistake, reconducted from Lerisson et al. (2020), stems from the
fact that the normalization of the curvature involves two independent length scales, which
we erroneously assumed to be identical in the rest of this series of papers. The presence of
the parameter hN

lc

√
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�∗
c

= 1/�̃∗
c , with �c = √

γ /(ρg), was overlooked and assumed

to be �̃∗
c = 1. The correct expression of the full curvature reads

κ =

∂2h
∂x2

(
1 +

(
hN

�∗
c

∂h
∂y

)2
)

+ ∂2h
∂y2

(
1 +

(
hN

�∗
c

∂h
∂x

)2
)

− 2
(

hN

�∗
c

)2
∂h
∂x

∂h
∂y

∂2h
∂x∂y(

1 +
(

hN

�∗
c

∂h
∂x

)2

+
(

hN

�∗
c

∂h
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Since the incorrect expression was employed in Ledda et al. (2020) (equations (3.3) and
(A1)), some clarifications should be made about the validity of the results.

The numerical simulations of § 3.2 (and in particular figure 3) are valid only for the
case �̃∗

c = 1. However, the discussion about the effect of the linear advection velocity u =
cot θ�̃∗

c remains valid.
In § 4, the performed linear stability analyses are valid again only for the case �̃∗

c = 1
(Ledda et al. (2020) figures 4, 5, 6, 7). For each value of �̃∗

c , a different rivulet profile
is identified (see corrigendum of Lerisson et al. 2020), and thus the statement about
the uniqueness of the rivulet in § 4.1 needs to be rectified. We complete the analysis by
reporting in figure 1 of this corrigendum the results of the linear temporal and spatial
stability analyses for different values of �̃∗

c . We recall that the perturbation with respect to
the rivulet profile is assumed of the form η = η̂( y) exp[i(kxx − ωt)]. The temporal stability
analysis (i.e. kx ∈ R is fixed and one looks for ω ∈ C) shows a reduction of the temporal
growth rate Im(ω) as �̃∗

c increases. This reduction yields to the complete quenching of the
secondary instability for sufficiently large u and �̃∗

c (figure 1). Similarly, the spatial stability
analysis (i.e. ω ∈ R is fixed and one looks for kx ∈ C) shows an analogous reduction of
the spatial growth rate −Im(kx) with �̃∗

c . In contrast, Re(ω) in the temporal approach and
Re(kx) in the spatial one do not vary significantly with increasing �̃∗

c .
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Figure 1. Results of the linear stability analysis for varying �̃∗
c . (a) Temporal stability analysis: temporal growth

rate as a function of kx. (b) Spatial growth rate from the spatial stability analysis (lines) and from the Gaster
transformation (circles) as a function of ω. (c) Real part of the complex frequency from the temporal approach
as a function of kx. (d) Variation of Re(kx) with ω, for the spatial approach. (e) Most unstable mode for u = 0.7
and varying �̃∗

c , real (solid lines) and imaginary (dashed lines) parts, for the temporal approach. The different
colours correspond to �̃∗

c = 1 (blue), �̃∗
c = 1.1 (black), �̃∗

c = 1.25 (red), �̃∗
c = 1.43 (maroon), �̃∗

c = 1.67 (cyan),
�̃∗

c = 2 (green), �̃∗
c = 2.5 (purple), �̃∗

c = 3.33 (yellow), �̃∗
c = 5 (orange), and �̃∗

c = 10 (light blue).

An increase of �̃∗
c leads to a decrease of the film thickness and thus of the hydro-static

pressure gradients due to the gravity component normal to the substrate. As a consequence,
the growth rates are reduced and the flow is thus stabilized. However, the quantities Re(ω)

and Re(kx) are directly related to the advection of perturbations, which is dominated by u.
The results of § 5 are updated with the corrected theoretical spatial amplifications from

the inlet. Following the procedure outlined in the paper, the theoretical amplification
follows the same trend as the experimental one, without the need to fit the initial amplitude
at x = 0, that is now simply assumed to be the saturation value of the optical sensor,
varying slightly from one set of experiments to the other (see figure 2 of this corrigendum).
However, we have now included errorbars in figure 2 of this corrigendum (which replaces
figure 9 of the original paper), which reflect the relative tolerance in the measurement of
Δ and hN/�c of 15 %. This relates to the experimental error due to the undersampling
in the identification of the position of the maximum thickness of the rivulet, since the
resolution in the spanwise location was ≈ 1 mm, while the rivulet thickness varies from
h = 1.5 to h = 1.7 in a region of ≈ 1.5 mm extension. Besides, the relation (5.1)b of the
original manuscript is now an approximation, since 1.65 < max(h) < 1.71 as �̃∗

c varies,
which gives a supplementary uncertainty of ≈ 4 % on max(h) and therefore on hN .
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Figure 2. Values of Δ (blue dots) as a function of hN/lc, for different values of θ . The black horizontal line
denotes the plateau value due to the resolution of the optical sensor. The red lines denote the amplification
estimated using the spatial stability analysis of § 4.4 and the size of the plate, i.e. Δ = Δ0 exp(−Im(kx)L), with
initial amplitude the saturation value of the optical sensor. See text for the definition of the error bars.
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Figure 3. Results of the analysis in the (θ, hN/lc) plane: experimental measurements of Δ (coloured dots) and
inlet disturbance amplification Δ/Δ0 = exp(−Im(kx)L) evaluated by the spatial stability analysis of § 4.4 (blue
iso-contours). The red solid line denotes the iso-contour Im(ω) = 0, which identifies the marginal stability
threshold.

Despite the assumptions reported in the paper and these uncertainties, the trends are
very similar and thus the correlation between theoretical and experimental amplification
is confirmed. We have also updated figure 10 (figure 3 of this corrigendum) to include
the marginal stability threshold below which perturbations are damped. The experimental
values of Δ and hN/�c are mean values in the 15 % uncertainty region mentioned earlier.
A good agreement is observed between the theoretical onset of the instability and the
growth of lenses on the rivulets. Note that the correlation between experiments and
theory and the trends are more convincing in this corrected version than in the original
manuscript. The main result of this corrigendum is the existence of a theoretical threshold
below which rivulets are stable, in complement to the previous conclusions.
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The results of § 6 remain valid since in the linear and weakly nonlinear models the
curvature is linearized. While this does not modify the discussion, it should be specified
in figure 13 that the fully nonlinear simulation was performed with �̃∗

c = 1.
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