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Abstract Some of the results of § 5 of the cited paper are incorrect: in particular, the characterization
of when an algebra is ultra-amenable, in terms of a diagonal like construction, is not proved; and The-
orem 5.7 is stated wrongly. The rest of the paper is unaffected. We shall show in this corrigendum that
Theorem 5.7 can be corrected and that the other results of § 5 are true if the algebra in question has a
certain approximation property.
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Some of the results of § 5 of [3] are incorrect. The claim (ii) ⇒ (i) of Proposition 5.4
implicitly assumes that ψ0 is bounded below, but this is unproven. Hence the claim in
Corollary 5.5 that, if a Banach algebra A is contractible, then it is ultra-amenable is also
unproven. Similarly, (ii) ⇒ (i) of Theorem 5.6 requires ψ0 to be bounded below. The
rest of the paper is unaffected. We used some of these ideas in [4, § 4], and so this is also
incorrect; an erratum has been submitted.

Firstly, we deal with correcting Theorem 5.7. We say that a C∗-algebra A is subhomoge-
neous if there exists n ∈ N such that every irreducible representation of A has dimension
at most n. Subhomogeneous von Neumann algebras have the special form claimed in
Theorem 5.7, but this is not true for C∗-algebras (see [1, § IV.1.4] for examples). This
circle of ideas was considered in [7, Theorem 2.5] but we have been unable to follow some
of the proofs (in particular, the claim that (A4) ⇒ (R5)) so we provide details here.

Theorem 1. Let A be a C∗-algebra. The following are then equivalent:

(1) A is ultra-amenable;

(2) A′′ is amenable;
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(3) �∞(A, I) is amenable for any index set I;

(4) A is subhomogeneous.

Proof. The original argument using the approximation property in [3] is correct and
shows (1) ⇒ (2). Similarly, as argued in [3] (see also [7]), if (2) holds, then A′′ has the
form

A′′ =
n∑

k=1

L∞(Xk) ⊗ Mnk
,

where, for each k, Xk is a measure space and nk ∈ N. Notice that if A′′ is of this form,
then, following [7], it is elementary to see that so is l∞(A′′, I) for any index set I. This
does imply that A is subhomogeneous [1, Proposition IV.1.4.6] but not that A has the
form originally claimed in [3, Theorem 5.7].

However, there is an algebraic characterization of when C∗-algebras are subhomoge-
neous (see [5, § 3.6] or [1, § IV.1.4.5]). The algebra Mn is of dimension n2 and so, for any
r > n2, we have ∑

σ∈Sr

εσxσ(1) · · ·xσ(r) = 0 (1)

for any x1, . . . , xr ∈ Mn (this is readily seen by taking a basis). Here Sr is the symmetric
group and ε : Sr → {±1} the signature. Let r(n) be the smallest r for which this holds
for Mn. Then [5, Lemma 3.6.2] shows that r(n) � r(n − 1) + 2 (see [1, § IV.1.4.5] and
references therein for better estimates). As irreducible representations separate the points
of a C∗-algebra A, we conclude that the following statements are equivalent:

(i) any irreducible representation of A is of dimension at most n;

(ii) for any x1, . . . , xr(n) ∈ A, identity (1) holds for r = r(n).

Indeed, the only unclear issue is why (ii) cannot hold if π : A → B(H) is irreducible,
with H infinite dimensional. However, π(A) is then strongly dense in B(H), and Mn+1

is a subalgebra of B(H), which is enough to show that (ii) fails.
It is clear that condition (ii) passes to subalgebras and, with a little thought, it is

seen to pass to ultrapowers as well. Thus, if (2) holds, �∞(A, I) is subhomogeneous, and
hence A is subhomogeneous, showing (4). It is reasonably easy to show that �∞(A, I)
is thus nuclear [2, Proposition 2.7.7], or follow [7, Theorem 2.5] for a direct argument
that �∞(A, I) is thus amenable. As amenability passes to quotients, (3) ⇒ (1) is clear.
Finally, if (4) holds, then any ultrapower of A is subhomogeneous and hence amenable,
showing (1). �

We erroneously claimed in [4] that (1) and (3) are equivalent for any Banach algebra
A. It would be interesting to know if this is true.

We shall now improve [3, Proposition 4.7] and show that the map ψ0 is indeed bounded
below for a wide class of Banach algebras A. We leave open whether this holds for all
A (which seems unlikely). It seems possible that similar, but stronger, conditions could
characterize when A is ultra-amenable, but we shall not pursue this here.

https://doi.org/10.1017/S0013091509001394 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001394


Corrigendum: amenability of ultrapowers of Banach algebras 635

Let E and F be Banach spaces, and let U be an ultrafilter on an index set I. As
in [3], we shall suppose that U is countably incomplete. Recall from [3, § 4] the map
ψ0 : (E)U ⊗̂ (F )U → (E ⊗̂F )U , defined on elementary tensors by

ψ0((xi) ⊗ (yi)) = (xi ⊗ yi) ((xi) ∈ (E)U , (yi) ∈ (F )U ).

For the following, we recall that [6, Theorem 9.1] characterizes, in terms of local proper-
ties, when an ultrapower has the (bounded) approximation property.

Theorem 2. If (E)U has the approximation property, then ψ0 is an injection for
any F .

Proof. Let τ ∈ (E)U ⊗̂ (F )U have representation

τ =
∞∑

n=1

xn ⊗ yn

with ∑

n

‖xn‖ ‖yn‖ < ∞.

If (E)U has the approximation property then, by [9, Proposition 4.6], if τ ∈ (E)U ⊗̂ (F )U
is non-zero, there exist µ ∈ (E)′

U and λ ∈ (F )′
U with

0 �= 〈µ ⊗ λ, τ〉 =
∞∑

n=1

〈µ, xn〉〈λ, yn〉.

As we only care about the value of µ on the countable set {xn}, by [6, Corollary 7.5] we
may suppose that µ ∈ (E′)U and, similarly, that λ ∈ (F ′)U ; say µ = (µi) and λ = (λi).
Pick representatives xn = (x(i)

n ) and yn = (y(i)
n ) so that, by absolute convergence,

〈µ ⊗ λ, τ〉 = lim
i→U

∞∑

n=1

〈µi, x
(i)
n 〉〈λi, y

(i)
n 〉 = 〈(µi ⊗ λi), ψ0(τ)〉.

Hence we must have that ψ0(τ) �= 0. �

Consequently, [3, Corollary 5.5] correctly shows that if A is a contractible Banach
algebra with the approximation property, then A is ultra-amenable. However, a result of
Selivanov [8, Theorem 4.1.5] shows that under these conditions, A is already the finite
sum of full matrix algebras!

It is worth pointing out what can go wrong here (and hence the exact mistake in
the proof of [3, Proposition 5.4]). If A is contractible, then we can find τ ∈ A ⊗̂ A with
a·τ = τ ·a and ∆(τ)a = a for a ∈ A. We can then treat τ as a member of (A)U ⊗̂ (A)U , and
we have that a ·ψ0(τ) = ψ0(τ) ·a for a ∈ (A)U . As ψ0 is an (A)U -module homomorphism,
ψ0(a · τ − τ · a) = 0 for any a ∈ (A)U . However, if ψ0 might fail to be injective, then this
is not useful.

The following improves [3, Proposition 4.7], as a result of Grothendieck [9, Corol-
lary 5.51] shows that a reflexive Banach space with the approximation property auto-
matically has the metric approximation property.
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Theorem 3. If (E)U has the bounded approximation property, then ψ0 is bounded
below.

Proof. Let (E)U have the bounded approximation property with bound M , so,
by (the obvious generalization of) [9, Theorem 4.14], the embedding (E)U ⊗̂ (F )U →
F((E)U , (F )′

U )′ is bounded below by M−1. Here F((E)U , (F )′
U ) is the collection of finite-

rank operators (E)U → (F )′
U , given the operator norm.

Let τ ∈ (E)U ⊗̂ (F )U have representative

τ =
∞∑

n=1

xn ⊗ yn.

For ε > 0, we can find T ∈ F((E)U , (F )′
U ) with ‖T‖ � M + ε and |〈T, τ〉| � ‖τ‖. We

work with the finite-rank operators so that we can pick a representative

T =
N∑

k=1

µk ⊗ λk

for some (µk) ⊆ (E)′
U and (λk) ⊆ (F )′

U . Thus

〈T, τ〉 =
∞∑

n=1

N∑

k=1

〈µk, xn〉〈λk, yn〉.

Let G be the closed span of {xn}, so, by [6, Corollary 7.5], as G is finite dimensional, we
can find a contraction φ : lin{µk} → (E′)U such that

〈φ(µk), x〉 = 〈µk, x〉 (1 � k � N, x ∈ G).

It is not hard to see that

T0 =
N∑

k=1

φ(µk) ⊗ λk

then satisfies ‖T0‖ � M + ε and 〈T0, τ〉 = 〈T, τ〉. In other words, we can assume that
µk ∈ (E′)U for each k; analogously, we may also assume that λk ∈ (F ′)U for each k.

So, pick representatives µk = (µ(i)
k ) and λk = (λ(i)

k ) and, for each i, let

Ti =
N∑

k=1

µ
(i)
k ⊗ λ

(i)
k ∈ F(E, F ′).

As U is countably incomplete, we can find a sequence (εi) of strictly positive reals such
that limi→U εi = 0. For each i, pick yi ∈ E with ‖yi‖ � 1 and ‖Ti(yi)‖ � ‖Ti‖ − εi. Let
y = (yi) so ‖y‖ = 1 and T (y) = (Ti(yi)) so that

lim
i→U

‖Ti‖ = lim
i→U

‖Ti‖ − εi � lim
i→U

‖Ti(yi)‖ = ‖T (y)‖ � (M + ε).
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Finally, a calculation shows that

〈T, τ〉 = 〈(Ti), ψ0(τ)〉,

where (Ti) ∈ (B(E, F ′))U ⊆ (E ⊗̂F )′
U . We conclude that ‖ψ0(τ)‖ � ‖τ‖(M + ε)−1, so

that ψ0 is bounded below by M−1. �

This shows that [3, Theorem 5.6] does give a correct characterization of ultra-amenabil-
ity for Banach algebras A whose ultrapowers have the bounded approximation property.
This includes, for example, algebras of the form L1(G) for a locally compact group G.
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