
CONJUGATES OF D1FFERENTIABLE FLOWS

GORDON G. JOHNSON

(Received 4 November 1970; revised 14 April 1971)

Communicated by B'Navd

The work in this paper is directed at the question: What differentiable flows
on [0,1] [1] are conjugates of linear fractional flows on [0,1]?

LEMMA. If h is a homeomorphism of[0,1] onto [0,1] such that for some
number a e (0,1] h has a continuous positive derivative on (0,a] and there is
a number r such that limx^ox

rh'(x) > 0 then r < 1.

PROOF. Suppose r ^ 1 and limx^ox
rh'(x) = A > 0. Then there is a number

2>e(0,a] such that if x e ( 0 , i ] then xrh'{x)> Aj2. Since r ^ l w e have that
xrh'(x) <: (xrh(x))' and hence that

f (xrh(x))'dx ^ f xrh'(x)dx ^ Ab/2.
Jo Jo

It then follows that brh(b) ^ Ab/2 and hence that d'-^id) ^ ,4/2 if de (0 ,b ] .
This is impossible, hence r < 1.

DEFINITION. A differentiable flow F, on [0,1] is said to be of type I if
1. 0 and 1 are the only fixed points of Ft,
2. F't(0) = c',F',(l) = d' where c> 1 > d and
3. there are homeomorphisms <f> and $ from [0,1) and (0,1] respectively

onto [0, oo) each having a continuous nonzero derivative such that F, = (j>~1{c'4>)
= <i>-v<t).

THEOREM. A necessary and sufficient condition that a differentiable flow
Ft on [0,1] be of type I is that there is:

1. a homeomorphism h o/[0,1] onto [0,1] which has a continuous positive
derivative on (0,1] and a number r such that \imx-,ox

rh'(x) > 0. and
2. a linear fractional flow L, on [0,1] such that Ft = h ° Lt° h'1.

PROOF. Suppose F, is a differentiable flow of type I with F,'(0) = c', F'(l) = d'
where c> 1 > d.

Define a linear fractional flow L, by
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L,(x) = d~'xl[(d-'- l)x + 1] if x e [0 ,1] and f e ( - 0 0 , 0 0 ) .

Fix b e (0,1) and define a function ft"1 by

h~l(x) = [1 + y(<t>(x))-pYl if 0 ^ x < 1 and

where p = - In d/ln c and y = (1 - b)jb(<i>(b))p'.
It is easily verified that ft"1 is a homeomorphism of [0,1] onto [0,1] which

has a positive continuous derivative on (0,1). Also a sequence of straightforward
computations establishes that Ft — h ° L,° h~x.

Because h' ° h~l{x) = [(<£(*))" + y\2lyp{4>{x))p-1(j)'{x) we have that

where r = 1 - \jp. It then follows that

lim xrh'{x) = y
l'r/p(j)'(O) > 0.

t-»0

All that remains to establish the result going one way, is that h has a continuous
positive derivative on (0,1]. This follows from the following observations. Fix
k e (0,1) and recall that

(j>-l(c'<j>(k)) = O -

If m = <f>{k\ n = <S)(k) and z = <b~1(d'n) then <!>(z) = nd' and hence
t = In [<X>(i)/n]/ln J. We then have that

<Kz) = mcIn[*(z)/"]/ln<i = m(d>(z)/n)Inc"nd .

Therefore (</>(z))p = m'nl®(z) and / r ^ z ) = [1 + y«>(z)/m'n]-1, where m' = mp.
Hence h"1 has a continuous positive derivative on (0,1].

To establish the remaining half of the theorem suppose h is a homeo-
morphism of [0,1] onto [0,1] having the required properties, and that L, is a
linear fractional flow on [0, 1] withL'((0) = a'where a > 1. LetF, = h ° L, ° h~1.
Clearly F, is a flow on [0,1] which is a differentiable flow on (0,1], also only 0
and 1 are fixed points on Ft.

Since F'£x) = h' ° L,° / r *(x) • L\ ° h~1{x) • h~l'(x) we have that

lim F|(x) = lim A'" L,(x) • L',(x)lh'(x)

= lim (L,(x))rh' o L,(x) • xrL't{x)l{L,{x)Jxrh'{x)
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Note that F,'(l) = L',(l) = a'', thus a1~r>l> a'1.
We need only to produce the desired homeomorphisms </> and O to complete

the argument.
Define a function 9 on (0,1] by

0(x) = ft'(l)/[fc'ofc-1W('«"1W)2]forxin(0,l].

It is clear that 0 is continuous and positive on (0,1].
If $(x) = fi^ then there is a numberB>0such that<D(x) = B[(l/ft-1(x))-l]

and hence <& is a homeomorphism of (0,1] onto [0, oo) which has a negative con-
tinuous derivative on (0,1]. Moreover, a sequence of computations yields

= h[Bl(a-'<b(x) + B)]

Now define a function </> on [0,1) by

<f>(x) = (<&(*))'-* if x 6 (0,1)
and

0(0) = 0.

Hence <j> is a homeomorphism of [0,1) onto [0, oo) which has a positive
continuous derivative on (0,1).

Now <t>'(x) = (r-l)(<D(x))'-2<I>'0c)

= (1 - r)Br-20(x){{\jh-\x)) - I ] ' " 2 on (0,1).

Using the definitions of 6 and h'1 and the above we have that

0'(x) = [(1 - r)Br-2

where A = (1 - r)Br-2fe'(l).
Hence limA_o0'(;e) > 0 and therefore <p has a positive continuous derivative

on [0,1). Also a simple computation shows that

F, = ^-1(a( 1- ) '</,)

which concludes the proof of the theorem.
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