
RANDOMLY PACKED AND SOLIDLY PACKED SPHERES 

E. N. GILBERT 

1. Introduction. In the classical packing problem unit spheres are placed 
without overlapping in D-dimensional space. When D = 2, the densest packing 
is a familiar regular arrangement of circles, each circle touching six others. In 
this packing, circles cover a fraction ir/\/12 = 0.9069 . . . of the area of the 
plane. The densest packing is not known for D > 3. 

Most of the packings to be considered here use spheres of many different 
sizes. In this way greater densities are obtainable; small spheres can fill up 
some of the space left over after large spheres have been packed. This pheno
menon occurs when cement is mixed with various grades of sand to make 
concrete. In one of the experiments of Westman and Hugill (14) a coarse grade 
and a fine grade of sand, each of which occupied about 60 per cent of its con
tainer by volume, were combined to get a mixture containing 82 per cent sand 
by volume. 

Let f(R) denote the volume fraction occupied by spheres of radius R or 
greater. A related function is the number m(R) of spheres per unit volume 
which have radii R or greater. If all radii are less than B, then 

f(R) = — S I xDdm(x) 
JR 

and 

m(R) = - S " 1 f x~Ddf(x), 

where S = irD/2/T(l + \D) is the volume of a D-dimensional unit sphere. 
A problem of main interest here will be to find what kinds of functions 

f(R) or m(R) can be achieved by actual packings. Section 2 gives a bound on 
f(R) for 2-dimensional packings and shows that f(R) < 1 — const. X R2 for 
small R. 

The remaining sections are concerned with two random processes which 
pack spheres. These processes depend on an arbitrarily chosen function; thus 
they provide a variety of functions f(R) and m(R). Random packings of equal 
spheres have application in the theory of liquid structure (see Bernai 1). 
Section 7 considers this application in more detail. 

The volume fraction / = /(0) occupied by all spheres combined will be 
called the density of a packing. If / = 1, as it may if the packing contains 
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arbitrarily small spheres, then the packing will be called a solid packing. 
Section 6 gives a simple condition on one of the random packings to decide 
whether or not it is solid. The other random packing is too wasteful to be 
solid but it can be made to have densities arbitrarily close to 1. 

2. Two-dimensional packings. To fill a container solidly one may 
start packing large spheres and later add smaller and smaller spheres to fill 
up the remaining empty space. Figure 1 illustrates an extreme case of this 
procedure in the plane. Portions of three large circles are shown. Imagine 

FIGURE 1. A solid plane packing. 

circles of this size packed throughout the plane as densely as possible. Circle B 
is the largest circle which can be added next. After adding circles of this size 
wherever possible the next largest size (circle C) is added, etc. 

Table I gives the radii of the circles in Figure 1 and the number per unit 
area of each kind of circle. To extend this table an IBM 7090 computer quickly 
found the radii of several hundred circles (Coxeter (3, p. 15), gives Soddy's 
formula for the radius of a circle tangent to three mutually tangent circles). 
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TABLE I 

Number in 
Circle unit area Radius, R f(R) m(R) 

A 1 0.5373 0.9069 1 
B 2 0.0831 0.9503 3 
C 6 0.0337 0.9718 9 
D 6 0.0183 0.9781 15 
E 12 0.0117 0.9832 27 
F 6 0.0114 0.9857 33 
G 6 0.00786 0.9869 39 
H 12 0.00593 0.9882 51 
I 12 0.00586 0.9895 63 

Figure 2 shows the data plotted as two staircase curves. Empirical approxima
tion formulas 

(1) m(R) ~ 0.07R~l'\ f(R) - 1 - 0.4LK0-7, 

fit the data reasonably well; these approximations appear as straight lines in 
Figure 2. The dashed curve labelled FTMF comes from a bound which Fejes 
Tôth and Molnâr conjectured in (5); the proof was completed by Florian 
(6). Their bound, which applies to all packings of non-overlapping circles of 
radius < £ , is 

(2) f(R) < {wp* + 2(1 - £2)arcsin p(l + p)-1}/{2p(l + 2p)*}, 

where p = R/B. In Figure 2 and Table I, B = (12)-*. 
As R —•» 0 the bound (2) becomes 

f(R) < 1 - (2 - fr){R/B) + 0(R*). 

Thus, for the packing shown in Figure l , /(i?) seems to approach 1 more slowly 
than the bound (2) (1 — 0(i£0-7) as compared with 1 — 0(R)). Since Figure 
1 uses circles as large as possible at every step it is hard to imagine another 
packing for which f(R) approaches 1 much faster. It would be interesting to 
know the largest exponent 

l i m s u p { l o g ( l - / ( ^ ) ) / l o g ^ } 

achievable in a solid packing. 

THEOREM. When non-overlapping circles are packed in the plane, the circles 
of radius R or greater leave uncovered a fraction 

1 - f{R) > (2V3 - 7r)rn(R)R* = 0.32251 m(R)R* 

of the plane area. 

Since m(R) > (wB2)-1, the theorem shows immediately that f(R) < 1 — 
0.10266(R/B)2, but this result is weaker than (2). If a better estimate of 
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FIGURE 2. Distribution of radii. 

m(R) is available, the theorem can give a stronger bound. For example, with 
m(R) given by (1) the theorem becomes f(R) < 1 — 0.023i£0-7. The exponent 
0.7 agrees with (1). The factor 2 \ /3 — x in the theorem is as large as possible; 
equality holds when circles of equal radius R are close-packed. 

To prove the theorem it suffices to consider packings of circles into an arbi
trary convex hexagon. The result for the plane will be the limiting case for 
large hexagons. If M circles of radius > R pack inside a hexagon H, the area in 
H left uncovered will be shown to ecxeed 0.32251 MR2. An equivalent result 
is that the uncovered area exceeds 0.10266 times the combined area of M 
circles of radius R. The proof will use the method by which Fejes Tôth (4, p. 
60) treats the packing problem with equal circles. 

Given circles Ci, C2, . . . , CM packed into a convex hexagon H, enclose each 
Ci in a convex polygon Pi. The Pt must be non-overlapping and must fit to
gether exactly to cover all of H. Fejes Tôth constructs such polygons Pt as 
follows. Imagine the plane of H and the Ci as a huge sphere and construct 
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planes wt which intersect the sphere in the C\\ In this way one obtains a 
polyhedron, the faces of which are convex polygonal sections of the 7r* con
taining the Ct. In the limit as the sphere becomes a plane, these faces intersect 
H in the desired polygons P t. 

The collection of sides of polygons Pi forms a planar linear graph. With 
the possible exception of the six corners of H, each vertex of the graph is a 
point at which at least three edges meet. It follows from Euler's theorem that 
the average number of sides of a polygon Pt is at most 6; i.e., pi + p2 + . . . + 
pM < §M, where pi is the number of sides of Pt (4, p. 16). 

Of all possible p-gons which contain a given circle C, the ones which have 
least area are regular p-gons with sides tangent to C. Thus the (uncovered) area 
in Pi but not in Ci is 

area (Pj) — area(C*) > area (Ct) {(pi/ir)tan (w/pt) — 1} 

and the total area left uncovered is 

M 

>R2 Z \PitB.n{*/Pi) - *•} • 

To get a lower bound one may find pi, p2, . . . , pu which minimize this sum 
subject to pi + p2 + • • • + PM < 6ikf. Since p t^wiir/p) is a decreasing con
vex function of p, the minimum is achieved by pi = p2 = . . . = 6. Then the 
area left uncovered is at least (2\ /3 — T)MR2 and the theorem follows. 

Three-dimensional packings analogous to Figure 1 have more practical 
interest. However, the geometry is more involved and just a few sphere sizes 
are known. Horsfield (8) added smaller spheres to the interstices between 
spheres in the closest lattice packing (of density 0.74048 . . .) and found, with 
four sizes of smaller spheres, that the density could be increased to 0.85. White 
and Walton (15) performed similar calculations starting from a different 
packing, the tetragonal sphenoidal system. Hudson (9) added spheres of only 
a single extra size but allowed the new spheres to be small so that they filled 
up fractions approaching 0.74 of the interstices. Rankin (11) showed, for all 
D-dimensional packings of spheres of radius KB, that 

f(m <r (D + 2)(B + R)D+2 

However Rankin's bound exceeds 1 when R/B is less than some value (depend
ing on D). The bound gives no improvement on f(R) < 1 if D = 2; when 
D = 3, there is an improvement if 0.71590 < R/B < 1. 

3. Random packing. This section will give two random processes for 
packing unequal spheres. Both packings evolve as the final result of processes 
depending on a time parameter t. Both processes use an arbitrary prescribed 
function R(t) to control the distribution of radii in the ultimate packing. The 
processes, in a sense, try to fill space by adding spheres one at a time. 
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To describe these processes exactly, consider a (D + 1)-dimensional space 
with Cartesian co-ordinates (xi, . . . , xD, t) satisfying 

\xt\ < oo, i = 1, . . . yD, 0 < t < oo. 

Select a random pat te rn of points from this space by a Poisson process of 
density a points per unit (D + 1)-dimensional volume. Each selected point 
represents a sphere which one tries to add to the packing. The co-ordinates 
(xj, . . . , xD) are the spatial co-ordinates of the centre of the trial sphere and 
/ is the t ime a t which the trial is made. The radius of a sphere to be tried a t 
t ime t is the function R(t). 

The two packing processes differ in the criteria by which they decide which 
trial spheres remain in the packing. The first, and most natural , criterion re
jects a trial sphere only if it overlaps a sphere which was added to the packing 
a t an earlier t ime. T h e second criterion is more str ingent but also more con
venient analytically. I t rejects a sphere if it overlaps another trial sphere with 
a smaller value of t. In particular a sphere is rejected if it overlaps an earlier 
trial sphere which itself was rejected. Thus for a given Poisson pa t te rn of 
points the second packing is only a subset of the first packing. 

According to the criterion of the second packing a trial sphere with para
meters (xi°, . . . , xD°, t°) remains in the packing if and only if the region 

0 < t < f, f ) (xt - .T,0)2 < (R(t) + R(t0))2 

1=1 

contains no points of the Poisson pat tern . The expected number of Poisson 
points in the region is a t imes the region's volume, i.e., 

(3) aV=a S(R(t) + R(t°))Ddt. 
Jo 

The probabili ty t ha t the sphere remains in the packing is just exp{ —aV}. No 
such simple result holds for the first packing method. In the special case t ha t 
R(t) is equal to a constant , the first packing scheme is a model of automobile 
parking. Here the spheres represent automobiles which t ry parking places a t 
random and remain if other parked cars do not interfere. The one-dimensional 
case is of interest for parking along a street. Renyi (12) showed t h a t cars of 
equal length park with densi ty 0.748; Ney (10) generalized this result to allow 
unequal car lengths. 

4. T h e second pack ing . During the time interval t° to t° + dt° the 
expected number of trial spheres per unit volume is a dt°. If the second criterion 
is used, these trials contr ibute an expected number a exp{ —aV}dt° of packed 
spheres per unit volume. Here V is given by (3). T h u s if T(R) is the set of 
t imes t° such tha t R(t°) > R and T'(R) is the set of times t° such tha t R(t°) > 
R, then 
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(4) m(R) = a f exp^ - a f ' 5(i?(0 + i?(*°))D^kft° 
J t°eT(R) \ Jo J 

and 

(5) f(R)=aS f {£(*°)}Dexp{-aS f (U(0 + R(t°))Ddt\dt°. 
JtQeT'(R) \ Jo J 

In particular 

(6) / = / ( 0 ) = aS ^ {R(f)}D expl-aS J (R(t) + R(f))Ddt\dt\ 

When R(t) is a constant, (6) becomes/ = 2~D. 
The most natural way to pack unequal spheres is to position the largest 

spheres first, leaving the smaller spheres to fill in the interstices as in Section 2. 
This way corresponds to a monotonically decreasing function R (t). Suppose the 
trial spheres are distributed with a density function N(R) ; i.e., N(R)dR is the 
expected number of trial spheres which have centres in a unit volume and have 
radii between R and R + dR. The corresponding monotonically decreasing 
R(t) satisfies the equation 

(7) f N(R)dR = at. 
J R(t) 

If R(t) is monotonie and has a corresponding function N(R) as in (7), then 
m(R) and f(R) have convenient expressions in terms of N(R) directly: 

(8) m 

(9) 

(22) = f e x p | - 5 f (r + s)DN(s)ds]N(r)dr, 

f(R) = S j e x p j - S f (r + s)DN(s)dsfN(r)rDdr. 

These formulas come directly from (4) and (5) when (7) is used to change the 
variables of integration from times to radii. 

In (9) 
sD < (r + s)D < 2DsD. 

Simple bounds on f(R) follow : 

(10) 2- f lU - e x p | - S JB 2DsDN(s)ds\) < f(R), 

(11) f(R) < 1 - e x p | - S f 5 D iV(5)^ | . 

Bound (11) shows that the integral 

J»B nB 

sDN(s)ds = aS {R(t)}Ddt 
o Jo 
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must be made large if the density / is to be close to 1. If the integral (12) 
diverges, then (10) shows that 2~D < / , i.e., all such packings are denser than 
packings of equal spheres. 

5. Nearly solid packings. The second packing method does not produce 
solid packings because trials that fail waste a part of space forever afterward. 
Packings with large densities require a careful choice of R(t) or N(R). In order 
to avoid wasting large amounts of space by too many unsuccessful trials 
R(t) must decrease suitably fast as t —> °° . However, one must simultaneously 
keep the integral (12) large. This section will construct packings which have 
densities arbitrarily close to 1. 

Consider the case 

(13) NW-\0, if 1<R< co, 

where a, A are constant parameters. The corresponding function R(t) follows 
from (7): 

R(t) = {l+a(D + a)t/A}~^D+a\ 

In what follows, \a\ < 1. 
First suppose that a ^ 0. Formula (9) contains the integral 

I = f (r + s)DN(s)ds = A j (r + s)D. riD+1+a)ds 

= A S (k) T+X = A r ^ + ^~A I*'1 + *<'»• 
where 

*<->-£ (?)**/<« + *> 
and q = q(l). Since \a\ < 1, q(r) and q are positive. Also q(r) < q. Then 

(14) -A (a-1 + q) < 1 - Ar~a{a-' + q) < -Aa~l 

and a lower bound on f(R) is 

f(R) >ASeA8la fV^- '+d / 'V-^r 

or 

n , s , / r ?s . {1 - expjASja-1 + g)(l - i Q ) j e x p ( - ^ 5 g ) 
(15) / ( * ) > ^ ^ • 

A corresponding upper bound follows from the left inequality in (14). It differs 
from (15) just be a factor exp(ASq). 
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As R —> 0 the limiting form of these bounds on f(R) depends on the sign of 

a: 

(16) exp(-ASq) < (1 + aq)f < 1, if a > 0, 

(17) exp(-ASq) - e x p ( - ^ 5 / | a | ) < (1 + ag) / < 1 - exp{AS(a-1 + q)}, 

if -q-1 < a < 0. 

When a > 0, f can be made arbi trar i ly close to 1 by choosing A and a small. 
When a < 0 , / will be close to 1 if \a\ and A are bo th small bu t A/\a\ is large. 

The special case a = 0 of (13) has a similar t r ea tmen t bu t with 

0 < I + A log r < Aq 

instead of (14). T h e bounds on f(R) are simpler: 

(18) (1 - RAS)exp(-ASq) < f(R) < 1 - RAS. 

Again A should be small to get a dense packing. Similar bounds on m(R) 

when a = 0 are 

(19) A exp{-ASq){R-^D-AS^ - \)/(D - AS) < m(R) 

<A(R-(D-AS> - l)/(D - AS). 

For small R the bounds (19) on m(R) grow like multiples of R-(D~AS). Th i s 
suggests a comparison with the plane packing in Section 2. T o achieve the 
same exponent 1.3, set AS = 0.7. Wi th this choice of A the factor exp( — ASq) 
in (18) is only 0.17 and undoubtedly the random packing is not very dense. 
Picking smaller values of A to ensure a dense random packing makes m(R) 
grow with decreasing R more slowly than in Section 2. 

6. T h e first p a c k i n g . Again consider monotonically decreasing R(i) for 
which N(R) in (7) exists. When the first packing method is used, solid packings 
are possible. 

T H E O R E M . The first packing method produces a solid packing if and only if the 
limit 

rB 

J = lim rDN(r)dr 
R^0 J R 

is infinite. 

Proof. Consider a point Q in space. The integral 

5 f rDN(r)dr, 0 < a < b, 
J a 

is the expected number of trial spheres which contain Q and have radii between 
a and b. 

If / is finite the expected number of trial spheres (of all radii) containing Q 
is S J. Q has positive probabil i ty exp( — S J) of belonging to no trial sphere. 
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Then even the trial spheres cover only a fraction 1 — exp(— SJ) of space and 
/ < 1 - exp(-SJ) < 1. 

Conversely suppose that J = °°. It remains to show that Q has probability 
1 of belonging to a packed sphere. Since there are only countably many open 
packed spheres, it will suffice to prove that Q has probability 1 of being a 
limit point of the set of packed spheres. In order for Q not to be a limit point 
it must lie at the centre of some spherical neighbourhood U which does not 
intersect any of the packed spheres. Let E(r) be the event that such a neigh
bourhood U exists and has radius >r..Then the event E that a neighbourhood 
U exists with some unspecified radius is 

E = E(2~l) V £(2~2) V E(2"3) V . . . 

so that 
Prob(£) < 2 Prob(£(2-*)). 

k 

However, since J = œ there is probability 

1 — exp\ —S I rDN(r)drc = 1 — exp(— oo ) = 1 

that some trial sphere S of radius less than 2~k~1 contains Q. S lies entirely in 
the spherical neighbourhood of radius 2~k around Q. Either S is a packed 
sphere or 5 overlaps a packed sphere; in either case the neighbourhood of 
radius 2~k overlaps a packed sphere. Thus 

Prob(E(2-*)) - 0 

and Prob(£) = 0. 

7. Packing equal spheres. As noted in Section 4, the second packing 
method achieves density 2~D when all spheres have the same size. This is not 
very large compared with densities achievable by other means. For example, 
G. D. Scott (13) found that ball bearings poured at random into a 3-dimen-
sional container filled it with density 0.63. The densest regular lattice pack
ings in 2, 3, 4, 5 dimensions have densities 0.907, 0.740, 0.617, 0.465 (7). 
Some higher-dimensional packings are known with densities close to the upper 
bound (D + 2)2~^z>+2> of Blichfeldt (2). Nevertheless 2~D exceeds the densi
ties of the simplest families of regular packings (e.g., cubic packing) when D 
is large. 

For another comparison, note that 2~D is a lower bound on the densities of 
all packings to which no extra sphere may be added without overlap. For 
consider such a packing; let its density be / . Since no extra sphere may be 
added, each point in space must lie within a distance of two radii from one of 
the sphere centres. Now replace all the spheres by (overlapping) spheres of 
twice the original radius. The enlarged spheres have density at most 2Df and 
also cover all space; thus 2Df > 1. 
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Table II shows some rough estimates of the density achieved by the first 
packing method with equal spheres. To obtain these estimates an IBM 7090 
computer generated pseudo-random number co-ordinates for centres of trial 
spheres in a large cube. The trials continued until several hundred consecutive 
trial spheres failed to be packed. Thus in the final packing one expects that 
only a fraction of 1 per cent of the volume of the cube consists of points at 
which the centre of an additional packed sphere could lie. However, this small 
fraction could consist of many tiny pieces scattered throughout the cube; in 
that case many additional spheres could be packed and the numbers in Table II 
would be too small. 

TABLE II 

F I R S T PACKING METHOD W I T H 

EQUAL SPHERES 

Dimension Density 

1 0.748; cf. (12) 
2 0 .5 
3 0 .3 
5 0 .1 

10 0.004 

One theoretical model of a liquid uses non-overlapping spheres to represent 
the liquid molecules. A function of great importance in such studies is the 
radial distribution function p{a). To define p(a), consider a sphere, say with 
centre at 0, and a volume element dV at distance a from 0. p(a)dV is the 
probability that another sphere centre lies in the element dV. In particular 
p(oo) is just the number of spheres per unit volume, i.e., p(°°) = f/(SRD). 
The probability that two volume elements dVi, dV2, separated by distance a, 
both contain centres is p(°o)p(a)dVi dV2. 

The radial distribution function for spheres packed by the second method 
is obtainable analytically. In order to have packings in which the density is a 
free parameter, let the packing cease at time T. Then the range of integration 
in (4) becomes 0 < t° < T. The density is 

(20) / = 2-D{\ - exp(-^)} 

where v = aST(2R)D is the expected total number of trial centres to appear 
inside a sphere of radius 2R. 

Consider volume elements dVi, dV2 separated by distance a. Draw spheres 
K\ and K2 with centres in dV\ and dV2 and with radii 2R. The elements 
dVi and dV2 both contain centres of packed spheres only if they contain trial 
centres. Let the arrival times of the trial centres be t\ and t2. In order for these 
trial spheres to remain as packed spheres, K\ and K2 must have had no other 
trial centres arriving at times before t\ and t2. 
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If a > 4R, the spheres Kx and K2 do not overlap. Then if W = S2DRD is 
the volume of Ki and of K2, 

P(co)p(a)dV1dV2= J exp(-ahW)adh J exp(-at2W)adt2-dVidV2 

= [p(°°)]2dV1dV2. 

Then 

(21) p(a) = p ( » ) = (1 - exp(-r))/W, 4R < a. 

H 2R < a < 4:R, the spheres Kh K2 overlap. Let W be the volume of the 
intersection K\ K2. Then p ( °o )p (#) is the integral 

expj -o*i(W - W") - att(W - W) - a Max(tu h)W'}dh dtt. o */o 

The final result is 

(22) P(a) = 

0, if a < 2R, 

M">)L»f 1 - (1 - 2")/1+gl 

p(«>), if 2? < a. 

In (22), / i s the density (20) (0 < / < 2~D), p(a>) is given by (21), and Ç = 
1 - TT/Ï7. If £> = 1, Q = a/(2R). Otherwise 

( 2 = 1 — 2 I sinDx dx / I sin^x dx, 

where cos 6 = a/(4:R). In particular 

Q = 1 - (20 - \ sin 20)/TT, if D = 2, 

Q = (48(a/22) - (a/^)3)/128, if £> = 3. 

W h e n / = 2-D , (22) simplifies to p{a) = 2p(a>)/(l + (?) for 27? < a < 4R. 
In this range p(a) decreases monotonically down to the value p(°°) at a = 4R. 
When D = 2, p(2i?) = 1.3595 p(œ). When D = 3, p(22?) = (32/27)p(oo) = 
1.1852 p(oo). 

The radial distribution function for the first random packing method seems 
hard to find analytically. A computer simulation was tried for the case D = 3. 
A total of 199 spheres of radius 0.10 were packed into three unit cubes to get 
an average density of 0.278. In each cube opposite faces were identified to 
minimize boundary effects. The radial distribution function had a peak value 
p(2R) = 1.9p(°o); for a > 3R no statistically significant difference between 
p(a) and p(°°) was detectable. 

Radial distribution functions for molecules in a liquid, as measured by X-ray 
diffraction, typically have higher peak values and oscillate about the value 
p(oo) as a increases. The random packings considered here are not dense 
enough to show this behaviour. 
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