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Elementary Methods for Calculating First and Second
Moments of Simple Configurations.

By R. F. Muirngap, M.A., D.Sc.

1. The term Second Moment, which is already in frequent use,
as applied to lines, areas and volumes, as well as masses, is preferable
to the older term Moment of Inertia which properly applies only to
masses.

2. The First Moment of a body, or of a volume, or of an area,
or in fact of anything which can be conceived as composed of
elements having magnitude and position, is defined with reference to
a plane, an axis, or a point by the symbol X (¢.r) where e is the
magnitude of an element, and r the measure of its distance from the
plane, axis, or point of reference. The first of these quantities, the
planar First Moment, is the most important, though in the case of
plane figures the moment as to a line in the plane is identical with
the moment as to a perpendicular plane passing through the line.

3. The Second Moment of a configuration is defined by the
formula Z(e.7?), and here again it may be planar, axial, or polar,
according as r is the distance of ¢ from a plane, an axis, or a point.
In Dynamics the Axial Second Moment is that which has most
direct importance, but it is simpler to begin with the calculation of
planar moments, and every Axial Second Moment is the sum of the
planar Second Moments with reference to two mutually perpendicular
planes having the axis as their line of intersection. 1)

First Moments and Centres of Inertia.

4. The Centre of Inertia or Centroid of a system of elements Ze
is defined as that point whose distance & from any plane of reference
is given by &. Ze =Z(e. x).

The unique existence of such a point admits of easy proof. It is
obvious, too, that for similar configurations similarly situated with
reference to the plane of reference, & will be proportional to their
linear dimensions,
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3. Consider now a uniform straight line or thin rod AB whose
mid point is C, whose length is ¢ and whose mass is m. Taking
moments with reference to the plane through A perpendicular to AB,
and equating the moment of AB to the sum of the moments of AC
and OB, we get, if & be the distance of the centroid of AB from A,

. m & m/E [
m=7-7+7(7+?)

_a
T= ? .
Thus the centroid of a uniform straight line is its mid-point.

6. If we divide a rectangle into four similar rectangles each
containing } of its area, or a cuboid into eight similar cuboids each
containing 1 of its volume, and equate the moment of the whole to
the sum of the moments of the parts with reference to a side of the
rectangle or a face of the cuboid, we shall find the mid-point of the
figure to be its centroid. And, more generally, if A be the height of
any right or oblique prismatic body and £ the distance of its centroid

from one end, we shall find &= l;— by considering the prism as made
up of an infinite number of thin uniform rods each of which has its

centroid at distance g— from the end.

-

7. Next take a uniform triangular lamina ABC of mass m, such
that the perpendicular from A on BC is of length A, and consider
its first moment as to the plane through A perpendicular to the
altitude A. Let D, E, F be the mid-points of the sides BC, CA, AB
respectively, and let & be the distance of the centroid from the plane
of reference. Then the four triangles AFE, FBD, EDC, DEF have
their centroids respectively at distances

£ h & h & : &
Tyt gt h-g

& & & &

Using the same principle as before, we get
. o m (& h & & }
me= g 5+ 3+ 5) -7

Xr=

e
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8. Consider next a uniform tetrahedron OABC, such that
0OA, OB, OC are mutually perpendicular, the length of OA being

Let D, E, F, H, K, L. be the mid-points of BC, CA, AB, OA,
OB, OC respectively, and P the 8th corner of the cuboid whose
other 7 corners are O, H, K, I, D, E, ¥. Then the tetrahedron
OABC together with the smaller one PDEF make up the three
tetrahedra AFHE, BFKD, CDLE and the cuboid mentioned.
Hence, taking moments as to the plane through A parallel to OBC,
we have

mh E m [ & >} 6m 3h
)
h

P.‘

Second Moments and Radii of Gyration.

9. We shall apply to the same set of figures as above the same
principle that the sum of the moments of the parts is equal to the
moment of the whole; but in place of the theorem of the unique
centroid we shall use the Theorem of Parallel Planes which is
analogous to Huyghens’ Theorem of Parallel Axes, viz.,

Sma? = #3m + Sma’®, where x =& + .
And in place of the theorem that for similar figures similarly placed,
& is proportional to the linear dimensions, we have to note that for
equi-dense similar figures similarly situated as to the plane of
reference, Zex® is proportional to the 3rd, 4th or 5th power of a
length according as the contiguration is one-dimensional, two-
dimensional, or three-dimensional.

10. Denoting by M the Second Moment of the unform rod
previously described, as to a plane through the centroid parallel to
the original plane of reference, we have

wan(3) - 5{(5) +(F)) %

o

12
It is obvious that the same result would apply to any prismatic
body referred to the plane at one end; and this, too, whether the

prism is right or oblique, if we take a to denote the perpendicular
height of the prism.

M-="2
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11. Similarly, for the triangle, taking moments as to the same
plane of reference, and denoting by M its Second Moment as to a
parallel plane through the centroid, we have

2 M my h I 3\?
M+m<3)‘ﬁ“ +1l(z >+2<€>+<?>}
mh?

M_ls

Hence the Second Moment as to the parallel plane through A is
mh? 2h R
18 + m<?> = m? .
12. Again the corresponding equation for the tetrahedron gives
3\* M m /5h\?
M —r (=
L+m <4) tat 8(8)

M + ﬁ %)2 + 21".(1}_‘)2.}. va“ E + 3_m<2")2
32 8\8 8\8 4 48 4\ 4
e

80
Hence the Second Moment as to the plane of reference through A

=3

M=

3 3mh?
is equal to —— Sl (—lb) - ; and as to the plane of the base
80 4 5
it 3mh? 3 >e_mh"
it is -5 +m<z— =70

It is obvious that these formule will apply to any pyramid
whatever, taken with reference to planes parallel to the base; for
such a pyramid could be dissected into infinitesimal triangular
pyramids with the same apex and height, and it is obvious that,
with reference to such a plane, an oblique tetrahedron has the same
Second Moment as a right one with equal base and height.

13. The Second Moment of a uniform circular lamina of mass m
and radius , about a perpendicular axis through its centre can now
be found by supposing it dissected into infinitesimal triangles of
mass e, whose vertices are at the centre. For each of these triangles
the Second Moment relative to this axis is the same as that relative
to a plane through this axis perpendicular to the mid line of the
triangle, and is therefore er?/2.
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Hence the required Second Moment of the Jamina is (er”/2) and
therefore =mr?/2.

Using the theorem (1) we at once find the Second Moment of
the disc relative to any plane through its axis to be mr*/4, and this
is of course the same as its Second Moment as to a diameter of the
circle as axis.

14. It is clear that for a uniform solid cylinder, which may be
looked on as composed of uniform thin circular discs, the Second
Moment with reference to its axis is also m»?/2.  As it is prismatic,
its Second Moment as to the plane of one end is Imh*; while as
to a diameter of the end, its axial Second Moment, by (1), is
mh?  mr®
ERES

15. Again, if a uniform solid sphere be dissected into infinitesimal
tetrahedra each having mass e and a vertex at the centre, the planar
Second Moment of any tetrahedron as to a diametral plane perpen-
dicular to its length, and therefore its polar Second Moment as to
the centre, would be 3er?/5.

Hence the polar Second Moment of the solid sphere as to the
centre is Z(er?/d) or 3me?/5 ; from which it follows that the Second
Moment as to a diametral plane is mr®/5, and that as to a diameter
is 2mr*/5.

16. By the aid of the well-known and obvious principle that a
pure longitudinal strain applied to a configuration in a direction
perpendicular to the plane of reference, without change of mass,
will increase the Second Moment as to that plane in proportion to
the square of a length in that direction, we can at once extend the
results for circles and cylinders and spheres so as to apply to ellipses
and elliptic cylinders and ellipsoids, so far as their principal planes
and axes are concerned.

17. It is perhaps worth noting that if a body be symmetrical as
to a plane, or as to some axis or point in that plane, the Second
Moment of one of the two halves into which it is divided by the
plane in question, taken with-reference to that plane, is exactly half
of the Second Moment of the whole body. In this way we can, for
example, get the Second Moments of a semicircular lamina as to its
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diameter, of the quadrant of a circle with reference to a radial
boundary as axis, and those of the hemisphere, of the quadrant of a
solid sphere, and of the octant of a solid sphere, with reference to
their plane faces.

18. To find the Second Moment of a uniform solid right circular
cone about its axis, consider a right circular cylinder whose length
is equal to its diameter. The sphere inscribed in this cylinder is
equal to the “remainder” of the cylinder when a double cone has
been taken away whose bases are the ends of the cylinder. For if
we take any coaxial cylindric surface and the inscribed sphere, the
surface of the latter is obviously equal to that part of the cylindric
surface which lies within the “remainder.” Hence if the
“remainder” and the sphere be divided into elementary shells by
an infinite number of such surfaces, the corresponding elements will
be equal, and each element of the “remainder” will have the same
Second Moment as to the axis of the cylinder as the corresponding
spherical element has as to the centre.

Thus the axial Second Moment of the “remainder” about its
axis is equal to the polar Second Moment of the sphere as to its
centre, viz., 4m x 37°/5, where m is the mass of one half of the
double cone. (This result might also have been arrived at without
reference to the sphere, by dividing the “remainder” into infinit-
esimal pyramids with their vertices at the apex of the double cone).

Now the Second Moment of the whole cylinder (of mass 6m)
about its axis is 6m x+?/2. This leaves 3m® - 12mr*/5 = 3mr*/5 as
the moment of the double cone about its axis.

Hence the Second Moment about its axis of the single cone
is Jymr® and this will, by Art. 16, clearly hold good whether the
Lieight is equal to the radius of the base, or not. The Second
Moment as to an axial plane will be %;m? and this can be extended
by the principle of Art. 16 to the Second Moment of a right elliptic
cone taken as to a principal axial plane, if r stands for the semi-
axis of the base which is perpendicular to the plane of reference,

Again, since a right circular cone is a species of pyramid, we see
that its Second Moment as to a plane through its apex parallel to
its base is 3mh*/5, and as to the plane of its base mA?/10, so that the
axial Second Moment as to a diameter of the base is

(3mr* + 2mh?) /20,
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19. The idea of using Huygens’ Theorem of Parallel Axes or its
analogue for planar moments to find Second Moments without
integration is not new-—in fact, its application to the case of the
rod has long been common property, and I find that there is a paper
by Rehfeld in Grunert's Archiv, 2nd Series, Vol. 16, in which the
same idea is developed and applied to most of the cases treated in
the present article. So far as I am aware, however, no account of
the method has hitherto been published in English. Considering
this, and the fact that my treatment of the topic differs a good deal
from that of Rehfeld's paper, I have ventured to offer the present
communication to the Society.

8 Vol. 25
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