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Abstract
Given a negatively graded Calabi-Yau algebra, we regard it as a DG algebra with vanishing differentials and study
its cluster category. We show that this DG algebra is sign-twisted Calabi-Yau and realise its cluster category as a
triangulated hull of an orbit category of a derived category and as the singularity category of a finite-dimensional
Iwanaga-Gorenstein algebra. Along the way, we give two results that stand on their own. First, we show that the
derived category of coherent sheaves over a Calabi-Yau algebra has a natural cluster tilting subcategory whose
dimension is determined by the Calabi-Yau dimension and the a-invariant of the algebra. Second, we prove that
two DG orbit categories obtained from a DG endofunctor and its homotopy inverse are quasi-equivalent. As an
application, we show that the higher cluster category of a higher representation infinite algebra is triangle equivalent
to the singularity category of an Iwanaga-Gorenstein algebra, which is explicitly described. Also, we demonstrate
that our results generalise the context of Keller–Murfet–Van den Bergh on the derived orbit category involving a
square root of the AR translation.
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1. Introduction

Cluster tilting theory emerged at the beginning of this century in the contexts of categorification of
cluster algebras [BMRRT] and higher-dimensional Auslander-Reiten theory [I1], which has led to
fruitful connections between various areas of mathematics. A central role is played by the concept
of cluster tilting objects in Calabi-Yau (CY) triangulated categories, which gives a categorification
of Fomin–Zelevinsky’s cluster algebra [FZ]; see, for example, [Ke5] for an introduction. A general
construction of such triangulated categories is given as Amiot’s generalised cluster categories [Am],
which is based on the formalism of differential graded (DG) algebras [Ke3]. Throughout, we fix a field
k, and every module will be a right module unless stated otherwise. Recall that a DG k-algebra Λ is
bimodule (𝑛 + 1)-CY [Gi] if it is homologically smooth and there is an isomorphism

RHomΛ𝑒 (Λ,Λ𝑒) [𝑛 + 1] � Λ

in the derived category D(Λ𝑒) of the enveloping algebra Λ𝑒 := Λop ⊗𝑘 Λ. Then the cluster category
C(Λ) of Λ is the Verdier quotient of the perfect derived category perΛ by the thick subcategory D𝑏 (Λ)
consisting of DG modules of finite-dimensional total cohomology. The fundamental result due to Amiot
and its generalization by Guo [Am, Gu] states that if Λ is a bimodule (𝑛 + 1)-CY DG algebra whose
cohomology is concentrated degree ≤ 0 and each cohomology is finite dimensional, then C(Λ) is an
n-CY triangulated category and Λ ∈ C(Λ) is an n-cluster tilting object.

The aim of this paper is to give some descriptions of this cluster category for a certain class of
DG algebras, namely formal DG algebras. Recall that a DG algebra is formal if it is isomorphic to its
cohomology in the homotopy category of DG algebras. We therefore start our discussion with a graded
(non-DG) algebra R and view it as a DG algebra 𝑅dg with trivial differentials.

1.1. Cluster categories and orbit categories

Our first observation is that we can obtain a class of CY DG algebras from certain graded (non-DG)
algebras. Recall the distinct notion of CY algebra for graded non-DG algebras; a graded algebra R over
a field k is homologically smooth if it perfect as a graded bimodule and is bimodule (𝑑 + 1)-CY of
a-invariant a if it is homologically smooth and there is an isomorphism

RHom𝑅𝑒 (𝑅, 𝑅𝑒) (𝑎) [𝑑 + 1] � 𝑅

in the derived category D(ModZ𝑅𝑒) of (all) graded bimodules ModZ𝑅𝑒. (This should not be confused
with the derived category D((𝑅dg)𝑒) of the DG algebra (𝑅dg)𝑒.) Here, (1) is the degree shift functor on
the graded modules, while [1] is the suspension in the derived category. Such algebras arise naturally
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and are studied extensively in representation theory and commutative or non-commutative algebraic
geometry [AS, YZ, Boc1, KS, IR, BS, BSW, MM, AIR, VdB2, RR].

It is well-known that among CY algebras, those of a-invariant 1 are fundamental in the sense that
they are higher preprojective algebras [IO] of their degree 0 part [Ke6, MM, HIO, AIR]. Although our
results are already non-trivial for 𝑎 = 1, we study CY algebras of arbitrary a-invariant, which exhibits
some additional symmetries.

Let R be a CY algebra. We view it as a DG algebra with vanishing differentials, which we denote
by 𝑅dg, and study its properties. Note that the gradings on R and on 𝑅dg are of different nature; the
first one is ‘algebraic’ while the second one is ‘cohomological’ (see [Y, Section 3.1, 15.1]). Such
homological properties of DG algebras have been investigated, for example, in [HM, MGYC]. The
following observation shows a relationship between the CY properties of R and 𝑅dg. In particular, we
obtain from a graded CY algebra a DG algebra that is always very close to being CY and often, in fact,
is CY. We refer to Theorem 5.2 for a precise statement. Here we do not need any additional assumptions
on R such as (R0), and so on, below.

Proposition 1.1 (Theorem 5.2). Let R be a graded bimodule (𝑑 + 1)-CY algebra of a-invariant a. Then
𝑅dg is sign twisted bimodule (𝑑 + 𝑎 + 1)-CY.

For a DG algebra Λ satisfying perΛ ⊃ D𝑏 (Λ), we set

C(Λ) := perΛ/D𝑏 (Λ)

and call it, by abuse of language, the cluster category of Λ. If Λ is a CY DG algebra (e.g., the derived
preprojective algebra [Ke6] of a finite-dimensional algebra, or the Ginzburg DG algebra [Gi] associated
to a quiver with potential), then C(Λ) is the usual cluster category introduced in [Am]. Although our DG
algebra 𝑅dg is not CY in general, it is close enough to CY that we can define the cluster category C(𝑅dg),
which gives rise to a cluster tilting object. To understand this category, we first study the categories
arising from the graded algebra R and then compare with those arising from 𝑅dg.

We now assume the following on the CY algebra R:

(R0) R is negatively graded.
(R1) Each 𝑅𝑖 is finite dimensional.

We note that the condition (R0) can be replaced by positive grading up to Theorem 1.2 below, but
negative grading will be essential in the later discussion.

Let perZ𝑅 be the perfect derived category of R: that is, the thick subcategory of D(ModZ𝑅) generated
by the finitely generated graded projective modules. Also let D𝑏 (flZ𝑅) be the bounded derived category
of the category flZ𝑅 of graded R-modules of finite length. We set

qperZ𝑅 := perZ𝑅/D𝑏 (flZ𝑅).

When R is Noetherian (or, more generally, graded coherent), we have perZ𝑅 = D𝑏 (modZ𝑅) since R
is homologically smooth, where D𝑏 (modZ𝑅) is the bounded derived category of finitely presented
graded R-modules modZ𝑅. Then the Verdier quotient qperZ𝑅 is nothing but the derived category of the
Serre quotient qgr 𝑅 = modZ𝑅/flZ𝑅 (see [Miy, Theorem 3.2]), which is regarded as the category of
coherent sheaves over the non-commutative projective scheme [AZ] and plays an essential role in non-
commutative algebraic geometry. Our category qperZ𝑅 is thus a generalization of the derived category
D𝑏 (qgr 𝑅).

Our first main result is the existence of a natural cluster tilting subcategory in qperZ𝑅, which is of
independent interest. More importantly, we prove that the construction of qperZ𝑅 as the Verdier quotient
perZ𝑅/D𝑏 (flZ𝑅) lies on the context of Iyama–Yang’s formulation [IYa1] of Amiot’s cluster category
(see Theorem 2.6 and Theorem 4.6), which consequently yields a cluster tilting subcategory.
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Theorem 1.2 (Theorem 4.6(4)). Let R be a graded bimodule (𝑑 + 1)-CY algebra of a-invariant a
satisfying (R0) and (R1). Then the subcategory

add{𝑅(−𝑖) [𝑖] | 𝑖 ∈ Z} ⊂ qperZ𝑅

is a (𝑑 + 𝑎)-cluster tilting subcategory.

For example, by setting R to be the polynomial ring with standard positive grading, we deduce that
the derived category of coherent sheaves over the projective space P𝑑 has a (2𝑑 + 1)-cluster tilting
subcategory add{O(𝑖) [𝑖] | 𝑖 ∈ Z}.

Now we compare the derived categories of the graded algebra R and the DG algebra 𝑅dg. An important
step is to consider the total module (see Section 5), which gives a DG functor

Tot : Cdg(ModZ𝑅) → Cdg (𝑅
dg)

on the DG categories of complexes of graded R-modules and DG 𝑅dg-modules, and in turn induces
a functor on the derived categories. We deduce the following result as a consequence of Theorem 1.2
above.

Corollary 1.3 (Theorem 6.1). The functor Tot induces a fully faithful functor

qperZ𝑅/(−1) [1] → C(𝑅dg)

whose image generates C(𝑅dg) as a triangulated subcategory.

This is a cluster category analogue of the result in [KY, Theorem 1.3] for the perfect derived category.
Note that this gives a reasonable description of the cluster category since on C(𝑅dg), the degree shift
and the suspension are identified and more accessible in the sense that derived categories are sometimes
explicitly described.

Now we apply Minamoto–Mori’s equivalence [MM] (see Proposition 4.9 below); there exists a
triangle equivalence qperZ𝑅 � D𝑏 (mod 𝐴) for the finite-dimensional algebra

𝐴 = 𝐴(𝑅) =

������
𝑅0 0 · · · 0
𝑅−1 𝑅0 · · · 0
...

...
. . .

...
𝑅−(𝑎−1) 𝑅−(𝑎−2) · · · 𝑅0

������
, (1.1)

where mod 𝐴 is the category of finitely generated modules over A and D𝑏 (mod 𝐴) is its bounded
derived category. This algebra is d-representation infinite, which is fundamental in higher-dimensional
Auslander-Reiten theory [HIO] and non-commutative algebraic geometry [Min2, MM]. By the derived
equivalence above, we deduce that the autoequivalence 𝜈𝑑 = −⊗L

𝐴𝐷𝐴[−𝑑] of D𝑏 (mod 𝐴) has an ath
root 𝜈1/𝑎

𝑑 (see equation (4.1)). Then we can rewrite Corollary 1.3 as a fully faithful functor

D𝑏 (mod 𝐴)/𝜈−1/𝑎
𝑑 [1] ↩→ C(𝑅dg) (1.2)

whose image generates C(𝑅dg) as a thick subcategory. Note that we can formally write 𝜈−1/𝑎
𝑑 [1] as

𝜈−1/𝑎
𝑑+𝑎 ; thus C(𝑅dg) can be regarded as a ‘Z/𝑎Z-quotient’ of the (𝑑 +𝑎)-cluster category of A in the sense

that it is obtained from an ath root of the automorphism 𝜈𝑑+𝑎.
The existence of a square root of the AR translation appears in [KMV] and was important in their

structure theorem for certain CY categories [KMV, Theorem 1.4]. Our result in equation (1.2) is an
interpretation and a generalization of a situation of their theorem. We discuss in examples (see Example
4.13 and 6.6) how our results specialise to their setting.
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1.2. Cluster categories and singularity categories

We further describe the cluster category as a singularity category. Recall that the singularity category
Dsg (Λ) of a Noetherian ring Λ is the Verdier quotient D𝑏 (modΛ)/perΛ, which is widely studied in
representation theory and algebraic geometry. If Λ is Iwanaga-Gorenstein in the sense that the free
module Λ has finite injective dimension on the left and right, then Dsg (Λ) is canonically equivalent
to the stable category CMΛ of Cohen-Macaulay modules [Bu]. In the context of cluster tilting theory,
Iwanaga-Gorenstein algebras that are stably CY and admit cluster tilting objects, together with the
relationship between the cluster categories, have been of particular interest [GLS, I1, KR1, IYo, Am,
BIRS, AIRT, ART, KMV, IO, AO, AIR, TV].

Let a finite-dimensional algebra 𝐴 = 𝐴(𝑅) as in equation (1.1) and an (𝐴, 𝐴)-bimodule U be

𝑈 = 𝑈 (𝑅) =

������
𝑅−1 𝑅0 · · · 0
...

...
. . .

...
𝑅−(𝑎−1) 𝑅−(𝑎−2) · · · 𝑅0
𝑅−𝑎 𝑅−(𝑎−1) · · · 𝑅−1

������
.

This is a ‘relative’ d-APR tilting of A. We have a trivial extension algebra

𝐵 = 𝐵(𝑅) = 𝐴 ⊕ 𝑈,

which turns out to be d-Iwanaga-Gorenstein (Proposition 6.3). Our second main result is a description
of the cluster category C(𝑅dg) of a DG algebra in terms of a finite-dimensional Iwanaga-Gorenstein
algebra B.

Theorem 1.4 (Theorem 6.4). There exists a triangle equivalence

C(𝑅dg) � Dsg(𝐵).

In particular, Dsg (𝐵) is a twisted (𝑑 + 𝑎)-CY category with a (𝑑 + 𝑎)-cluster tilting object.

To build the equivalence above, we need a general result on DG orbit categories (Theorem 1.5 below).
Let us explain the connection, for simplicity, in the case 𝑎 = 1.

In this case, R is bimodule (𝑑 + 1)-CY of a-invariant 1; thus it is the (𝑑 + 1)-preprojective algebra of
its degree 0 part [AIR, Theorem 3.3], which is the d-representation infinite algebra A in equation (1.1).
Then 𝑅dg is the derived (𝑑 + 2)-preprojective algebra (or the (𝑑 + 2)-CY completion)

𝚷𝑑+2 (𝐴) = 𝑇
L
𝐴 RHom𝐴(𝐷𝐴, 𝐴) [𝑑 + 1]

in the sense of [Ke6]; thus its cluster category C(𝑅dg) is the (𝑑 +1)-cluster category C𝑑+1 (𝐴) of A. (Note
that by convention, our n-cluster category is n-CY.) On the other hand, we have another description of
this cluster category C𝑑+1 (𝐴) as a certain singularity category; setting

𝐶 = 𝐴 ⊕ 𝐷𝐴[−𝑑 − 2],

there exists an equivalence

C(𝑅dg) = per 𝑅dg/D𝑏 (𝑅dg) � thickD(𝐶) 𝐴/per𝐶
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by the relative Koszul dual ([Am, Proof of Theorem 4.10]; see also Lemma 8.3 below). Therefore, the
equivalence we need is one between the singularity categories

thickD(𝐶) 𝐴/per𝐶 � thickD(𝐵) 𝐴/per 𝐵 = Dsg (𝐵).

Note that they are precisely Keller’s description of triangulated hulls [Ke2], and their equivalence is a
consequence of a general equivalence of triangulated hulls, which is our third main result.

Let A be a pretriangulated DG category, and let F, G be DG endofunctors on A inducing mutually
inverse equivalences on 𝐻0A. We then have DG orbit categories A/𝐹 and A/𝐺, whose derived
categories tria(A/𝐹) and tria(A/𝐺), the smallest triangulated subcategories of D(A/𝐹) and D(A/𝐺)
containing the representable modules, give triangulated hulls of 𝐻0A/𝐻0𝐹 � 𝐻0A/𝐻0𝐺. Our result
shows that these triangulated hulls are equivalent.

Theorem 1.5 (Theorem 7.1). Suppose there exists a natural transformation 𝐺 ◦ 𝐹 → 1A inducing a
natural isomorphism on 𝐻0A. Then the DG orbit categories A/𝐹 and A/𝐺 are quasi-equivalent. In
particular, the triangulated hulls tria(A/𝐹) and tria(A/𝐺) are equivalent.

We obtain the singular equivalence of B and C by applying this general result to A = C𝑏 (proj 𝐴),
𝐹 = −⊗𝐴 𝑝(RHom𝐴(𝑈 [1], 𝐴)) and𝐺 = −⊗𝐴 𝑝(𝑈 [1]) (Corollary 7.6), where 𝑝(−) means a bimodule
projective resolution.

As one of the applications and examples of our main results, we give a realization of certain higher
cluster categories as singularity categories. We assume, for simplicity, that our base field k is perfect for
the following result.

Theorem 1.6 (Theorem 9.1). Any m-cluster category of a d-representation infinite algebra with 𝑚 > 𝑑
is a singularity category of a d-Iwanaga-Gorenstein algebra.

For example, any (higher) cluster category of a non-Dynkin quiver is the singularity category of a
1-Iwanaga-Gorenstein algebra. Moreover, we can explicitly describe the Iwanaga-Gorenstein algebra;
see Theorem 9.1 and Proposition 9.4. This should be compared with the results in [HJ], where they
describe higher cluster categories of 1-representation finite algebras (or of Dynkin types) in terms of
singularity categories of self-injective algebras, using a combinatorial method.

We also give systematic examples for the case R is a polynomial ring (Section 10) and consider
examples arising from dimer models (Section 11).

2. Preliminaries

2.1. Cluster-like categories

We recall some basic concepts on certain structures in triangulated categories. At the end of this
subsection, we state Iyama–Yang’s result (Theorem 2.6), which gives a general framework for the
construction of ‘cluster-like’ categories.

Let us start with the following fundamental notion.

Definition 2.1. An object or a subcategory M in a triangulated category T is silting if HomT (M,M[>
0]) = 0 and thickM = T .

We assume throughout this paper that our silting subcategory M satisfies M = addM: that is, it is
closed under direct sums and summands. The standard example of a silting object is Λ ∈ perΛ for a
negative DG algebraΛ: that is, a DG algebra with𝐻>0Λ = 0. The same holds for negative DG categories.

Let C and D be subcategories of a triangulated category T . We set

C ∗D = {𝑋 ∈ T | there is a triangle 𝐶 → 𝑋 → 𝐷 → 𝐶 [1] for some 𝐶 ∈ C, 𝐷 ∈ D}.

By the octahedral axiom, the operation ∗ is associative. One obtains a co-t-structure (or weight structure)
[Bon, P] from a silting subcategory, which is given as follows.
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Proposition-Definition 2.2 (See, e.g., [AI, Proposition 2.23][IYa1, Proposition 2.8]). Let T be an
idempotent complete triangulated category with a silting subcategory M. Set

𝑡≥0 =
⋃
𝑙≥0

M[−𝑙] ∗ · · · ∗M[−1] ∗M,

𝑡≤0 =
⋃
𝑙≥0

M ∗M[1] ∗ · · · ∗M[𝑙]
.

Then (𝑡≥0, 𝑡≤0) is a co-t-structure. We call it the co-𝑡-structure associated to M.

In what follows, we will simply write 𝑡≥0 = · · · ∗M, 𝑡≤0 = M ∗ · · · and so on. It is important for us
that some co-t-structures and t-structures are related.

Definition 2.3 ([Bon]). Let M ⊂ T be a silting subcategory and (𝑡≥0, 𝑡≤0) the associated co-t-structure.
Let 𝑡 = (𝑡≤0, 𝑡≥0) be a t-structure in T .

1. We say t is right adjacent to M if 𝑡≤0 = 𝑡≤0.
2. We say t is left adjacent to M if 𝑡≥0 = 𝑡≥0.

For example, if Λ is a negative DG algebra that is homologically smooth such that each cohomology
is finite dimensional, then the standard t-structure on perΛ is right adjacent to a silting object Λ ∈ perΛ.
It follows that its image under the duality RHomΛ(−,Λ) : perΛ ↔ perΛop is left adjacent to a silting
object Λ ∈ perΛop.

Now let us recall the notion of (relative) Serre functors.

Definition 2.4. Let T be a k-linear Hom-finite triangulated category and Tfd ⊂ T a thick subcategory.

1. An autoequivalence 𝑆 : T→ T is a Serre functor on T if there is a functorial isomorphism

HomT (𝑋,𝑌 ) � 𝐷 HomT (𝑌, 𝑆𝑋)

for all 𝑋,𝑌 ∈ T .
2. A triangle autoequivalence 𝑆 : T → T is a relative Serre functor for Tfd ⊂ T if it restricts to an

autoequivalence on Tfd and the above functorial isomorphism holds for all 𝑋 ∈ Tfd and 𝑌 ∈ T .
3. We say that (T, Tfd, 𝑆,M) is a relative Serre quadruple if S is a relative Serre functor for Tfd ⊂ T

and M is a silting subcategory of T .

Note that we require a relative Serre functor S to be an triangle autoequivalence on T (as was not the
case in [IYa1]). We need this for a slightly generalised formulation of their results, which we present
below in Theorem 2.6. Note also that the natural isomorphism 𝑆◦ [1] � [1] ◦𝑆 associated to the triangle
functor S is not necessarily the identity even when 𝑆 = [𝑑 + 1]; see [Ke4, Section 2.5].

We have one more notion to recall.

Definition 2.5. A k-linear idempotent-complete category C is a dualising variety if 𝐷 = Hom𝑘 (−, 𝑘)
induces a duality mod C↔ mod Cop between the category of finitely presented C-modules.

For example, the category projZΛ of finitely generated graded projective modules over a finite-
dimensional graded algebra Λ is a dualising variety.

We are now ready to state the following generalised formulation of Amiot’s cluster category.

Theorem 2.6 ([IYa1, IYa2]). Let (T, Tfd, 𝑆,M) be a relative Serre quadruple such that M is a dualising
variety, and (𝑡≥0, 𝑡≤0) be the co-t-structure associated to M.

1. The silting subcategory M has a right-adjacent t-structure with 𝑡⊥
≤0 ⊂ Tfd if and only if it has a left-

adjacent t-structure with ⊥𝑡≥0 ⊂ Tfd. Suppose in what follows that the equivalent conditions above
are satisfied.

2. The category T/Tfd has a Serre functor 𝑆 ◦ [−1].
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3. The quotient functor 𝜋 : T → T/Tfd induces bijections HomT (𝑋,𝑌 ) → HomT/Tfd (𝑋,𝑌 ) for all
𝑋 ∈ 𝑡≤0 and𝑌 ∈ 𝑆𝑡≥2. Moreover, the composition 𝑡≤0∩𝑆𝑡≥2 ⊂ T→ T/Tfd is an additive equivalence.

4. Let 𝑛 ≥ 1, and assume that M is stable under 𝑆𝑛+1 = 𝑆 ◦ [−𝑛 − 1]. Then 𝜋(M) ⊂ T/Tfd is an
n-cluster tilting subcategory.

Proof. (1) is [IYa1, Theorem 4.10]. For (2) and (3), adapt the proof of [IYa1, Theorem 5.8(a)(b)]. We
include a proof of (4) since it requires a modification from [IYa1, Theorem 5.8]. Since M is stable under
𝑆𝑛+1, so is 𝑡≥𝑖 for each 𝑖 ∈ Z; thus we have 𝑆𝑡≥2 = 𝑆𝑛+1𝑡≥1−𝑛 = 𝑡≥1−𝑛 = · · · ∗M[𝑛 − 1]. Therefore, we
deduce that the fundamental domain 𝑡≤0 ∩ 𝑆𝑡≥2 is M ∗ · · · ∗M[𝑛 − 1], hence the result. �

If Λ is a bimodule (𝑛 + 1)-CY negative DG algebra with finite-dimensional 𝐻0Λ, then
(perΛ,D𝑏 (Λ), [𝑛 + 1],Λ) is a relative Serre quadruple. One can apply the above theorem and recover
the original results of Amiot and Guo.

2.2. Comparing the derived categories of graded rings

We collect some basic results on derived categories of graded rings based on the comparison of derived
categories of an abelian category and its Serre subcategory. Although various conditions on nice
behavior for these derived categories are well-known (e.g., [Ve, III, Section 2.2]), we could not find a
precise reference for our setting, so we include this section for the convenience of the reader.

Recall that a subcategory B of an abelian category A is wide if it is closed under kernels, cokernels
and extensions. This ensures that D∗B(A), the full subcategory of D∗(A) consisting of complexes with
cohomologies in B, is a thick subcategory of D∗(A) for each boundedness condition ∗ ∈ {𝑏, +,−, {}}.
Similarly, we denote by C∗B(A) the full subcategory of C∗(A) consisting of complexes with cohomologies
in B.

Proposition 2.7. Let B ⊂ A be a wide subcategory. Suppose that for any morphism 𝑌 → 𝑌1 in C∗(A)
with 𝑌 ∈ C∗(B) and 𝑌1 ∈ C∗B(A), there exist quasi-isomorphisms 𝑌1 ← 𝑌2 → 𝑌3 such that

◦ 𝑌2 → 𝑌1 is injective (in C(A)),
◦ 𝑌 → 𝑌1 factors through 𝑌2 → 𝑌1,
◦ 𝑌3 ∈ C(B),

𝑌 ��

���
�

� 𝑌1

𝑌2
��

��

�� 𝑌3.

Then the natural functor D∗(B) → D∗B(A) is an equivalence.

Proof. We first show that the functor is faithful. Let 𝑋 → 𝑌 be a morphism in K∗(B) whose image in
D∗(A) is 0. Then there is a quasi-isomorphism𝑌 → 𝑌1 in K∗(A) such that the composite 𝑋 → 𝑌 → 𝑌1
is 0 in K∗(A). Adding to Y a null-homotopic complex 𝑁 ∈ C∗(B), for example the mapping cone of
the identity map of X, we have a zero map 𝑋 → 𝑌 ⊕ 𝑁 → 𝑌1 in C∗(A). Now, applying the assumption
to the quasi-isomorphism 𝑌 ⊕ 𝑁 → 𝑌1, there exist quasi-isomorphisms 𝑌1 ←↪ 𝑌2 → 𝑌3 satisfying the
above conditions, giving rise to the following commutative diagram in C(A):

𝑋 �� 𝑌 ⊕ 𝑁
qis ��

���
��� 𝑌1

𝑌2
��

qis
��

qis �� 𝑌3

Clearly, the composite 𝑌 ⊕ 𝑁 → 𝑌2 → 𝑌3 is a quasi-isomorphism. Also, since 𝑋 → 𝑌 ⊕ 𝑁 → 𝑌1 is 0
and 𝑌2 → 𝑌1 is injective, it follows that 𝑋 → 𝑌 ⊕ 𝑁 → 𝑌3 is 0. By 𝑌3 ∈ C(B), we conclude that 𝑋 → 𝑌
is 0 in D(B).
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We next show that the functor is full. Let 𝑋,𝑌 ∈ C∗(B), and present a morphism 𝑋 → 𝑌 in D∗(A)
by the diagram 𝑋 → 𝑌1 ← 𝑌 in C∗(A). Applying the assumption to 𝑋 ⊕ 𝑌 → 𝑌1, we have quasi-
isomorphisms 𝑌1 ← 𝑌2 → 𝑌3, giving rise to the commutative diagram

𝑌1

𝑋

�������� ����� 𝑌2

qis
��

qis
��

𝑌

qis��������
		� � �

𝑌3 .

This shows that the diagram 𝑋 → 𝑌3 ← 𝑌 in C(B) defines the same morphism inD(A) as 𝑋 → 𝑌1 ← 𝑌 .
Finally, noting that the image of 𝑌3 ∈ C(B) in D(B) lies in D∗(B), we see that the functor is dense

by setting 𝑌 = 0 in the assumption. �

Applying the above criterion, we can prove the following, which will be implicitly used throughout
this paper.

Proposition 2.8. Let 𝑅 =
⊕

𝑖≤0 𝑅𝑖 be a negatively graded algebra such that each 𝑅𝑖 is finite dimensional.
Then the natural functor D𝑏 (flZ𝑅) → D𝑏flZ𝑅 (ModZ𝑅) is an equivalence.

Proof. We check the condition in Proposition 2.7 with B = flZ𝑅 and A = ModZ𝑅. Let 𝑌 ∈ C𝑏 (flZ𝑅),
𝑌1 ∈ C𝑏flZ𝑅 (ModZ𝑅) and𝑌 → 𝑌1 be a morphism in C𝑏 (ModZ𝑅). Since the terms of Y are of finite length,
the morphism 𝑌 → 𝑌1 factors through (𝑌1)≤𝑛 → 𝑌1 for sufficiently large n. Also, since the cohomology
of 𝑌1 is bounded and each is of finite length, the truncation (𝑌1)≤𝑛 → 𝑌1 with respect to the grading is a
quasi-isomorphisms for sufficiently large n. Taking the commonly large n, we obtain an injective quasi-
isomorphism𝑌2 := (𝑌1)≤𝑛 → 𝑌1 through which𝑌 → 𝑌1 factors. Similarly, the truncation𝑌2 → (𝑌2)≥−𝑚
is a quasi-isomorphism for sufficiently large m. Put 𝑌 ′3 := (𝑌2)≥−𝑚 for such m. Then each term of 𝑌 ′3 is
concentrated in degree [−𝑚, 𝑛]; thus it is a module over the finite-dimensional factor algebra 𝑅≥−𝑛−𝑚
of R. Now we work over this finite-dimensional algebra. Then one can take quasi-isomorphism𝑌 ′3 → 𝑌3
with 𝑌3 ∈ C+,𝑏 (modZ𝑅≥−𝑛−𝑚) (e.g., with injective terms), and we have 𝑌3 ∈ C(flZ𝑅). �

3. t-structure in perZ𝑅

We will be interested in a negatively graded CY algebra with an a-invariant. Before that, we will place
ourselves in a slightly more general setting. Let 𝑅 =

⊕
𝑖≤0 𝑅𝑖 be a negatively graded algebra. We

assume the following on R:

(R1) Each 𝑅𝑖 is finite dimensional.
(R2) D𝑏 (flZ𝑅) is contained in perZ𝑅.

The condition (R2) is clearly satisfied if R is homologically smooth. The aim of this section is to show
that there is a t-structure in perZ𝑅 in this setting. For each 𝑗 ∈ Z, we denote by Mod≤ 𝑗𝑅 (respectively,
Mod≥ 𝑗𝑅) the full subcategory of ModZ𝑅 consisting of graded modules concentrated in degree ≤ 𝑗
(respectively, ≥ 𝑗).

Theorem 3.1. Let R be a negatively graded algebra satisfying (R1) and (R2). Set

𝑡≤0 = {𝑋 ∈ perZ𝑅 | 𝐻𝑖 (𝑋) ∈ Mod≤−𝑖𝑅 for all 𝑖 ∈ Z},

𝑡≥0 = {𝑋 ∈ perZ𝑅 | 𝐻𝑖 (𝑋) ∈ Mod≥−𝑖𝑅 for all 𝑖 ∈ Z}.

Then (𝑡≤0, 𝑡≥0) is a t-structure in perZ𝑅.
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Remark 3.2. Under the assumption that R is Noetherian (or, more generally, graded coherent), there is
a version of this for D𝑏 (modZ𝑅) without the ‘smoothness’ condition (R2), which is in practice far more
general than Theorem 3.1 above. We give this general result in Appendix B.

Let us collect some basic notions for big triangulated categories. Let T be a triangulated cat-
egory with arbitrary (set-indexed) coproducts. An object 𝐶 ∈ T is compact if the natural map⊕

𝑖∈𝐼 HomT (𝐶, 𝑋𝑖) → HomT (𝐶,
⊕

𝑖∈𝐼 𝑋𝑖) is an isomorphism for every set {𝑋𝑖 | 𝑖 ∈ 𝐼} of objects.
A subcategory is said to generate T if the smallest triangulated subcategory containing it and closed
under arbitrary coproducts is the whole T . We call a subcategory of T a compact set of generators if it
is skeletally small, consists of compact objects and generates T .

Now recall from [AI, Definition 4.1] that a subcategory S of T is silting if it forms a compact set
of generators such that HomT (𝐴, 𝐵[> 0]) = 0 for all 𝐴, 𝐵 ∈ S. Note that this is a modified version of
Definition 2.1.

In the remainder of this section, let S be an arbitrary negatively graded algebra. Note that we do not
need (R1) or (R2) until the proof of Theorem 3.1. We will simply write D for D(ModZ𝑆). Let us start
our discussion with the following observation.

Proposition 3.3. The subcategory M = add{𝑆(−𝑖) [𝑖] | 𝑖 ∈ Z} ⊂ D is silting.

Proof. Clearly, M is a compact set of generators for D. It remains to show that HomD (𝑆, 𝑆(−𝑖) [𝑖] [ 𝑗])
vanishes for each 𝑖 ∈ Z and 𝑗 > 0. We only have to consider the case 𝑖 = − 𝑗 < 0, in which case
HomD (𝑆, 𝑆(−𝑖) [𝑖] [ 𝑗]) = HomModZ𝑆 (𝑆, 𝑆( 𝑗)) = 0 since S is negatively graded. �

We deduce by [Ke1, Theorem 4.3] that D is triangle equivalent to the derived category D(A) of a
negative DG category A. Then we have the standard t-structure (D≤0

M,D
≥0
M) associated to M, which is

given by

D≤0
M = {𝑋 ∈ D | HomD (𝑀, 𝑋 [𝑖]) = 0 for all 𝑀 ∈M and 𝑖 > 0.},

D≥0
M = {𝑋 ∈ D | HomD (𝑀, 𝑋 [𝑖]) = 0 for all 𝑀 ∈M and 𝑖 < 0.}.

As usual, we put D≤𝑛M = D≤0
M [−𝑛] and D≥𝑛M = D≥0

M [−𝑛] for each 𝑛 ∈ Z.
Now we use the following computation.

Lemma 3.4. We have

D≤0
M = {𝑋 ∈ D | 𝐻𝑖 (𝑋) ∈ Mod≤−𝑖𝑆 for all 𝑖 ∈ Z},

D≥0
M = {𝑋 ∈ D | 𝐻𝑖 (𝑋) ∈ Mod≥−𝑖𝑆 for all 𝑖 ∈ Z}.

Proof. Since D≤0
M = {𝑋 ∈ D | HomD (𝑀 [𝑖], 𝑋) = 0 for all 𝑀 ∈M and 𝑖 < 0}, we have

D≤0
M = {𝑋 ∈ D | HomD(𝑆(𝑖) [−𝑖] [− 𝑗], 𝑋) = 0 for all 𝑖 ∈ Z and 𝑗 > 0}

= {𝑋 ∈ D | 𝐻𝑖+ 𝑗 (𝑋)−𝑖 = 0 for all 𝑖 ∈ Z and 𝑗 > 0}
= {𝑋 ∈ D | 𝐻𝑖 (𝑋)−𝑖+ 𝑗 = 0 for all 𝑖 ∈ Z and 𝑗 > 0},

thus the first assertion. By D≥0
M = {𝑋 ∈ D | HomD(𝑀 [𝑖], 𝑋) = 0 for all 𝑀 ∈ M and 𝑖 > 0}, we

similarly have the second equation. �

We need one lemma to ensure that the above t-structure in D restricts to the small derived category.

Lemma 3.5. Let 𝑋 ′ → 𝑋 → 𝑋 ′′ → 𝑋 ′ [1] be a triangle in D with 𝑋 ′ ∈ D≤0
M, 𝑋 ′′ ∈ D≥1

M, and let 𝑖 ∈ Z.

1. The triangle induces a short exact sequence

0 �� 𝐻𝑖𝑋 ′ �� 𝐻𝑖𝑋 �� 𝐻𝑖𝑋 ′′ �� 0.
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2. The above exact sequence is isomorphic to the truncation

0 �� (𝐻𝑖𝑋)≤−𝑖 �� 𝐻𝑖𝑋 �� (𝐻𝑖𝑋)>−𝑖 �� 0

of 𝐻𝑖𝑋 ∈ ModZ𝑆 with respect to the grading.

Proof. (1) It is enough to show that the connecting homomorphism 𝐻𝑖𝑋 ′′ → 𝐻𝑖+1𝑋 ′ is 0 for each
𝑖 ∈ Z. Since 𝑋 ′ ∈ D≤0

M and 𝑋 ′′ ∈ D≥1
M, we have 𝐻𝑖𝑋 ′′ ∈ Mod≥−𝑖+1𝑆 and 𝐻𝑖+1𝑋 ′ ∈ Mod≤−𝑖−1𝑆, hence

the assertion.
(2) Similarly, we have 𝐻𝑖𝑋 ′ ∈ Mod≤−𝑖𝑆 and 𝐻𝑖𝑋 ′′ ∈ Mod≥−𝑖+1𝑆; thus the exact sequence in (1) has

to be the truncation of 𝐻𝑖𝑋 with respect to the grading. �

We are now ready to prove the main result.

Proof of Theorem 3.1. We show that the above t-structure in D = D(ModZ𝑅) restricts to perZ𝑅. Let
𝑋 ∈ perZ𝑅. We have to show that its truncation 𝑋 ′, 𝑋 ′′ in Lemma 3.5 are perfect. We may replace X by
a bounded complex of finitely generated graded projective R-modules. Then we have that 𝐻𝑖𝑋 = 0 for
almost all i and that each 𝐻𝑖𝑋 ∈ ModZ𝑅 is bounded above. Moreover, by assumption (R1), each vector
space (𝐻𝑖𝑋) 𝑗 is finite dimensional. Then by Lemma 3.5(1), the cohomology 𝐻𝑖𝑋 ′′ is 0 for almost all
i, and by Lemma 3.5(2), each 𝐻𝑖𝑋 ′′ ∈ ModZ𝑅 is bounded below. Therefore, 𝐻𝑖𝑋 ′′ lies in D𝑏 (flZ𝑅),
hence in perZ𝑅 by (R2). We conclude that the remaining term 𝑋 ′ is also perfect. �

4. Cluster tilting in qperZ𝑅 and the ath root of the AR translation

4.1. Cluster tilting

Let us first recall the notion of (twisted) Calabi-Yau algebras, in the graded case, which is of our central
interest. Let 𝛼 be a graded automorphism of a graded ring Λ. We say that 𝛼 is inner if there exists a
homogeneous invertible element 𝑎 ∈ Λ such that 𝛼(𝑚) = 𝑎𝑚𝑎−1 for all 𝑚 ∈ Λ. We denote by (−)𝛼
the twist automorphism on ModZΛ; thus for each 𝑀 ∈ ModZΛ, the graded module 𝑀𝛼 has the same
underlying graded vector space as M, with Λ action 𝑚 · 𝑥 = 𝑚𝛼(𝑥) for 𝑚 ∈ 𝑀 and 𝑥 ∈ Λ. Similarly,
given two graded automorphisms 𝛼, 𝛽 of Λ and a graded bimodule M, we denote by 𝛼𝑀𝛽 the twisted
graded bimodule that has Λ-action 𝑥 · 𝑚 · 𝑦 = 𝛼(𝑥)𝑚𝛽(𝑦) for 𝑚 ∈ 𝑀 and 𝑥, 𝑦 ∈ Λ. For example, the
notation 𝛼𝑀1 shows that the action is twisted by 𝛼 on the left, while it is non-twisted on the right.
Definition 4.1. A graded algebra R is bimodule twisted n-Calabi-Yau of a-invariant a if it satisfies the
following conditions:

◦ R is homologically smooth: that is, 𝑅 ∈ perZ𝑅𝑒.
◦ There exists a graded automorphism 𝛼 of R such that RHom𝑅𝑒 (𝑅, 𝑅𝑒) (𝑎) [𝑛] � 𝛼𝑅1 in D(ModZ𝑅𝑒).

We refer to 𝛼 as the Nakayama automorphism, which is uniquely determined up to inner automorphism.
We say that R is Calabi-Yau if 𝛼 is inner.

Let R be a negatively graded bimodule twisted n-CY algebra of a-invariant a with Nakayama
automorphism 𝛼. We moreover assume that each 𝑅𝑖 is finite-dimensional over k.

Let us first note a basic fact on the derived categories of R.
Proposition 4.2. D𝑏 (flZ𝑅) ⊂ perZ𝑅 has a relative Serre functor (−)𝛼 (𝑎) [𝑛].

Proof. This follows by adapting [Ke4, Lemma 4.1]. Note that all the isomorphisms appear in the proof,
which therein preserves gradings when the relevant objects are graded, so the argument carries over. �

It follows using this relative Serre duality that R is Artin-Schelter regular over 𝑅0 of dimension n and
a-invariant a in the sense of [MM, Definition 3.1]: that is, we have gl. dim 𝑅 = 𝑛, gl. dim 𝑅0 < ∞ and

Ext𝑖𝑅 (𝑅0, 𝑅) =

{
(𝐷𝑅0) (−𝑎) (𝑖 = 𝑛)

0 (𝑖 ≠ 𝑛)
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in ModZ𝑅 and in ModZ𝑅op. Note that we can get rid of the Nakayama automorphism when restricted
to one-sided modules. Note also that since R is negatively graded, the condition gl. dim 𝑅0 < ∞ is
automatic by the following observation.

Lemma 4.3. Let 𝑅 =
⊕

𝑖≤0 𝑅𝑖 be a negatively graded ring. If R is homologically smooth, then so is 𝑅0.

Proof. We can pick a bimodule projective resolution of R whose terms are concentrated in degree ≤ 0.
Taking its degree 0 part yields a bimodule projective resolution of 𝑅0. �

Let us also note the following information on the a-invariant of homologically smooth algebras.

Lemma 4.4. Let 𝑅 =
⊕

𝑖≤0 𝑅𝑖 be a negatively graded, bimodule twisted n-CY algebra of a-invariant a
such that each 𝑅𝑖 is finite dimensional. If 𝑛 > 0, then we have 𝑎 > 0.

Proof. Let 0 → 𝑄𝑛 → · · · → 𝑄1 → 𝑄0 → 𝑅0 → 0 be the minimal projective resolution of 𝑅0 in
ModZ𝑅. We have𝑄0 = 𝑅, and since R is negatively graded, the remaining terms are generated in degree
< 0: that is, 𝑄𝑙 ∈ add{𝑅(𝑖) | 𝑖 > 0} for 𝑙 > 0. On the other hand, we have 𝑄𝑛 ∈ add 𝑅(𝑎) by [MM,
Proposition 3.4(3)]. This forces 𝑎 > 0 for 𝑛 > 0. �

Now we return to our original discussion. Let R be a negatively graded bimodule twisted (𝑑 + 1)-CY
algebra of a-invariant a. We need the following reformulation of Proposition 3.3.

Proposition 4.5. M = add{𝑅(−𝑖) [𝑖] | 𝑖 ∈ Z} is a silting subcategory of perZ𝑅.

Proof. We have seen in Proposition 3.3 that M has no positive self-extensions. Also, we clearly have
thickM = perZ𝑅. �

Therefore, we obtain a relative Serre quadruple (perZ𝑅,D𝑏 (flZ𝑅), (−)𝛼 (𝑎) [𝑑 + 1],M). The first
main result of this paper is that this lies on a context of Theorem 2.6. This also explains the well-known
fact (2) on the Serre functor on the derived category of non-commutative projective spaces.

Theorem 4.6. Let 𝑑 ≥ 0, and let R be a negatively graded bimodule twisted (𝑑 + 1)-CY algebra of
a-invariant a such that each 𝑅𝑖 is finite dimensional.

1. M is a dualising variety with left- and right-adjacent t-structures.
2. qperZ𝑅 has a Serre functor (−)𝛼 (𝑎) [𝑑].
3. The quotient functor 𝜋 : perZ𝑅 → qperZ𝑅 induces bijections HomperZ𝑅 (𝑋,𝑌 ) → HomqperZ𝑅 (𝑋,𝑌 )

for each 𝑋 ∈M∗· · · and𝑌 ∈ · · ·∗M[𝑑+𝑎−1]. Moreover, the compositionM∗· · ·∗M[𝑑+𝑎−1] ⊂
perZ𝑅 𝜋

−→ qperZ𝑅 is an equivalence.
4. 𝜋(M) = add{𝑅(−𝑖) [𝑖] | 𝑖 ∈ Z} ⊂ qperZ𝑅 is a (𝑑 + 𝑎)-cluster tilting subcategory.

In the proof below, we write T = perZ𝑅 and Tfd = D𝑏 (flZ𝑅).

Proof. (1) Since M = add{𝑅(−𝑖) [𝑖] | 𝑖 ∈ Z}, we have M � projZΛ with Λ =⊕
𝑖∈ZHomT (𝑅, 𝑅(−𝑖) [𝑖]) = 𝑅0, hence M is a dualising variety.
We next show that the silting subcategory M ⊂ T has left- and right-adjacent t-structures. By

Theorem 2.6(1), it suffices to show the existence of the right-adjacent t-structure with 𝑡⊥
≤0 ⊂ Tfd. Set

𝑡≤0 := 𝑡≤0 and 𝑡≥0 := (𝑡≤−1)⊥, where 𝑡≤𝑛 = 𝑡≤0 [−𝑛] and so on. Note that 𝑡≤0 = M[< 0]⊥ and
𝑡≥0 = (𝑡≤−1)⊥ = (𝑡≤−1)

⊥ = M[>0]⊥. Then as in Lemma 3.4, we have

𝑡≤0 = {𝑋 ∈ T | 𝐻𝑖 (𝑋) ∈ Mod≤−𝑖𝑅 for all 𝑖 ∈ Z},
𝑡≥0 = {𝑋 ∈ T | 𝐻𝑖 (𝑋) ∈ Mod≥−𝑖𝑅 for all 𝑖 ∈ Z}.

Now the assertion that (𝑡≤0, 𝑡≥0) is a t-structure is precisely what we showed in Theorem 3.1, and clearly
𝑡≥0 ⊂ Tfd.

(2) This follows from Theorem 2.6(2).
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(3)(4) Let 𝑆 = (−)𝛼 (𝑎) [𝑑 +1] be the relative Serre functor for Tfd ⊂ T . Then 𝑆𝑑+𝑎+1 = (−)𝛼 (𝑎) [−𝑎]
preserves M. Therefore, we have 𝑆𝑡≥2 = 𝑆𝑑+𝑎+1𝑡≥−𝑑−𝑎+1 = 𝑡≥−𝑑−𝑎+1, hence (3) by Theorem 2.6(3),
and (4) by Theorem 2.6(4). �

We end this subsection with the following computation.

Lemma 4.7. The natural map HomperZ𝑅 (𝑅, 𝑅(𝑖)) → HomqperZ𝑅 (𝑅, 𝑅(𝑖)) is an isomorphism whenever
𝑑 > 0 or 𝑖 < 𝑎.

Proof. Note that 𝑅(𝑎) [𝑏] ∈ M[𝑎 + 𝑏] for each 𝑎, 𝑏 ∈ Z. Then, using Theorem 4.6(3), we have the
assertion for 𝑖 ≤ 𝑑 + 𝑎 − 1, so it remains to consider 𝑖 ≥ 𝑑 + 𝑎. Let, more generally, 𝑖 > 0. Then the left-
hand side is clearly 0. By Serre duality, we have HomqperZ𝑅 (𝑅, 𝑅(𝑖)) = 𝐷 HomqperZ𝑅 (𝑅(𝑖), 𝑅(𝑎) [𝑑])
with 𝑅(𝑖) ∈ M[1] ∗ · · · and 𝑅(𝑎) [𝑑] ∈ M[𝑑 + 𝑎]. Therefore, Theorem 4.6(3) shows that this is
𝐷 HomperZ𝑅 (𝑅(𝑖), 𝑅(𝑎) [𝑑]), which vanishes when 𝑑 > 0 or 𝑖 < 𝑎. �

4.2. Tilting and the ath root of the AR-translation

In this subsection, we note a result due to Minamoto–Mori [MM] and give a finite-dimensional algebra
A, which will play a crucial role in the sequel. Before that, let us recall the following notion.

Definition 4.8 ([HIO]). A finite-dimensional algebra Λ is d-representation infinite if gl. dimΛ ≤ 𝑑 and

𝜈−𝑖𝑑 Λ ∈ modΛ

holds for all 𝑖 ≥ 0, where 𝜈𝑑 is the autoequivalence −⊗L
Λ𝐷Λ[−𝑑] on D𝑏 (modΛ).

Note that we allow 𝑑 = 0 and understand ‘0-representation infinite’ algebras as being semisimple.

Proposition 4.9 (compare [MM, Theorem 4.12]). Let R be a negatively graded bimodule twisted (𝑑+1)-
CY algebra of a-invariant a such that each 𝑅𝑖 is finite dimensional.

1. 𝑇 =
⊕𝑎−1

𝑙=0 𝑅(−𝑙) is a tilting object in qperZ𝑅.
2. 𝐴 = EndqperZ𝑅 (𝑇) is d-representation infinite.

Therefore, there exists a triangle equivalence qperZ𝑅 � D𝑏 (mod 𝐴).

This is a compact version of [MM, Theorem 4.12] as well as a generalization of [MM, Theorem
4.14] to non-coherent algebras. We will give a proof using Theorem 4.6 in Appendix C.

We are now in the position to state the following important consequence. Suppose in what follows
that (−)𝛼 � 1 on qperZ𝑅: for example, that R is CY. Let A be the d-representation-infinite algebra
given in Proposition 4.9, and let F be the autoequivalence on D𝑏 (mod 𝐴), making the diagram below
commutative:

qperZ𝑅 � ��

(1)
��

D𝑏 (mod 𝐴)

𝐹
��

qperZ𝑅 � �� D𝑏 (mod 𝐴).

(4.1)

Corollary 4.10. We have 𝐹𝑎 = 𝜈𝑑 as autoequivalences of D𝑏 (mod 𝐴).

Proof. Comparing the Serre functors on qperZ𝑅 � D𝑏 (mod 𝐴), the autoequivalences (𝑎) on qperZ𝑅
and 𝜈𝑑 on D𝑏 (mod 𝐴) are compatible, hence we obtain the desired result. �

We can therefore regard F as an ath root of the d-AR translation 𝜈𝑑 and denote 𝐹 =: 𝜈1/𝑎
𝑑 and also

𝐹−1 =: 𝜈−1/𝑎
𝑑 .

Let us give some easy examples of ath roots of the AR translation; see Lemma 10.1 for the CY
property of polynomial rings.
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Example 4.11. Let 𝑅 = 𝑘 [𝑥, 𝑦] with deg 𝑥 = deg 𝑦 = −1, so R is 2-CY of a-invariant 2. Applying
Proposition 4.9, we have a well-known equivalence D𝑏 (qgr 𝑅) � D𝑏 (mod 𝐴) with A the Kronecker
algebra. The AR-quiver of this category has a component that looks like

𝑅(1)


�

��
�



�
��

�
𝑅(−1)



�
��

�



�
��

�
𝑅(−3)



�
��

��



�
��

��

· · ·

�������
�������

𝑅

������
������

𝑅(−2)

������
������

· · · .

By diagram (4.1) above, this shows that 𝜈−1/2
1 on D𝑏 (mod 𝐴) acts by ‘moving one place to the right’.

We next look at a higher root of the AR translation.

Example 4.12. Let 𝑅 = 𝑘 [𝑥, 𝑦] with deg 𝑥 = −2 and deg 𝑦 = −3, so R is 2-CY of a-invariant 5. By
Proposition 4.9, there is a triangle equivalence D𝑏 (qgr 𝑅) � D𝑏 (mod 𝐴), where A is the path algebra
over k of the following quiver of type �̃�4:

0

1

23

4

,

with the vertex i corresponding to the summand 𝑅(−𝑖). By the triangle equivalence, we see that the
AR-quiver of the triangulated category D𝑏 (qgr 𝑅) has the following connected component:

◦



�
��

��
����� ◦



�
��

��
���� 𝑅(−1)



�
��

�
���� ◦



�
��

��
����� ◦



�
��

��
��

◦



�
��

��

�������
◦



�
��

�

�������
𝑅(−4)



�
��

��

������
◦



�
��

��

�������
◦

◦



�
��

��

�������
◦



�
��

��

�������
𝑅(−2)



�
��

�

������
◦



�
��

��

�������
◦



�
��

��

�������

◦

�������



�
��

��
𝑅



�
��

�

������
𝑅(−5)



�
��

��

������
◦



�
��

��

�������
◦

◦



�
��

��

�������
◦



�
��

�

�������
𝑅(−3)



�
��

��

������
◦



�
��

��

�������
◦



�
��

��

�������

�� ◦

������� ���� 𝑅(−1)

������
���� ◦

������� ����� ◦

������� ���� ◦ ,

where the horizontal ends are identified. We see that 𝜈−1/5
1 = (−1) acts on this component by ‘moving

one place down’.

We refer to Section 10 for more general examples for polynomial rings.
The existence of a square root of the AR translation appears in [KMV] for generalised Kronecker

quivers. We show in the following example how to recover their context.

Example 4.13. Let 𝑚 ≥ 2, and set

𝑅 = 𝑘〈𝑥1, . . . , 𝑥𝑚〉/(𝑥
2
1 + · · · + 𝑥

2
𝑚), deg 𝑥𝑖 = −1.

This is a non-Noetherian Artin-Schelter regular algebra of dimension 2 (see [Z]) and is graded coherent
(see [MM, Theorem 4.16]). We need the following bimodule resolution of R.
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Lemma 4.14. The complex

0 �� 𝑅 ⊗ 𝑅(2)
𝑑2 ��

𝑚⊕
𝑖=1
𝑅 ⊗ 𝑅(1)

𝑑1 �� 𝑅 ⊗ 𝑅
𝜇 �� 𝑅 �� 0

with maps

𝜇(1 ⊗ 1) = 1
𝑑1((1 ⊗ 1)𝑖) = 𝑥𝑖 ⊗ 1 − 1 ⊗ 𝑥𝑖
𝑑2(1 ⊗ 1) = (𝑥𝑖 ⊗ 1 + 1 ⊗ 𝑥𝑖)𝑖

gives a bimodule projective resolution of R.

Proof. The multiplication map 𝜇 is clearly surjective, and since R is generated by 𝑥1, . . . , 𝑥𝑚, it is
exact at 𝑅 ⊗ 𝑅. We next prove the exactness at 𝑅 ⊗ 𝑅(2): that is, 𝑑2 is injective. For this, we look at
each graded component and show that (𝑅 ⊗ 𝑅)−𝑛 →

⊕𝑚
𝑖=1(𝑅 ⊗ 𝑅)−𝑛−1 is injective for all 𝑛 ≥ 0. Let∑

𝑝+𝑞=𝑛 𝑎𝑝𝑞 ∈ (𝑅⊗𝑅)−𝑛 with 𝑎𝑝𝑞 ∈ 𝑅−𝑝⊗𝑅−𝑞 be a non-zero element and let p be the smallest index such
that 𝑎𝑝𝑞 ≠ 0. Note that 𝑅−𝑝 ⊗𝑅−𝑞 is mapped into the direct sum of (𝑅−𝑝 ⊗𝑅−𝑞−1) ⊕ (𝑅−𝑝−1⊗𝑅−𝑞); thus
𝑎𝑝𝑞 is the component with only possible p, which has non-zero image in

⊕𝑚
𝑖=1 𝑅−𝑝 ⊗ 𝑅−𝑞−1. Now, this

map 𝑅−𝑝⊗𝑅−𝑞 →
⊕𝑚

𝑖=1 𝑅−𝑝⊗𝑅−𝑞−1 is just 𝑓 ⊗𝑔 ↦→ ( 𝑓 ⊗𝑥𝑖𝑔)𝑖 , which is injective by [Min1, Lemma 2.2].
It follows that the

⊕𝑚
𝑖=1(𝑅−𝑝⊗𝑅−𝑞−1)-component of 𝑑2(𝑎𝑝𝑞) is non-zero; thus 𝑑2 is injective. It remains

to prove the acyclicity at
⊕𝑚

𝑖=1 𝑅 ⊗ 𝑅(1). It suffices to show that the terms have ‘correct dimensions’:
that is, putting 𝑑𝑛 = dim 𝑅−𝑛, we have

∑
𝑝+𝑞=𝑛 𝑑𝑝𝑑𝑞 −𝑚

∑
𝑝+𝑞=𝑛+1 𝑑𝑝𝑑𝑞 +

∑
𝑝+𝑞=𝑛+2 𝑑𝑝𝑑𝑞 − 𝑑𝑛+2 = 0.

This is easily seen by using 𝑑𝑛+2 = 𝑚𝑑𝑛+1 − 𝑑𝑛 (see [Min1, Lemma 2.2]). �

Applying Hom𝑅𝑒 (−, 𝑅𝑒) to the above complex, we deduce that R is graded bimodule twisted 2-CY
of a-invariant 2 with Nakayama automorphism 𝜎 : 𝑥𝑖 ↦→ −𝑥𝑖 .

By Proposition 4.9, we have a derived equivalence D𝑏 (qgr 𝑅) � D𝑏 (mod 𝐴) with 𝐴 =

(
𝑅0 0
𝑅−1 𝑅0

)
,

which is the path algebra of the m-Kronecker quiver𝑄𝑚 = (◦
𝑚
−→ ◦). Now the twist automorphism (−)𝜎

is isomorphic to the identity functor on ModZ𝑅, so we have an autoequivalence 𝜈−1/2
1 on D𝑏 (mod 𝑘𝑄𝑚).

The AR quiver of the derived category has a connected component

𝑅(1)
𝑚
��



��
𝑅(−1)

𝑚
��



��
𝑅(−3)

𝑚
��



�
��

· · ·

𝑚���

����

𝑅

𝑚��
����

𝑅(−2)
𝑚��
����

· · · .

We see that 𝜈−1/2
1 acts by ‘moving one place to the right’; compare Example 4.11.

5. CY algebras as DG algebras

We will consider a graded algebra R as a DG algebra with the same underlying graded ring and the
vanishing differential. We write 𝑅dg when considering R as a DG algebra.

We first collect some sign conventions that are heavily used in this section. Throughout this section,
we denote by |𝑥 | the degree of a homogeneous element x in a graded vector space.

Convention 5.1. Let Λ and Γ be DG algebras.

1. Let X be a DG right Λ-module. Then its shift 𝑋 [1] has the same right Λ-action as X.
2. Let X be a DG left Λ-module. Then its shift 𝑋 [1] has a left Λ-action 𝑎 · 𝑥 = (−1) |𝑎 |𝑎𝑥 for 𝑎 ∈ Λ and
𝑥 ∈ 𝑋 [1].

3. There is an isomorphism HomΛ(Λ[−𝑙],Λ) � Λ[𝑙] of DG left Λ-modules by 𝑓 ↦→ (−1)𝑙 | 𝑓 | 𝑓 (1).
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4. We let Λ𝑒 = Λop ⊗ Λ the enveloping algebra and identify (Λ𝑒)op � Λ𝑒 via 𝑥 ⊗ 𝑦 ↔ (−1) |𝑥 | |𝑦 |𝑦 ⊗ 𝑥.
5. We identify a DG (Λ, Γ)-bimodule X and a DG Λop ⊗𝑘 Γ-module via 𝜆 · 𝑥 · 𝛾 = (−1) |𝜆 | |𝑥 |𝑥 · (𝜆 ⊗ 𝛾).

We say that a DG algebra Λ is twisted bimodule n-CY if it is homologically smooth and there exists
a DG automorphism 𝜎 of Λ such that we have an isomorphism RHomΛ𝑒 (Λ,Λ𝑒) [𝑛] � 1Λ𝜎 in D(Λ𝑒).
The aim of this section is to note the following observation. Note that the term ‘CY algebra’ means
precisely as in Definition 4.1, and no additional conditions are imposed.

Theorem 5.2. Let R be a graded twisted bimodule n-CY algebra of a-invariant a with Nakayama
automorphism 𝛼. Then 𝑅dg is twisted bimodule (𝑛+ 𝑎)-CY. Precisely, 𝑅dg is homologically smooth, and
we have the following:

1. If a is odd, then RHom(𝑅dg)𝑒 (𝑅, (𝑅
dg)𝑒) [𝑛 + 𝑎] � 𝛼𝑅1.

2. If a is even, then RHom(𝑅dg)𝑒 (𝑅, (𝑅
dg)𝑒) [𝑛+𝑎] � 𝛼𝑅𝜎 for the automorphism 𝜎 : 𝑥 ↦→ (−1) |𝑥 |𝑥 of R.

Let us introduce some notations. For a DG algebra Λ, we denote by C(Λ) = 𝑍0Cdg(Λ) the (abelian)
category of DG Λ-modules. In what follows, we denote by S an arbitrary graded algebra with the
corresponding formal DG algebra 𝑆dg. Let X be a graded (𝑆, 𝑆)-bimodule. We can view it as a DG
(𝑆dg, 𝑆dg)-bimodule 𝑋dg with trivial differentials, hence as an (𝑆dg)𝑒-module, which gives a fully faithful
functor

(−)dg : ModZ𝑆𝑒 −→ C((𝑆dg)𝑒),

where 𝑆𝑒 = 𝑆op ⊗ 𝑆 is the enveloping algebra (as a graded algebra). By our convention, the action of
𝑎 ⊗ 𝑏 ∈ 𝑆𝑒 on an element 𝑥 ⊗ 𝑦 in the free 𝑆𝑒-module 𝑆𝑒 is given by (𝑥 ⊗ 𝑦) · (𝑎 ⊗ 𝑏) = 𝑎𝑥 ⊗ 𝑦𝑏; thus
free modules have outer bimodule structures.

We note the following sign-conventional lemmas. The proofs are left to the reader.

Lemma 5.3. Let 𝐹 = 𝑆𝑒 (𝑙) be a free 𝑆𝑒-module. Then 𝐹dg is isomorphic to the free DG (𝑆dg)𝑒-module
(𝑆dg)𝑒 [𝑙]. The isomorphism is given by

𝐹dg −→ (𝑆dg)𝑒 [𝑙], 𝑥 ⊗ 𝑦 ↦→ (−1)𝑙 |𝑥 |𝑥 ⊗ 𝑦.

Lemma 5.4. Let 𝑋 ∈ ModZ𝑆𝑒 and 𝑙 ∈ Z. Then we have an isomorphism (𝜎𝑙𝑋 (𝑙))dg � 𝑋dg [𝑙] in
C((𝑆dg)𝑒), given by the identity map on the underlying graded vector space.

We immediately obtain the following relationship for the homological smoothness of graded algebras
and the corresponding formal DG algebras.

Proposition 5.5. Let S be a graded algebra that is homologically smooth. Then 𝑆dg is homologically
smooth.

Proof. There exists a projective resolution 0 → 𝑃𝑛 → · · · → 𝑃0 → 𝑆 → 0 over 𝑆𝑒 with each 𝑃𝑖 a
finitely generated projective 𝑆𝑒-module. Applying (−)dg, we have an exact sequence 0→ 𝑃

dg
𝑛 → · · · →

𝑃
dg
0 → 𝑆dg → 0 in C((𝑆dg)𝑒) with each 𝑃dg

𝑖 ∈ add{(𝑆dg)𝑒 [𝑙] | 𝑙 ∈ Z} by Lemma 5.3. This shows
𝑆dg ∈ per(𝑆dg)𝑒: that is, 𝑆dg is homologically smooth. �

Let us now recall the notion of a total module of a complex of DG modules. We have two variations:

total sum Tot and total product T̂ot. Let 𝑋 = (· · · → 𝑋 𝑖−1 𝛿𝑖−1
𝑋
−−−→ 𝑋 𝑖

𝛿𝑖𝑋
−−→ 𝑋 𝑖+1 → · · · ) be a complex of

DG Λ-modules for a DG algebra Λ; thus each 𝑋 𝑖 is a DG Λ-module, each 𝛿𝑖𝑋 is a morphism of DG
Λ-modules and 𝛿𝑖+1𝑋 ◦ 𝛿

𝑖
𝑋 = 0. Then define

Tot 𝑋 =
⊕
𝑖∈Z

𝑋 𝑖 [−𝑖], T̂ot 𝑋 =
∏
𝑖∈Z

𝑋 𝑖 [−𝑖]
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as graded Λ-modules and with differentials 𝛿𝑋 +
∑
𝑖 𝑑𝑋 𝑖 [−𝑖 ] . Here, 𝛿𝑋 is the differential of the complex

X and 𝑑𝑋 𝑖 [−𝑖 ] is the differential of the DG module 𝑋 𝑖 [−𝑖]. Then Tot 𝑋 and T̂ot 𝑋 are DG Λ-modules.
When a complex X of DG Λ-modules is bounded, we have Tot 𝑋 = T̂ot 𝑋 , which is acyclic whenever X
is acyclic.

For a complex 𝑋 = (· · · → 𝑋 𝑖−1 → 𝑋 𝑖 → 𝑋 𝑖+1 → · · · ) of DG Λ-modules and a DG Λ-module Y,
we denote by HomΛ(𝑋,𝑌 ) the complex

· · · �� HomΛ(𝑋
𝑖+1, 𝑌 )

·𝛿𝑖𝑋 �� HomΛ(𝑋
𝑖 , 𝑌 )

·𝛿𝑖−1
𝑋 �� HomΛ (𝑋

𝑖−1, 𝑌 ) �� · · ·

of DG k-modules with HomΛ (𝑋
𝑖 , 𝑌 ) at degree −𝑖, where HomΛ (−,−) is the Hom-complex between

DG Λ-modules defined as follows: for DG Λ-modules M and N, the degree n part of the complex
HomΛ (𝑀, 𝑁) is the space HomModZΛ(𝑀, 𝑁 [𝑛]) of homogeneous map of graded Λ-modules of degree
n, with differential 𝑑𝑓 = 𝑑𝑁 𝑓 − (−1)𝑛 𝑓 𝑑𝑀 for 𝑓 ∈ HomModZΛ(𝑀, 𝑁 [𝑛]).

The following is quite useful for computations.

Lemma 5.6. Let Λ and Γ be DG algebras and X a complex of DG Λ-modules. Then for any DG (Γ,Λ)-
bimodule Y, we have an isomorphism HomΛ (Tot 𝑋,𝑌 ) � T̂otHomΛ (𝑋,𝑌 ) of left DG Γ-modules.

Proof. It is easily verified that the degree n part of each side is
∏
𝑖∈ZHomΛ(𝑋

𝑖 , 𝑌 )𝑖+𝑛; thus two
sides coincide as graded vector spaces. Now we check that this identification is compatible with the
differentials and the Γ-actions.

On the one hand, the differential on the left-hand side maps 𝑓 ∈ HomΛ (𝑋
𝑖 , 𝑌 )𝑖+𝑛 ⊂ HomΛ (Tot 𝑋,𝑌 )

to 𝑑𝑌 𝑓 − (−1)𝑛 𝑓 𝑑Tot𝑋 = 𝑑𝑌 𝑓 − (−1)𝑛 𝑓 𝛿𝑖−1
𝑋 − (−1)𝑛+𝑖 𝑓 𝑑𝑋 𝑖 .

On the other hand, the differential of the right-hand side maps 𝑓 ∈ HomΛ (𝑋
𝑖 , 𝑌 )𝑖+𝑛 ⊂

T̂otHomΛ (𝑋,𝑌 ) to 𝑓 𝛿𝑖−1
𝑋 + (−1)−𝑖𝑑HomΛ (𝑋 𝑖 ,𝑌 ) 𝑓 = 𝑓 𝛿𝑖−1

𝑋 + (−1)𝑖 (𝑑𝑌 𝑓 − (−1)𝑖+𝑛 𝑓 𝑑𝑋 𝑖 ) = 𝑓 𝛿𝑖−1
𝑋 +

(−1)𝑖𝑑𝑌 𝑓 − (−1)𝑛 𝑓 𝑑𝑋 𝑖 .
Then one can check that the map HomΛ (Tot 𝑋,𝑌 ) → T̂otHomΛ (𝑋,𝑌 ) given by 𝑓 ↦→

(−1)𝑖 (𝑖+1)/2+𝑖𝑛 𝑓 for 𝑓 ∈ HomΛ (𝑋
𝑖 , 𝑌 )𝑖+𝑛 is an isomorphism of left DG Γ-modules. �

An important step for the proof of Theorem 5.2 is the following observation. We denote by modZ𝑆𝑒
the category of finitely presented graded 𝑆𝑒-modules. Note that we are not assuming that 𝑆𝑒 is graded
coherent, and modZ𝑆𝑒 is just an additive category.

Lemma 5.7. Let 𝜎 be the automorphism 𝑥 ↦→ (−1) |𝑥 |𝑥 on S. The following two functors are naturally
isomorphic:

(a) 𝐹 : modZ𝑆𝑒
Hom𝑆𝑒 (−,𝑆

𝑒)
−−−−−−−−−−−→ ModZ𝑆𝑒 𝜎 (−)

−−−−→ ModZ𝑆𝑒.

(b) 𝐺 : modZ𝑆𝑒
(−)dg

−−−−→ C((𝑆dg)𝑒)
Hom

(𝑆dg )𝑒 (−, (𝑆
dg)𝑒)

−−−−−−−−−−−−−−−−−→ C((𝑆dg)𝑒)
forget
−−−−→ ModZ𝑆𝑒.

In particular, these functors are naturally isomorphic on projZ𝑆𝑒.

Proof. We first prove that two functors are naturally isomorphic on the category of finitely generated
free modules. We will then extend the natural isomorphism to modZ𝑆𝑒.

Let us start by defining an isomorphism 𝜑𝑃 : 𝐹 (𝑃) → 𝐺 (𝑃) at the free module 𝑃 = 𝑆𝑒 (𝑙). Clearly,
we have 𝐹 (𝑃) = 𝑆 ⊗ 𝑆(−𝑙), with the action of S given by 𝑏 · (𝑥 ⊗ 𝑦) · 𝑎 = (−1) |𝑏 |𝑥𝑎 ⊗ 𝑏𝑦. On
the other hand, using Lemma 5.3, we see 𝐺 (𝑃) = (𝑆 ⊗ 𝑆) [−𝑙], with the S-action 𝑏 · (𝑥 ⊗ 𝑦) · 𝑎 =
(−1) |𝑎 | ( |𝑏 |+ |𝑦 |)+ |𝑏 | (𝑙+|𝑥 |)𝑥𝑎 ⊗ 𝑏𝑦. Now we define an isomorphism 𝐹 (𝑃) = 𝑆 ⊗ 𝑆(−𝑙) → (𝑆 ⊗ 𝑆) [−𝑙] =
𝐺 (𝑃) by the formula

𝜑𝑃 : 𝑥 ⊗ 𝑦 ↦→ (−1) ( |𝑥 |+𝑙+1) |𝑦 |𝑥 ⊗ 𝑦.

We can readily check that this is (𝑆, 𝑆)-bilinear.
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We next show that this isomorphism is natural. Let 𝑃→ 𝑄 be a morphism of finitely generated free
modules. We may assume that this is of the form 𝑆𝑒 (𝑙) → 𝑆𝑒 (𝑚) with 1 ⊗ 1 ↦→

∑
𝑖 𝑢𝑖 ⊗ 𝑣𝑖 . Under

the functor (−)dg and the isomorphism in Lemma 5.3, it becomes an (𝑆dg)𝑒-linear map (𝑆dg)𝑒 [𝑙] →
(𝑆dg)𝑒 [𝑚] sending 1 ⊗ 1 to

∑
𝑖 (−1)𝑚 |𝑢𝑖 |𝑢𝑖 ⊗ 𝑣𝑖 . Note that we have |𝑢𝑖 | + |𝑣𝑖 | − 𝑚 = −𝑙. Our task is to

show that in the diagram below, the middle square is commutative in ModZ𝑆𝑒:

𝜎 Hom𝑆𝑒 (𝑆
𝑒 (𝑚), 𝑆𝑒)

��

𝜎𝑆
𝑒 (−𝑚)

𝑓

��

𝜑𝑄 �� (𝑆dg)𝑒 [−𝑚]

𝑔

��

Hom(𝑆dg)𝑒 ((𝑆
dg)𝑒 [𝑚], (𝑆dg)𝑒)

��
𝜎 Hom𝑆𝑒 (𝑆

𝑒 (𝑙), 𝑆𝑒) 𝜎𝑆
𝑒 (−𝑙)

𝜑𝑃 �� (𝑆dg)𝑒 [−𝑙] Hom(𝑆dg)𝑒 ((𝑆
dg)𝑒 [𝑙], (𝑆dg)𝑒).

By our sign conventions, the map f is just a left 𝑆𝑒-linear map with 1 ⊗ 1 ↦→
∑
𝑖 𝑢𝑖 ⊗ 𝑣𝑖 , while g is given

by 1 ⊗ 1 ↦→ (−1)𝑚(𝑙+1)
∑
𝑖 (−1)𝑚 |𝑢𝑖 |𝑢𝑖 ⊗ 𝑣𝑖 . Using these, we can verify the desired commutativity.

It is now routine to extend this natural isomorphism to modZ𝑆𝑒. To define an isomorphism
𝜑𝑀 : 𝐹 (𝑀) → 𝐺 (𝑀) at 𝑀 ∈ modZ𝑆𝑒, take a presentation 𝑃1 → 𝑃0 → 𝑀 → 0 by finitely gen-
erated free modules. Since F and G are restrictions of left exact functors on ModZ𝑆𝑒, we can define
𝜑𝑀 to be the unique map, making the following diagram of exact sequences (in ModZ𝑆𝑒) commutative.
Note that the right square is commutative by our previous claim:

0 �� 𝐹 (𝑀) ��

𝜑𝑀

���
�
� 𝐹 (𝑃0) ��

𝜑𝑃0
��

𝐹 (𝑃1)

𝜑𝑃1
��

0 �� 𝐺 (𝑀) �� 𝐺 (𝑃0) �� 𝐺 (𝑃1).

It is easy to verify that 𝜑𝑀 is independent of the presentation, and clearly 𝜑𝑀 is an isomorphism.
Now we show that this isomorphism is natural on modZ𝑆. Let 𝑓 : 𝑀 → 𝑁 be a morphism in modZ𝑆.

Taking presentations 𝑃1 → 𝑃0 → 𝑀 → 0 and𝑄1 → 𝑄0 → 𝑁 → 0 by finitely generated free modules,
we can lift f to a morphism of presentations. Applying F and G to these, we obtain a commutative
diagram

0 �� 𝐹 (𝑀) ��

𝜑𝑀

��

𝐹 (𝑃0) ��

𝜑𝑃0

��

𝐹 (𝑃1)

𝜑𝑃1

��

0 �� 𝐹 (𝑁) ��
��		

𝜑𝑁

��

𝐹 (𝑄0)

��		
��

𝜑𝑄0

��

𝐹 (𝑄1)

��		

𝜑𝑄1

��
0 �� 𝐺 (𝑀) �� 𝐺 (𝑃0) �� 𝐺 (𝑃1)

0 �� 𝐺 (𝑁)

��		
�� 𝐺 (𝑄0)

��		
�� 𝐺 (𝑄1)

��		
,

from which we deduce the desired naturality on f. �

We are now ready to prove the main theorem of this section.

Proof of Theorem 5.2. We know 𝑅dg is homologically smooth by Proposition 5.5. We compute the
inverse dualising complex of 𝑅dg. Let 𝑃 = (𝑃𝑛 → · · · → 𝑃1 −→ 𝑃0) be a projective resolution of R in
C𝑏 (projZ𝑅𝑒). Then the cohomology of 𝑃∨ = Hom𝑅𝑒 (𝑃, 𝑅𝑒) is concentrated in degree n, where it is
𝛼𝑅(−𝑎). Considering P as a complex𝑃dg of DG bimodules as above, the total sum of 𝑃dg gives an (𝑅dg)𝑒-
cofibrant resolution of the DG (𝑅dg)𝑒-module 𝑅dg. Indeed, Tot 𝑃dg → 𝑅dg is a quasi-isomorphism
since Tot preserves acyclicity, and since each 𝑃dg

𝑖 is cofibrant by Lemma 5.3 and Tot 𝑃dg is a successive
extension of 𝑃dg

𝑖 ’s that is split as graded (𝑅dg)𝑒-modules, it follows that Tot 𝑃dg is cofibrant (see [Ke1,
Section 3.1]). Then RHom(𝑅dg)𝑒 (𝑅

dg, (𝑅dg)𝑒) = Hom(𝑅dg)𝑒 (Tot 𝑃dg, (𝑅dg)𝑒), which is isomorphic by
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Lemma 5.6 to the total product (which equals the total sum by boundedness) of the complex

𝑄 = (Hom(𝑅dg)𝑒 (𝑃
dg
0 , (𝑅

dg)𝑒) → Hom(𝑅dg)𝑒 (𝑃
dg
1 , (𝑅

dg)𝑒) → · · · → Hom(𝑅dg)𝑒 (𝑃
dg
𝑛 , (𝑅

dg)𝑒)).

Now, by Lemma 5.7, this complex is isomorphic to 𝜎 (𝑃
∨) as complexes of graded (𝑅, 𝑅)-bimodules;

thus it has cohomology only at degree n, where it is isomorphic to 𝜎𝛼𝑅(−𝑎). Then we have a
quasi-isomorphism 𝑄 → (𝜎𝛼𝑅(−𝑎))dg [−𝑛] of complexes of DG (𝑅dg)𝑒-modules, so Tot𝑄 is quasi-
isomorphic to (𝜎𝛼𝑅(−𝑎))dg [−𝑛]. We conclude by Lemma 5.4 that it is 𝛼𝑅[−𝑛 − 𝑎] if a is odd,
𝜎𝛼𝑅[−𝑛 − 𝑎] if a is even. �

Example 5.8. Let 𝑅 = 𝑘 [𝑥1, · · · , 𝑥𝑛] be the polynomial ring, which is a CY algebra (see Lemma 10.1).

1. Set deg 𝑥𝑖 = −1 for all 1 ≤ 𝑖 ≤ 𝑛. Then R is bimodule n-CY of a-invariant n. By Theorem 5.2, we
see that
◦ 𝑅dg is 2𝑛-CY if n is odd;
◦ 𝑅dg is twisted 2𝑛-CY if n is even.

See Example 5.9 below for an illustration in 𝑛 = 2 how 𝑅dg fails to be CY.
2. Set deg 𝑥𝑖 = 1 for all 1 ≤ 𝑖 ≤ 𝑛. Then R is bimodule n-CY of a-invariant −𝑛. By Theorem 5.2, we

see that
◦ 𝑅dg is 0-CY if n is odd;
◦ 𝑅dg is twisted 0-CY if n is even.

This partially recovers [MGYC, Theorem 6.4]; see also [HM, Example 6.1].
3. Set deg 𝑥𝑖 = 2 for all 1 ≤ 𝑖 ≤ 𝑛. Then R is bimodule n-CY of a-invariant −2𝑛. By Theorem 5.2, we

have RHom(𝑅dg)𝑒 (𝑅, (𝑅
dg)𝑒) [−𝑛] � 1𝑅𝜎 . Note that the automorphism 𝜎 is the identity since R is

concentrated in even degrees. Therefore, we conclude that 𝑅dg is (−𝑛)-CY. This partially recovers
[MGYC, Theorem 6.2].

We explicitly demonstrate how 𝑅dg fails to be CY.

Example 5.9. Let 𝑅 = 𝑘 [𝑥, 𝑦] with deg 𝑥 = deg 𝑦 = −1. Then the graded ring R is bimodule 2-CY of
a-invariant 2 and has the Koszul resolution, which we depict in the following way:

𝑅 ⊗ 𝑅(1) 𝑥⊗1−1⊗𝑥













𝑅 ⊗ 𝑅(2)
−𝑦⊗1+1⊗𝑦 �����������

𝑥⊗1−1⊗𝑥 ��









 ⊕ 𝑅 ⊗ 𝑅

𝑅 ⊗ 𝑅(1) 𝑦⊗1−1⊗𝑦

�����������
,

where the values on the arrows show the image of 1 ⊗ 1. Now consider this resolution as a complex of
DG modules over 𝑆 := (𝑅dg)𝑒. Under the isomorphism in Lemma 5.3, it becomes

𝑆[1] 𝑥⊗1−1⊗𝑥
����

�����
��

𝑆[2]
𝑦⊗1+1⊗𝑦 ��

−𝑥⊗1−1⊗𝑥 ����
�����

⊕ 𝑆

𝑆[1] 𝑦⊗1−1⊗𝑦

�������������
.

Applying Hom𝑆 (−, 𝑆), we get the complex of left DG S-modules

𝑆[−1] −𝑦⊗1−1⊗𝑦
����

�����

𝑆

𝑥⊗1−1⊗𝑥 ��

𝑦⊗1−1⊗𝑦 ����
����

� ⊕ 𝑆[−2]

𝑆[−1] 𝑥⊗1+1⊗𝑥

�����������
,

whose total module is RHom𝑆 (𝑅, 𝑆) by Lemma 5.6. We therefore see that RHom𝑆 (𝑅, 𝑆) [4] � 1𝑅𝜎 .
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The appearance of the twist automorphism 𝜎 suggests that we should twist the multiplication of the
CY algebra R in order for the DG algebra 𝑅dg to be CY. Let us give an instance where R is twisted CY
and 𝑅dg is CY.

Example 5.10. Let 𝑚 ≥ 2 and

𝑅 = 𝑘〈𝑥1, . . . , 𝑥𝑚〉/(𝑥
2
1 + · · · + 𝑥

2
𝑚). deg 𝑥𝑖 = −1,

If 𝑚 = 2, this is a skew polynomial ring with two variables; compare Example 5.9 above. Recall from
Example 4.13 that this is twisted bimodule 2-CY algebra of a-invariant 2 with Nakayama automorphism
𝜎 : 𝑥𝑖 ↦→ −𝑥𝑖 . Therefore, by Theorem 5.2(2), we deduce that 𝑅dg is (non-twisted) 4-CY. Let us explicitly
demonstrate this.

Recall that the bimodule projective resolution of R is given by the complex

0 �� 𝑅 ⊗ 𝑅(2)
𝑑2 ��

𝑚⊕
𝑖=1
𝑅 ⊗ 𝑅(1)

𝑑1 �� 𝑅 ⊗ 𝑅 �� 0

with maps

𝑑1((1 ⊗ 1)𝑖) = 𝑥𝑖 ⊗ 1 − 1 ⊗ 𝑥𝑖

𝑑2(1 ⊗ 1) =
𝑚∑
𝑖=1
(𝑥𝑖 ⊗ 1 + 1 ⊗ 𝑥𝑖).

We follow the computation in Example 5.9 above. Set 𝑆 = (𝑅dg)𝑒. Applying the functor (−)dg and the
isomorphism in Lemma 5.3, the above complex becomes

0 �� 𝑆[2]
𝑑2 ��

𝑚⊕
𝑖=1
𝑆[1]

𝑑1 �� 𝑆 �� 0,

where the maps are right S-linear morphisms such that

𝑑1((1 ⊗ 1)𝑖) = 𝑥𝑖 ⊗ 1 − 1 ⊗ 𝑥𝑖

𝑑2(1 ⊗ 1) =
𝑚∑
𝑖=1
(−𝑥𝑖 ⊗ 1 + 1 ⊗ 𝑥𝑖).

Applying Hom𝑆 (−, 𝑆), we get an isomorphic complex up to shifts; thus we see that RHom𝑆 (𝑅, 𝑆) [4] �
𝑅 in D(𝑆).

6. Cluster categories, derived orbit categories and singularity categories

Let R be a CY algebra. We state the main result of this paper, which describes the cluster category of
𝑅dg as an orbit category and a singularity category.

6.1. Cluster categories and orbit categories

Let R be a negatively graded twisted bimodule (𝑑 + 1)-CY algebra of a-invariant a such that each 𝑅𝑖
is finite dimensional. In this subsection, we compare the derived category of R considered as a graded
ring and that of R considered as a DG algebra 𝑅dg with vanishing differentials. By Theorem 5.2, we
know that 𝑅dg is twisted bimodule (𝑑 + 𝑎 + 1)-CY.
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Recall the notion of total module from the previous section. Consider the DG functor

Tot : C𝑏dg(ModZ𝑅) → Cdg (𝑅
dg)

from the DG category of complexes over ModZ𝑅 to the DG category of DG 𝑅dg-modules. This is
given on morphisms by taking a map 𝑓 : 𝑋 𝑖 → 𝑌 𝑗 of graded R-modules considered as an element of
HomModZ𝑅 (𝑋,𝑌 ) to itself (without any signs) viewed as an element of Hom𝑅dg (Tot 𝑋,Tot𝑌 ).

Taking the 0th cohomology, it induces a triangle functor K𝑏 (ModZ𝑅) → K(𝑅dg), which clearly
takes acyclic complexes to acyclic DG modules. We therefore obtain a triangle functor

Tot : perZ𝑅 → per 𝑅dg.

Note that this restricts to D𝑏 (flZ𝑅) → D𝑏 (𝑅dg); thus it again induces a triangle functor,

Tot : qperZ𝑅 → C(𝑅dg).

Now we have a natural isomorphism Tot ◦(−1) [1] � Tot, hence a functor

Tot : qperZ𝑅/(−1) [1] → C(𝑅dg).

The following result gives a natural and more concrete description of the cluster category of 𝑅dg.
Similar types of results for derived or singularity categories were recently obtained in [KY, Bri].

Theorem 6.1. Let R be a negatively graded twisted bimodule (𝑑 + 1)-CY algebra of a-invariant a with
𝑑 ≥ 0. The functor Tot : qperZ𝑅 → C(𝑅dg) induces a fully faithful functor

qperZ𝑅/(−1) [1] �� C(𝑅dg)

whose image generates C(𝑅dg) as a triangulated subcategory.

Proof. Note that the cluster tilting subcategory M = add{𝑅(−𝑖) [𝑖] | 𝑖 ∈ Z} ⊂ qperZ𝑅 given in Theorem
4.6 is mapped to a cluster tilting object 𝑅 ∈ C(𝑅dg), and the functor Tot induces an equivalence
M/(−1) [1] �−→ add 𝑅. Indeed, M/(−1) [1] has an additive generator R, and we have an isomorphism
EndM/(−1) [1] (𝑅) =

⊕
𝑖∈ZHomM (𝑅, 𝑅(−𝑖) [𝑖]))

�
−→ EndC(𝑅dg) (𝑅) of graded rings since the left-hand

side vanishes for 𝑖 ≠ 0, and thus both sides are 𝑅0. Our assertion is now a consequence of the covering
version of the ‘cluster-Beilinson criterion’ (compare [KR2, Lemma 4.5]), which we sketch below.

To save space, we will denote D := qperZ𝑅 and C := C(𝑅dg) and sometimes A(−,−) for the morphism
spaces in a category A. We have to show that Tot induces isomorphisms

HomD/(−1) [1] (𝑋,𝑌 ) �� HomC(Tot 𝑋,Tot𝑌 ) (6.1)

for all 𝑋,𝑌 ∈ D. We first prove that the above map is an isomorphism for all 𝑋 ∈ M and 𝑌 ∈
M ∗ · · · ∗M[ 𝑗] with 0 ≤ 𝑗 ≤ 𝑑 + 𝑎 − 1 by induction on j. We have already seen this above for 𝑗 = 0.
Let 0 ≤ 𝑗 < 𝑑 + 𝑎 − 1 and 𝑌 ∈M ∗ · · · ∗M[ 𝑗] ∗M[ 𝑗 + 1]. Pick a triangle 𝑌 ′ → 𝑀 → 𝑌 → 𝑌 ′ [1] in
D with 𝑀 ∈M and 𝑌 ′ ∈M ∗ · · · ∗M[ 𝑗]. This gives a commutative diagram of exact sequence

D/(−1) [1] (𝑋,𝑌
′) ��

�

��

D/(−1) [1] (𝑋, 𝑀) ��

�

��

D/(−1) [1] (𝑋,𝑌 ) ��

��

D/(−1) [1] (𝑋,𝑌
′ [1]) = 0

��
C(Tot 𝑋,Tot𝑌 ′) �� C(Tot 𝑋,Tot𝑀) �� C(Tot 𝑋,Tot𝑌 ) �� C(Tot 𝑋,Tot𝑌 ′ [1]) = 0,

in which the left two vertical maps are isomorphisms by induction hypothesis and the right-end terms
are 0 since M ⊂ D and 𝑅 ∈ C are (𝑑 + 𝑎)-cluster tilting. Therefore, the remaining vertical map is
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also an isomorphism. Since D = M ∗ · · ·M[𝑑 + 𝑎 − 1], this induction shows that equation (6.1) is an
isomorphism for all 𝑋 ∈M and 𝑌 ∈ D.

We next prove that equation (6.1) is an isomorphism for all 𝑋,𝑌 ∈ D. We can perform a similar
induction on j to show that this is indeed the case for 𝑋 ∈M∗· · ·∗M[ 𝑗], which completes the proof. �

Let A be the d-representation infinite algebra given in Proposition 4.9 as the endomorphism ring of
a tilting object in qperZ𝑅. Explicitly, we have

𝐴 =

������
𝑅0 0 · · · 0
𝑅−1 𝑅0 · · · 0
...

...
. . .

...
𝑅−(𝑎−1) 𝑅−(𝑎−2) · · · 𝑅0

������
.

Assuming that the Nakayama automorphism 𝛼 of R in Theorem 6.1 satisfies (−)𝛼 � 1 on qperZ𝑅, we
deduce the following by means of the diagram in equation (4.1).

Corollary 6.2. Let R be as in Theorem 6.1, and suppose that (−)𝛼 � 1 on qperZ𝑅. Then there exists a
fully faithful functor

D𝑏 (mod 𝐴)/𝜈−1/𝑎
𝑑 [1] �� C(𝑅dg)

whose image generates C(𝑅dg) as a triangulated subcategory.

6.2. Cluster categories and singularity categories

We present another description of the cluster category C(𝑅dg). Set

𝑈 =

������
𝑅−1 𝑅0 · · · 0
...

...
. . .

...
𝑅−(𝑎−1) 𝑅−(𝑎−2) · · · 𝑅0
𝑅−𝑎 𝑅−(𝑎−1) · · · 𝑅−1

������
,

which is an (𝐴, 𝐴)-bimodule, and let 𝐵 = 𝐴 ⊕ 𝑈 be the trivial extension algebra.
Recall that a cotilting bimodule over a ring Λ is a (Λ,Λ)-bimodule Y satisfying the following:

◦ inj. dimΛ𝑌 < ∞ and inj. dimΛop 𝑌 < ∞.
◦ Ext𝑖Λ (𝑌,𝑌 ) = 0 and Ext𝑖Λop (𝑌,𝑌 ) = 0 for 𝑖 > 0.
◦ The natural maps Λ→ EndΛ(𝑌 ) and Λop → EndΛop (𝑌 ) are isomorphisms.

We have the following basic information on U and B.

Proposition 6.3.

1. U is a cotilting bimodule over A.
2. B is a d-Iwanaga-Gorenstein algebra.

Proof. (1) Since A has finite global dimension, we clearly have inj. dim𝐴𝑈 < ∞. Note also that we have
𝐴 = EndqperZ𝑅 (𝑇) and 𝑈 = RHomqperZ𝑅 (𝑇,𝑇 (−1)) for a tilting object T given in Proposition 4.9. This
gives Ext𝑖𝐴(𝑈,𝑈) = 0 for 𝑖 > 0 and an isomorphism 𝐴→ End𝐴(𝑈). It remains to verify the conditions
on the opposite side. Let (−)∗ = RHom𝑅 (−, 𝑅) be the duality perZ𝑅 ↔ perZ𝑅op. By the Artin-Schelter
regularity of R (see the remark after Proposition 4.2), it restricts to D𝑏 (flZ𝑅) ↔ D𝑏 (flZ𝑅op) and hence
induces a duality qperZ𝑅 ↔ qperZ𝑅op, which we still denote by (−)∗. Then 𝑇∗ ∈ qperZ𝑅op is a tilting
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object with EndqperZ𝑅op (𝑇∗) = 𝐴op, and we have 𝑈 � HomqperZ𝑅op (𝑇∗, 𝑇∗(−1)) as (𝐴, 𝐴)-bimodules.
This gives the desired assertions for the opposite side.

(2) This follows from (1) and [MY, Theorem 5.3]. �

Now we state the second main result of this paper.

Theorem 6.4. Let R be as in Corollary 6.2. There exists a triangle equivalence

C(𝑅dg) � Dsg(𝐵).

In particular, Dsg (𝐵) is a twisted (𝑑 + 𝑎)-CY category with a (𝑑 + 𝑎)-cluster tilting object.

We postpone the proof of this result to Section 8 since it requires a general result on DG orbit
categories, which we give in the following section.

6.3. Examples

Before going on, let us give some demonstrations of our results. See Sections 9, 10 and 11 for systematic
examples.

Example 6.5. Let us start with an almost trivial example. Let

𝑅 = 𝑘 [𝑥], deg 𝑥 = −1.

This is bimodule 1-CY of a-invariant 1; thus 𝑅dg is bimodule 2-CY by Theorem 5.2. We have 𝐴 = 𝑘
(which is understood to be ‘0-representation infinite’) and 𝑈 = 𝑘; thus 𝐵 = 𝐴 ⊕ 𝑈 = 𝑘 [𝑡]/(𝑡2). By
Corollary 6.2 and Theorem 6.4, we have equivalences of triangulated categories

D𝑏 (mod 𝑘)/[1] � C(𝑅dg) � Dsg (𝑘 [𝑡]/(𝑡
2)),

which are triangulated categories with 1 point. See Example A.5 for a generalization, where the case
deg 𝑥 = −𝑛 for arbitrary 𝑛 ≥ 1 is discussed.

Example 6.6. This is a continuation of Examples 4.13 and 5.10. Let 𝑚 ≥ 2, and set

𝑅 = 𝑘〈𝑥1, . . . , 𝑥𝑚〉/(𝑥
2
1 + · · · + 𝑥

2
𝑚), deg 𝑥𝑖 = −1,

which is twisted 2-CY of a-invariant 2 (Example 4.13), and 𝑅dg is 4-CY (Example 5.10). The 1-
representation infinite algebra A is the path algebra of the m-Kronecker quiver 𝑄𝑚 : ◦ 𝑚

−→ ◦, and the
autoequivalence 𝜈1 of D𝑏 (mod 𝑘𝑄𝑚) has a square root (Example 4.13). Also, it is not difficult to see
that the 1-Iwanaga-Gorenstein algebra B is presented by the following quiver with relations:

◦
𝑥1 ��

···

𝑥𝑚
�� ◦

𝑢

��
,

∑𝑚
𝑖=1 𝑥𝑖𝑢𝑥𝑖 = 0, 𝑢𝑥𝑖𝑢 = 0.

By Corollary 6.2 and Theorem 6.4, there exist triangle equivalences

D𝑏 (mod 𝑘𝑄𝑚)/𝜈−1/2
1 [1] � Dsg (𝐵) � C(𝑅dg).

Remark 6.7. In [KMV, Theorem 1.4], Keller–Murfet–Van den Bergh proved that any algebraic 3-CY
triangulated category T with a 3-cluster tilting object T such that EndT (𝑇) = 𝑘 and HomT (𝑇,𝑇 [−1]) =
𝑘𝑚 is triangle equivalent toD𝑏 (mod 𝑘𝑄𝑚)/𝜏−1/2 [1], where 𝜏−1/2 is the square root of the AR translation
defined in [KMV] using reflection functors.
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Now, since C = C(𝑅dg) for R in Example 6.6 above is a 3-CY category with a 3-cluster tilting object
R satisfying EndC(𝑅) = 𝑘 and HomC(𝑅, 𝑅[−1]) = 𝑘𝑚, the above equivalent triangulated categories
are precisely the 3-CY category in [KMV, Theorem 1.4]. Our result shows that the 3-CY category
in [KMV] is also the singularity category of B and can be realised as the cluster category of the
DG algebra 𝑅dg. We refer to Example A.6 for a generalization, which covers the situation in [KMV,
Remark 3.4.5].

7. Quasi-equivalence of DG orbit categories

Let T be a triangulated category and 𝐹 : T→ T an autoequivalence. In order to discuss when the orbit
category T/𝐹 is triangulated, a triangulated hull of this orbit category was constructed by Keller [Ke2].
The idea was to take an orbit at the level of enhancement of T .

Let A be a pretriangulated DG category and F a DG endofunctor on A inducing an equivalence on
𝐻0A. Then the DG orbit category of A with respect to F, which we denote by B = A/𝐹, is the DG
category with the same objects as A and with the morphism complex

B(𝐿, 𝑀) = colim

(⊕
𝑛≥0

A(𝐹𝑛𝐿, 𝑀) 𝐹−→
⊕
𝑛≥0

A(𝐹𝑛𝐿, 𝐹𝑀) 𝐹−→
⊕
𝑛≥0

A(𝐹𝑛𝐿, 𝐹2𝑀)
𝐹
−→ · · ·

)
for each 𝐿, 𝑀 ∈ B. It follows that we have 𝐻0A/𝐻0𝐹 = 𝐻0B; hence triaB, the full triangulated
subcategory of D(B) generated by the representable B-modules, is a triangulated hull of 𝐻0A/𝐻0𝐹 in
the sense that there is a fully faithful functor 𝐻0A/𝐻0𝐹 ↩→ triaB whose image generates triaB as a
triangulated subcategory.

Observe that the above embedding is not dense in general, and thus it is not clear a naive expectation
for orbit categories carries over to triangulated hulls. We give an answer to one such problem.

Let us briefly recall some relevant notions; see [Ke1, Section 7] for details. Let B and C be DG
categories. A quasi-functor C → B is a (C,B)-bimodule X whose value we denote by 𝑋 (𝐵,𝐶) for
𝐵 ∈ B and 𝐶 ∈ C, such that the DG B-module 𝑋 (−, 𝐶) is isomorphic in D(B) to a representable DG
B-module for each 𝐶 ∈ C. A quasi-functor 𝑋 : C→ B is a quasi-equivalence if −⊗L

C 𝑋 : D(C) → D(B)
is an equivalence and restricts to an equivalence 𝐻0C �

−→ 𝐻0B. In this case, we deduce that there is a
triangle equivalence −⊗L

C 𝑋 : tria C �
−→ triaB. We say two DG categories B and C are quasi-equivalent

if there exists a quasi-equivalence C→ B.

Theorem 7.1. Let A be a pretriangulated DG category, and let F, G be DG endofunctors on A such
that 𝐻0𝐹 and 𝐻0𝐺 are mutually inverse equivalences on 𝐻0A. Suppose that there is a morphism
𝐺 ◦ 𝐹 → 1A of DG functors inducing a natural isomorphism on 𝐻0A. Then the DG orbit categories
B = A/𝐹 and C = A/𝐺 are quasi-equivalent. In particular, the triangulated hulls triaB and tria C are
triangle equivalent.

Remark 7.2.

1. We do not need a natural transformation 𝐹 ◦ 𝐺 → 1A.
2. The assumption on the existence of a natural transformation𝐺 ◦𝐹 → 1A is satisfied in the following

typical case: Let Λ be a finite-dimensional algebra of finite global dimension and A = C−,𝑏 (projΛ).
Let X a complex of projective (Λ,Λ)-bimodules such that 𝐹 = −⊗Λ 𝑋 : A→ A gives an equivalence
on 𝐻0A = D𝑏 (modΛ). Letting Y be the bimodule projective resolution of RHomΛ (𝑋,Λ), 𝐺 =
−⊗Λ𝑌 : A→ A gives an inverse of F on D𝑏 (modΛ). Moreover, a quasi-isomorphism 𝑋 ⊗Λ𝑌 → Λ
of (Λ,Λ)-bimodule complexes gives a natural transformation 𝐺 ◦ 𝐹 → 1A.
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In view of relating the categories B and C, consider the following direct system of complexes indexed
by N × N:⊕

𝑛≥0
A(𝐹𝑛𝐿, 𝑀)

��

��
⊕
𝑛≥0

A(𝐺𝐹𝑛𝐿, 𝑀)

��

��
⊕
𝑛≥0

A(𝐺2𝐹𝑛𝐿, 𝑀) ��

��

· · ·

⊕
𝑛≥0

A(𝐺𝐹𝑛𝐿, 𝐺𝑀)

��

��
⊕
𝑛≥0

A(𝐺2𝐹𝑛𝐿, 𝐺𝑀)

��

��
⊕
𝑛≥0

A(𝐺3𝐹𝑛𝐿, 𝐺𝑀)

��

�� · · ·

...
...

... ,

(7.1)

where the vertical transition maps are induced by G and the horizontal ones by𝐺 𝑝+1𝐹1+𝑛𝐿 → 𝐺 𝑝𝐹𝑛𝐿.
We first fix 𝑞 ≥ 0 and consider the colimit

𝑈𝑞 (𝐿, 𝑀) := colim
𝑝≥0

⊕
𝑛≥0

A(𝐺 𝑝+𝑞𝐹𝑛𝐿, 𝐺𝑞𝑀)

of the (𝑞 + 1)-st row. We can regard 𝑈𝑞 (−, 𝑀) as a DG B-module for each 𝑀 ∈ A as follows: Let
𝑏 ∈ B(𝐾, 𝐿) be a morphism represented by 𝐹𝑚𝐾 → 𝐹𝑟 𝐿 and 𝑢 ∈ 𝑈𝑞 (𝐿, 𝑀) an element represented
by 𝐺 𝑝+𝑞𝐹𝑛𝐿 → 𝐺𝑞𝑀 . Enlarging n if necessary, we may assume 𝑟 ≤ 𝑛. Then define 𝑢 · 𝑏 by the
composition 𝐺 𝑝+𝑞𝐹𝑚+𝑛−𝑟𝐾 𝐺𝑝+𝑞𝐹𝑛−𝑟𝑏

−−−−−−−−−→ 𝐺 𝑝+𝑞𝐹𝑛𝐿
𝑢
−→ 𝐺𝑞𝑀 . Since there is a commutative diagram

𝐺 𝑝+𝑞𝐹𝑚+𝑛−𝑟𝐾
𝐺𝑝+𝑞𝐹𝑛−𝑟𝑏 �� 𝐺 𝑝+𝑞𝐹𝑛𝐿

𝑢 �� 𝐺𝑞𝑀

𝐺 𝑝+𝑞+1𝐹1+𝑚+𝑛−𝑟𝐾
𝐺𝑝+𝑞+1𝐹1+𝑛−𝑟𝑏 ��

��

𝐺 𝑝+𝑞+1𝐹1+𝑛𝐿

��

�� 𝐺𝑞𝑀

for each 𝑟 ≤ 𝑛, we see that this action is well-defined.
Let us note the following property of𝑈0.

Lemma 7.3. The maps A(𝐹𝑛 (−), 𝐹 𝑝𝑀) 𝐺𝑝

−−→ A(𝐺 𝑝𝐹𝑛 (−), 𝐺 𝑝𝐹 𝑝𝑀) → A(𝐺 𝑝𝐹𝑛 (−), 𝑀) induce a
quasi-isomorphism

B(−, 𝑀) = colim𝑝≥0
⊕

𝑛≥0 A(𝐹𝑛 (−), 𝐹 𝑝𝑀) �� colim𝑝≥0
⊕

𝑛≥0 A(𝐺 𝑝𝐹𝑛 (−), 𝑀) = 𝑈0 (−, 𝑀)

of DG B-modules.

Proof. The commutative diagram

A(𝐹𝑛 (−), 𝐹 𝑝𝑀) 𝐺𝑝
��

𝐹
��

A(𝐺 𝑝𝐹𝑛 (−), 𝐺 𝑝𝐹 𝑝𝑀) �� A(𝐺 𝑝𝐹𝑛 (−), 𝑀)

��
A(𝐹𝑛+1 (−), 𝐹 𝑝+1𝑀) 𝐺𝑝+1

�� A(𝐺 𝑝+1𝐹𝑛+1 (−), 𝐺 𝑝+1𝐹 𝑝+1𝑀) �� A(𝐺 𝑝+1𝐹𝑛+1 (−), 𝑀)

shows the existence of the morphism on the colimits.
It is clear that the induced morphism is a quasi-isomorphism since F and G are mutually inverse

equivalences on 𝐻0A. �

Note that 𝑈𝑞 (−,−) constructed above does not have a C-action. The next step toward relating B and
C is constructing a DG (C,B)-bimodule that is quasi-isomorphic over B to𝑈0.
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Lemma 7.4. The vertical maps in equation (7.1) induce a sequence of quasi-isomorphisms

𝑈0 (−, 𝑀) �� 𝑈1 (−, 𝑀) �� 𝑈2 (−, 𝑀) �� · · ·

of DG B-modules for each 𝑀 ∈ A.

Proof. Since the vertical maps in equation (7.1) are quasi-isomorphisms, the induced map𝑈𝑞 (𝐿, 𝑀) →
𝑈𝑞+1 (𝐿, 𝑀) is a quasi-isomorphism for each 𝑞 ≥ 0, 𝐿 ∈ B. It is easily verified that 𝑈𝑞 (−, 𝑀) →
𝑈𝑞+1 (−, 𝑀) is B-linear. �

Now define the DG B-module 𝑈 (−, 𝑀) by the colimit

𝑈 (−, 𝑀) := colim
𝑞≥0

𝑈𝑞 (−, 𝑀).

For each 𝐿 ∈ B, we have𝑈 (𝐿, 𝑀) = colim𝑝,𝑞≥0
⊕

𝑛≥0 A(𝐺 𝑝+𝑞𝐹𝑛𝐿, 𝐺𝑞𝑀).
We observe that 𝑈 (𝐿, 𝑀) has a left C-action as follows: Let 𝑐 ∈ C(𝑀, 𝑁) be a morphism presented

by 𝐺𝑚𝑀 → 𝐺𝑟𝑁 and 𝑢 ∈ 𝑈 (𝐿, 𝑀) an element presented by 𝐺 𝑝+𝑞𝐹𝑛𝐿 → 𝐺𝑞𝑀 . Enlarging m and p if
necessarily we may assume 𝑞 ≤ 𝑚 and 𝑟 ≤ 𝑝. Then define 𝑐 · 𝑢 by the composition 𝐺 𝑝+𝑚𝐹𝑛𝐿 𝐺𝑚−𝑞𝑢

−−−−−−→

𝐺𝑚𝑀
𝑐
−→ 𝐺𝑟𝑁 . It is clear that this is well-defined and compatible with the right B-action. We have

therefore obtained a (C,B)-bimodule U.
As a final preparation, we describe an equivalence between the orbit categories 𝐻0B and 𝐻0C.

Lemma 7.5. The maps 𝐻0A(𝐹𝑛𝐿, 𝐹 𝑝𝑀) 𝐺𝑛+𝑝

−−−−→ 𝐻0A(𝐺𝑛+𝑝𝐹𝑛𝐿, 𝐺𝑛+𝑝𝐹 𝑝𝑀) �
−→

𝐻0A(𝐺𝑛+𝑝𝐹𝑛𝐿, 𝐺𝑛𝑀) �←− 𝐻0A(𝐺 𝑝𝐿, 𝐺𝑛𝑀) → 𝐻0C(𝐿, 𝑀) induce an equivalence 𝐻0B � 𝐻0C.

Proof. We have to show that the following diagram of isomorphisms is commutative, where we write
ℎ (𝐺

𝑎𝐹𝑏 , 𝐺𝑐𝐹𝑑) for 𝐻0A(𝐺𝑎𝐹𝑏𝐿, 𝐺𝑐𝐹𝑑𝑀), and the unlabeled maps are induced by 𝐺 ◦ 𝐹 → 1A:

ℎ (𝐹
𝑛, 𝐹 𝑝)

𝐺𝑛+𝑝
��

𝐹

��

ℎ (𝐺
𝑛+𝑝𝐹𝑛, 𝐺𝑛+𝑝𝐹 𝑝) ��

ℎ (𝐺
𝑛+𝑝𝐹𝑛, 𝐺𝑛) ℎ (𝐺

𝑝 , 𝐺𝑛)		

𝐺

��
ℎ (𝐹

𝑛+1, 𝐹 𝑝+1)
𝐺𝑛+𝑝+2

��
ℎ (𝐺

𝑛+𝑝+2𝐹𝑛+1, 𝐺𝑛+𝑝+2𝐹 𝑝+1) ��
ℎ (𝐺

𝑛+𝑝+2𝐹𝑛+1, 𝐺𝑛+1) ℎ (𝐺
𝑝+1, 𝐺𝑛+1).		

We see this by filling and lifting the above diagram to a diagram of quasi-isomorphism in A as below.
Here again we omit the objects L and M:

A(𝐹𝑛, 𝐹 𝑝) 𝐺𝑛+𝑝
��

𝐹

��

A(𝐺𝑛+𝑝𝐹𝑛, 𝐺𝑛+𝑝𝐹 𝑝) ��

𝐺

��

A(𝐺𝑛+𝑝𝐹𝑛, 𝐺𝑛)

𝐺

��

A(𝐺 𝑝 , 𝐺𝑛)		

𝐺

��

A(𝐺𝑛+𝑝+1𝐹𝑛, 𝐺𝑛+𝑝+1𝐹 𝑝) �� A(𝐺𝑛+𝑝+1𝐹𝑛, 𝐺𝑛+1)

��
A(𝐹𝑛+1, 𝐹 𝑝+1) 𝐺

𝑛+𝑝+2
�� A(𝐺𝑛+𝑝+2𝐹𝑛+1, 𝐺𝑛+𝑝+2𝐹 𝑝+1) �� A(𝐺𝑛+𝑝+2𝐹𝑛+1, 𝐺𝑛+1) A(𝐺 𝑝+1, 𝐺𝑛+1).		

It is now easy to verify that this diagram commutative. �

Now we are ready to prove the main theorem of this section.

Proof of Theorem 7.1. We show that the (C,B)-bimodule

𝑈 (𝐿, 𝑀) = colim
𝑝,𝑞≥0

⊕
𝑛≥0

A(𝐺 𝑝+𝑞𝐹𝑛𝐿, 𝐺𝑞𝑀)
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constructed above gives a quasi-equivalence. Since the DG categories B and C have shifts (that is, the
Yoneda embedding B ↩→ Cdg (B) is closed under [±1] and the same for C), we only have to show that
−⊗L

C 𝑈 induces an equivalence 𝐻0C �−→ 𝐻0B.
For each 𝑀 ∈ C, we have quasi-isomorphisms

𝑢𝑀 : B(−, 𝑀) → 𝑈0 (−, 𝑀) → 𝑈 (−, 𝑀)

of DG B-modules by Lemma 7.3 and Lemma 7.4; thus U is a quasi-functor.
It remains to show that the induced map

HomD(C) (C(−, 𝐿), C(−, 𝑀)) → HomD(B) (𝑈 (−, 𝐿),𝑈 (−, 𝑀))

is an isomorphism for each 𝐿, 𝑀 ∈ A. It suffices to show that the following diagram is commutative:

HomD(C) (C(−, 𝐿), C(−, 𝑀))
−⊗L

C𝑈 �� HomD(B) (𝑈 (−, 𝐿),𝑈 (−, 𝑀))
�

𝑢𝐿
�� HomD(B) (B(−, 𝐿),𝑈 (−, 𝑀))

𝐻0C(𝐿, 𝑀) 𝐻0B(𝐿, 𝑀)�		 HomD(B) (B(−, 𝐿),B(−, 𝑀)).

�

𝑢𝑀

��

The equivalence 𝐻0B → 𝐻0C given in Lemma 7.5 shows that if 𝑓 ∈ 𝐻0B(𝐿, 𝑀) is presented by a
morphism 𝐹𝑛𝐿 → 𝐹 𝑝𝑀 in 𝑍0A, then the corresponding morphism 𝑔 ∈ 𝐻0C(𝐿, 𝑀) is presented by
𝐺 𝑝𝐿 → 𝐺𝑛𝑀 in 𝑍0A so that the diagram

𝐺𝑛+𝑝𝐹𝑛𝐿
𝐺𝑛+𝑝 𝑓 ��

��

𝐺𝑛+𝑝𝐹 𝑝𝑀

��
𝐺 𝑝𝐿

𝑔 �� 𝐺𝑛𝑀

(7.2)

is commutative in 𝐻0A.
Let f and g be of the form above. Then the commutativity we want amounts to saying that 𝑢𝑀 · 𝑓 = 𝑔·𝑢𝐿

in 𝐻0𝑈 (𝐿, 𝑀), where we may regard · as the right action of B (respectively, left action of C) on U. Since
𝑢𝐿 ∈ 𝑈 (𝐿, 𝐿) is presented by the identity morphism in A the element 𝑔 · 𝑢𝐿 ∈ 𝑈 (𝐿, 𝑀) is presented
by 𝐺 𝑝+𝑛𝐹𝑛𝐿 → 𝐺 𝑝𝐿

1
−→ 𝐺 𝑝𝐿

𝑔
−→ 𝐺𝑛𝑀 . Similarly, since 𝑢𝑀 ∈ 𝑈 (𝑀, 𝑀) is presented by the identity

morphism in A, the element 𝑢𝑀 · 𝑓 ∈ 𝑈 (𝐿, 𝑀) is presented by 𝐺 𝑝𝐹𝑛𝐿
𝐺𝑝 𝑓
−−−−→ 𝐺 𝑝𝐹 𝑝𝑀 → 𝑀 , hence

by 𝐺𝑛+𝑝𝐹𝑛𝐿
𝐺𝑛+𝑝 𝑓
−−−−−−→ 𝐺𝑛+𝑝𝐹 𝑝𝑀 → 𝐺𝑛𝑀 obtained by applying 𝐺𝑛. Then the commutativity of the

diagram (7.2) in 𝐻0A implies that we have 𝑢𝑀 · 𝑓 = 𝑔 · 𝑢𝐿 in 𝐻0𝑈 (𝐿, 𝑀). �

Let us apply our general result to the setting of finite-dimensional algebras. Let Λ be a finite-
dimensional algebra of finite global dimension, A = C−,𝑏 (projΛ), and X a complex of projective
(Λ,Λ)-bimodules such that 𝐹 = − ⊗Λ 𝑋 : A→ A induces an autoequivalence on 𝐻0A = D𝑏 (modΛ).
Suppose that for each 𝐿, 𝑀 ∈ D𝑏 (modΛ), we have HomD(Λ) (𝐿, 𝐹

𝑖𝑀) = 0 for almost all 𝑖 ∈ Z.
Let B = A/𝐹 be the DG orbit category and Γ = Λ ⊕ 𝑋 [−1] the trivial extension DG algebra.
Note that our assumptions imply that the orbit category 𝐻0B is idempotent complete since we have
𝐽𝐻 0B(𝐿, 𝐿) = 𝐽𝐻 0A (𝐿, 𝐿) ⊕

⊕
𝑖≠0 𝐻

0A(𝐿, 𝐹𝑖𝐿) for each L, that is indecomposable in 𝐻0A, and
where J is the Jacobson radical of each category. It follows that the triangulated hull triaB equals
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the perfect derived category perB. Then Keller’s theorem [Ke2, Theorem 2, also correction] gives an
equivalence

perB � �� thickD(Γ) Λ/per Γ,

which is compatible with the natural functors from D𝑏 (modΛ).
We have the same equivalence arising from the inverse of F. Let Y be a bimodule projective

resolution of RHomΛ (𝑋,Λ) and 𝐺 = − ⊗Λ 𝑌 : A→ A, which induces a quasi-inverse to 𝐹 = − ⊗Λ 𝑋
on D𝑏 (modΛ). Let C = A/𝐺 be the DG orbit category and Δ = Λ ⊕𝑌 [−1] be the trivial extension DG
algebra so that we have an equivalence

per C � �� thickD(Δ) Λ/perΔ .

By the above equivalences and Theorem 7.1, we deduce the following consequence.

Corollary 7.6. There exists a triangle equivalence

thickD(Γ) Λ/per Γ � �� thickD(Δ) Λ/perΔ ,

which is compatible with the projection functors from D𝑏 (modΛ).

8. Proof of Theorem 6.4

We now give a proof of a main result, Theorem 6.4, of this paper using the result from the previous
section. In fact, the essential part of the proof does not depend on our specific setup, so we first state the
intermediate result in Proposition 8.1 below, which can also be viewed as a DG version of Theorem 6.4.

Let Λ be a finite-dimensional algebra that is homologically smooth and X a complex of (Λ,Λ)-
bimodules such that 𝐹 = −⊗L

Λ𝑋 gives an autoequivalence on D𝑏 (modΛ). We assume the following on
the tilting complex X:

(X1) For each 𝐿, 𝑀 ∈ D𝑏 (modΛ), we have HomD(Λ) (𝐿, 𝐹
𝑖𝑀) = 0 for almost all 𝑖 ∈ Z.

(X2) X is concentrated in degree ≤ 0.

Let

Γ = Λ ⊕ 𝑋 [−1], Σ = 𝑇L
Λ𝑋

be the trivial extension DG algebra and, respectively, the derived tensor algebra: that is, the tensor
algebra of a bimodule projective resolution of X. Then the condition (X2) shows that Σ is a negative DG
algebra, and (X1) implies that its cohomology 𝐻0Σ =

⊕
𝑖≥0 HomD(Λ) (Λ, 𝐹𝑖Λ) is finite dimensional.

Recall from the introduction that we have denoted by

C(Π) = perΠ/D𝑏 (Π)

and called it the cluster category for any DG algebra Π satisfying perΠ ⊃ D𝑏 (Π). Our general
intermediate result is an equivalence between the cluster category of the tensor algebra and the singularity
category of the trivial extension algebra.

Proposition 8.1. The DG algebra Σ satisfies perΣ ⊃ D𝑏 (Σ), and there exists a triangle equivalence

C(Σ) � thickD(Γ) Λ/per Γ.

The first step is to apply Corollary 7.6. Let Y be a bimodule projective resolution of RHomΛ (𝑋,Λ),
and set

Δ = Λ ⊕ 𝑌 [−1] .
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Then we have a triangle equivalence

thickD(Γ) Λ/per Γ � thickD(Δ) Λ/perΔ . (8.1)

We next use the following computation of a DG endomorphism algebra.

Lemma 8.2 (See [Am, Lemma 4.13]). There exists an isomorphism RHomΔ (Λ,Λ) � 𝑇L
Λ𝑋 = Σ in the

homotopy category of DG algebras: that is, these two DG algebras are related by a zig-zag of quasi-
isomorphisms of DG algebras.

We also need the equivalence by relative Koszul dual.

Lemma 8.3. The functor RHomΔ (Λ,−) : D(Δ) → D(Σ) restricts to equivalences thickD(Δ) Λ � perΣ
and perΔ � D𝑏 (Σ). Therefore, we have perΣ ⊃ D𝑏 (Σ) and an equivalence thickD(Δ) Λ/perΔ �

−→ C(Σ).

Proof. The first assertion is clear. We prove the second one. Since Δ = RHomΛ(Δ , 𝑌 [−1]) as (Λ,Δ)-
bimodules, we have RHomΔ (Λ,Δ) = RHomΔ (Λ,RHomΛ (Δ , 𝑌 [−1])) = RHomΛ(Λ, 𝑌 [−1]) = 𝑌 [−1],
which has finite-dimensional total cohomology. Therefore, the functor maps perΔ into D𝑏 (Σ). It
remains to show the essential surjectivity. Since Σ is a negative DG algebra, the finite-dimensional
derived category D𝑏 (Σ) has a bounded t-structure whose heart H is equivalent to the category of finite-
dimensional modules over 𝐻0Σ. Indeed, we may assume that the terms of Σ are concentrated in degree
≤ 0, and we see that the functors 𝐻0 : H → mod𝐻0Σ and mod𝐻0Σ → H given by the restriction
along Σ � 𝐻0Σ yield mutually inverse equivalences by adapting [Am, Proposition 2.3(i)]. So it suffices
to show that the heart is contained in the image of the functor. Note that 𝐻0Σ = 𝑇Λ (𝐻0𝑋) is a finite-
dimensional graded algebra whose degree 0 part Λ has finite global dimension. Therefore, it is sufficient
to prove that 𝐷Λ is in the image. Clearly, 𝐷Λ = RHomΔ (Λ, 𝐷Δ), so it remains to show 𝐷Δ ∈ perΔ .
But we have 𝐷Δ = RHomΛ (Δ , 𝐷Λ) and 𝐷Λ ∈ thickD(Λ) 𝑌 [−1], hence the assertion. �

Proof of Proposition 8.1. It is a consequence of equation (8.1) and Lemma 8.3. �

We now return to our setup from Section 6. Recall that R is a negatively graded bimodule (𝑑 +1)-CY
algebra of a-invariant a such that each 𝑅𝑖 is finite dimensional and that A is a d-representation infinite
algebra in Proposition 4.9 given by

𝐴 =

������
𝑅0 0 · · · 0
𝑅−1 𝑅0 · · · 0
...

...
. . .

...
𝑅−(𝑎−1) 𝑅−(𝑎−2) · · · 𝑅0

������
,

whose d-AR-translation 𝜈𝑑 has an ath root defined by diagram (4.1). We have a cotilting bimodule
𝑈 = 𝜈−1/𝑎

𝑑 𝐴 and a d-Iwanaga-Gorenstein algebra 𝐵 = 𝐴 ⊕ 𝑈 (see Proposition 6.3).
Let us first apply Proposition 8.1. Set Λ = 𝐴 and 𝑋 = 𝑈 [1]. Since U is a preprojective module over a

d-representation infinite algebra, it clearly satisfies (X1) and (X2). Then the DG algebra Γ = Λ⊕ 𝑋 [−1]
concentrates in degree 0 and is nothing but our Iwanaga-Gorenstein algebra 𝐵 = 𝐴⊕𝑈. Since A has finite
global dimension, the right-hand side of Proposition 8.1 is precisely the singularity category Dsg (𝐵) of
B. Also, we see that the DG algebra Σ is the tensor algebra

𝑆 := 𝑇𝐴(𝑈 [1])

with trivial differentials. Proposition 8.1 for this case then gives the following equivalence.

Corollary 8.4. There exists a triangle equivalence

C(𝑆) � Dsg(𝐵).
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To compare the cluster categories of S and 𝑅dg, we need another intermediate DG algebra, which is

𝑆 := End𝑅dg (𝑇), with 𝑇 = 𝑅 ⊕ 𝑅[−1] ⊕ · · · ⊕ 𝑅[−(𝑎 − 1)],

where End𝑅dg (−) = Hom𝑅dg (−,−) is the endomorphism DG algebra.
Let us first state an easy relationship between 𝑅dg and 𝑆. We say that DG algebras Π1 and Π2 are DG

Morita equivalent if there is a (Π1,Π2)-bimodule X such that −⊗L
Π1
𝑋 induces an equivalence D(Π1)

�
−→

D(Π2), or equivalently there exists a compact generator 𝑀 ∈ D(Π2) whose DG endomorphism algebra
RHomΠ2 (𝑀, 𝑀) is quasi-equivalent to Π1 [Ke1, Theorem 8.2]; see also [Ke3, Section 3.8].

We immediately have the following lemma.
Lemma 8.5.
1. The DG algebras 𝑅dg and 𝑆 are DG Morita equivalent.
2. We have per 𝑆 ⊃ D𝑏 (𝑆).
3. The cluster categories of 𝑅dg and 𝑆 are equivalent.
Proof. Since 𝑆 is the DG endomorphism ring of a compact generator 𝑇 ∈ D(𝑅dg), we have (1). Then
the assertions (2) and (3) follow. �

We next discuss the relationship between S and 𝑆.
Lemma 8.6.
1. S is a finite codimensional DG subalgebra of 𝑆.
2. The cluster categories of S and 𝑆 are equivalent.
Proof. (1) Since both S and 𝑆 have trivial differentials, we only have to regard them as graded algebras.
Consider the commutative diagram

(−1) �� qperZ𝑅 � �� D𝑏 (mod 𝐴) −⊗L
𝐴𝑈��

taking the tilting object 𝑇 =
⊕𝑎−1

𝑙=0 𝑅(−𝑙) in Proposition 4.9 to A. We have 𝑆 =
⊕

𝑖≥0 HomD(𝐴) (𝐴,𝑈
𝑖),

where𝑈𝑖 is the i-fold (derived) tensor product of U; thus it is isomorphic to
⊕

𝑖≤0 HomqperZ𝑅 (𝑇,𝑇 (𝑖)).
On the other hand, since 𝑇 is nothing but T regarded as a DG module, we have 𝑆 = End𝑅 (𝑇) as graded
algebras. This is equal to

⊕
𝑖∈ZHomModZ𝑅 (𝑇, 𝑇 (𝑖)) =

⊕
𝑖≤𝑎−1 HomModZ𝑅 (𝑇, 𝑇 (𝑖)), and by Lemma 4.7

to
⊕

𝑖≤𝑎−1 HomqperZ𝑅 (𝑇,𝑇 (𝑖)), which gives our assertion.
(2) Consider the pair of adjoint functors 𝐹 = −⊗L

𝑆 𝑆 : D(𝑆) → D(𝑆) and 𝐺 = res : D(𝑆) → D(𝑆).
Step 1: Restrictions of the adjoint pair. We observe that these functors restrict to the perfect and

finite-dimensional derived categories. Clearly, 𝐹 = −⊗L
𝑆 𝑆 restricts to per 𝑆 → per 𝑆 and 𝐺 = res to

D𝑏 (𝑆) → D𝑏 (𝑆). Also, since 𝑆 is perfect over S by (1) and Lemma 8.3, the remaining assertions follow.
Therefore, the above functors induce an adjoint pair between the Verdier quotients.

Step 2: The unit and counit maps. We show that the unit and counit maps are isomorphisms. Let
𝑋 ∈ C(𝑆), and consider the unit map 𝑢𝑋 : 𝑋 → 𝑋⊗L

𝑆 𝑆. Since this is obtained by applying 𝑋⊗L
𝑆− to an

isomorphism 𝑆 → 𝑆 in C(𝑆), it is an isomorphism. Next let 𝑌 ∈ C(𝑆) and 𝑣𝑌 : 𝐹𝐺𝑌 → 𝑌 the counit.
Note that G detects isomorphisms. Indeed, 𝑣𝑌 is an isomorphism in C(𝑆) if and only if, as a map in
per 𝑆, the cone of 𝑣𝑌 is in D𝑏 (𝑆). But this property is detected by the restriction functor G. Now the
claim𝐺 (𝑣𝑌 ) is an isomorphism follows from the fact that the composition𝐺𝑌

𝑢𝐺𝑌
−−−→ 𝐺𝐹𝐺𝑌

𝐺 (𝑣𝑌 )
−−−−−→ 𝐺𝑌

equals the identity, which is a general property of an adjoint pair and the isomorphism of the unit. �

Now, Theorem 6.4 is a consequence of the following sequence of equivalences in the upper row:

Dsg (𝐵)
Cor 8.4

Cor 7.6
����

����
����

����
C(𝑆) Lem 8.6 C(𝑆) Lem 8.5 C(𝑅dg).

thickD(𝐶) 𝐴/per𝐶 Lem 8.3
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Here we have included 𝐶 = 𝐴 ⊕ RHom𝐴(𝑈 [1], 𝐴) [−1], which is the DG algebra Δ for our specific
setup.

We record the following formula for the d-representation infinite algebra A, the cotilting bimodule U
and the d-Iwanaga-Gorenstein algebra B, which are determined by R.

𝐴 =

������
𝑅0 0 · · · 0
𝑅−1 𝑅0 · · · 0
...

...
. . .

...
𝑅−(𝑎−1) 𝑅−(𝑎−2) · · · 𝑅0

������
, 𝑈 =

������
𝑅−1 𝑅0 · · · 0
...

...
. . .

...
𝑅−(𝑎−1) 𝑅−(𝑎−2) · · · 𝑅0
𝑅−𝑎 𝑅−(𝑎−1) · · · 𝑅−1

������
, 𝐵 = 𝐴 ⊕ 𝑈. (8.2)

Let us also record the equivalences we have shown:

D𝑏 (mod 𝐴)/𝜈−1/𝑎
𝑑 [1] �

� �� Dsg (𝐵)
� �� C(𝑅dg). (8.3)

We end this section with the obvious lemma, which is useful for later computation.

Lemma 8.7. Let 𝐽0 be the Jacobson radical of 𝑅0.

1. The Jacobson radical 𝐽𝐴 of A is
������
𝐽0 0 · · · 0
𝑅−1 𝐽0 · · · 0
...

...
. . .

...
𝑅−(𝑎−1) 𝑅−(𝑎−2) · · · 𝐽0

������
.

2. The Jacobson radical 𝐽𝐵 of B is 𝐽𝐴 ⊕ 𝑈.
3. We have 𝐽𝐵/𝐽2

𝐵 = 𝐽𝐴/𝐽2
𝐴 ⊕ 𝑈/(𝐽𝐴𝑈 +𝑈𝐽𝐴), with

𝑈/(𝐽𝐴𝑈 +𝑈𝐽𝐴) =

�������
0 𝑅0/𝐽0 · · · 0
...

...
. . .

...
0 0 · · · 𝑅0/𝐽0
𝑅−𝑎

𝐽0𝑅−𝑎+𝑅−𝑎𝐽0+
∑

𝑖+ 𝑗=𝑎,𝑖, 𝑗>0 𝑅−𝑖𝑅− 𝑗
0 · · · 0

�������
.

9. Higher cluster categories of higher representation infinite algebras

We give an application of Theorem 6.4, which is given by taking the CY algebra R as a (higher)
preprojective algebra. We prove that any m-cluster category of a d-representation infinite algebra with
𝑚 > 𝑑 is the singularity category of a d-Iwanaga-Gorenstein algebra. (Recall by convention that our
m-cluster category is m-CY.) Moreover, we explicitly describe the quiver and relations of the Iwanaga-
Gorenstein algebra for the case 𝑑 = 1: that is, when A is hereditary.

Theorem 9.1. Let A be a d-representation infinite algebra such that 𝐴/𝐽𝐴 is separable over k, and fix
𝑛 ≥ 1. Let𝑈 = Ext𝑑𝐴(𝐷𝐴, 𝐴) and

𝐵 =

������
𝐴 0 · · · 0
0 𝐴 · · · 0
...
...
. . .

...
0 0 · · · 𝐴

������
⊕

������
0 𝐴 · · · 0
...
...
. . .

...
0 0 · · · 𝐴
𝑈 0 · · · 0

������
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the trivial extension algebra, where the matrix is 𝑛 × 𝑛. Then B is d-Iwanaga-Gorenstein, and there
exists a triangle equivalence

C𝑑+𝑛 (𝐴) � Dsg(𝐵).

Proof. Let Π = 𝑇𝐴𝑈 be the (𝑑 + 1)-preprojective algebra of A. Give a grading on Π by setting
deg𝑈 = −𝑛 so that Π is a bimodule (𝑑 + 1)-CY algebra of a-invariant n. Note that Πdg is quasi-
isomorphic to the derived (𝑑 + 𝑛 + 1)-preprojective algebra (or the (𝑑 + 𝑛 + 1)-Calabi-Yau completion)
𝑇L
𝐴 (RHom𝐴(𝐷𝐴, 𝐴) [𝑑 + 𝑛]), in the sense of [Ke6]. Therefore, the cluster category C(Πdg) is nothing

but the (𝑑 + 𝑛)-cluster category C𝑑+𝑛 (𝐴) of A. By Theorem 6.4, we have a triangle equivalence
C(Πdg) � Dsg(𝐵(Π)) for the d-Iwanaga-Gorenstein algebra 𝐵(Π) in equation (8.2) for the Calabi-Yau
algebra Π, which is precisely B in the above statement. �

Remark 9.2. We give a general discussion in Appendix A of the effect of ‘multiplying gradings’ as we
did in the above proof. See Corollary A.2 for a description as a derived orbit category, which predicts
the above equivalence.

9.1. The case 𝑑 = 1.

Let us record the special case 𝑑 = 1: that is, when A is hereditary.

Corollary 9.3. Let Q be a finite connected acyclic non-Dynkin quiver, 𝐴 = 𝑘𝑄 its path algebra, and fix
𝑛 ≥ 1. Then we have a triangle equivalence

C𝑛+1(𝑘𝑄) � Dsg (𝐵)

for the 1-Iwanaga-Gorenstein algebra B in Theorem 9.1.

In this case, we can explicitly describe the quiver and relations for B.

Proposition 9.4. The 1-Iwanaga-Gorenstein algebra 𝐵 in Theorem 9.1 is presented by the quiver𝑄 with

(a) vertices 𝑄0 × {1, . . . , 𝑛},
(b) three kinds of arrows:

(i) 𝑎 = 𝑎𝑙 : (𝑖, 𝑙) → ( 𝑗 , 𝑙) for each 𝑎 : 𝑖 → 𝑗 in 𝑄1 and 1 ≤ 𝑙 ≤ 𝑛.
(ii) 𝑣 = 𝑣𝑙𝑖 : (𝑖, 𝑙 + 1) → (𝑖, 𝑙) for each 𝑖 ∈ 𝑄0 and 1 ≤ 𝑙 < 𝑛.

(iii) 𝑎∗ : ( 𝑗 , 1) → (𝑖, 𝑛) for each 𝑎 : 𝑖 → 𝑗 in 𝑄1.
(c) three kinds of relations:

(i) 𝑎𝑙𝑣𝑙𝑖 = 𝑣
𝑙
𝑗𝑎
𝑙+1 for each 𝑎 : 𝑖 → 𝑗 in 𝑄1 and 1 ≤ 𝑙 < 𝑛.

(ii)
∑
𝑠 (𝑎)=𝑖 𝑎

∗𝑎1 =
∑
𝑡 (𝑎)=𝑖 𝑎

𝑛𝑎∗ for all 𝑖 ∈ 𝑄0.
(iii) 𝑣𝑙−1

𝑖 𝑣
𝑙
𝑖 = 0, 𝑎∗𝑣1

𝑗 = 0, 𝑣𝑛−1
𝑖 𝑎∗ = 0 for 𝑎 : 𝑖 → 𝑗 in Q if 𝑛 ≥ 2, and 𝑎∗𝑏𝑐∗ = 0 for any

composable 𝑎, 𝑏, 𝑐 ∈ 𝑄1 if 𝑛 = 1.

We use a reformulation of a well-known fact on preprojective algebras.

Lemma 9.5. Let Q be a finite acyclic quiver, 𝐴 = 𝑘𝑄 and 𝑈 = Ext1𝐴(𝐷𝐴, 𝐴). We denote by 𝑒𝑖 the
idempotent of A at the vertex i. Then there exists a subset B = {𝑢(𝑎∗) | 𝑎 ∈ 𝑄1} of U satisfying the
following conditions:

◦ If 𝑎 : 𝑖 → 𝑗 is an arrow in Q, then 𝑒𝑖𝑢(𝑎∗) = 𝑢(𝑎∗) = 𝑢(𝑎∗)𝑒 𝑗 and 𝑒𝑙𝑢(𝑎∗) = 𝑢(𝑎∗)𝑒𝑚 = 0 for 𝑙 ≠ 𝑖
and 𝑚 ≠ 𝑗 .

◦ The image of B in𝑈/(𝐽𝐴𝑈 +𝑈𝐽𝐴) is a k-basis.
◦ ∑

𝑎∈𝑄1 (𝑎𝑢(𝑎
∗) − 𝑢(𝑎∗)𝑎) = 0 in U.

Proof. Consider the two presentations 𝑇𝐴𝑈 = 𝑘𝑄/(
∑
𝑎∈𝑄1 (𝑎𝑎

∗ − 𝑎∗𝑎)) of the preprojective algebra Π

of Q, where 𝑄 is the double quiver of Q obtained by adding the opposite arrows 𝑄∗ := {𝑎∗ : 𝑗 → 𝑖 |
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𝑎 : 𝑖 → 𝑗 in 𝑄}. Take the elements of U corresponding to {𝑎∗ | 𝑎 ∈ 𝑄1} ⊂ 𝑄1. This is a desired set
since𝑈/(𝐽𝐴𝑈 +𝑈𝐽𝐴) is isomorphic as (𝑘𝑄0, 𝑘𝑄0)-bimodules to the one spanned by 𝑄∗. �

Proof of Proposition 9.4. By Lemma 8.7, we have

𝐽𝐵/𝐽
2
𝐵 =

������
𝐽𝐴/𝐽

2
𝐴 0 · · · 0

0 𝐽𝐴/𝐽
2
𝐴 · · · 0

...
...

. . .
...

0 0 · · · 𝐽𝐴/𝐽
2
𝐴

������
⊕

������
0 𝐴/𝐽𝐴 · · · 0
...

...
. . .

...
0 0 · · · 𝐴/𝐽𝐴

𝑈/(𝐽𝐴𝑈 +𝑈𝐽𝐴) 0 · · · 0

������
.

Therefore, we see that the quiver of B consists of the following:

◦ n copies 𝑄1, . . . , 𝑄𝑛 of Q,
◦ The arrows from 𝑄𝑙+1 to 𝑄𝑙 corresponding to the idempotents in A,
◦ The arrows from 𝑄1 to 𝑄𝑛 corresponding to the basis of𝑈/(𝐽𝐴𝑈 +𝑈𝐽𝐴) as (𝑘𝑄0, 𝑘𝑄0)-bimodules.

In view of Lemma 9.5, these vertices and arrows are precisely the ones described in (a) and (b), hence
the quiver of B is 𝑄.

Now we determine the relations. To simplify the discussion below, we give a grading on B in Theorem
9.1 by setting the first factor to have degree 0 and the second one to have degree 1. Similarly, give a
grading on𝑄 by setting the arrows in (i) to have degree 0 and in (ii), (iii) to have degree 1. Take a subset
{𝑢(𝑎∗) | 𝑎 ∈ 𝑄1} of U given in Lemma 9.5, and consider the map 𝑄 → 𝐵 defined by

◦ the natural embedding 𝑘𝑄𝑙 → 𝐴 × · · · × 𝐴 = 𝐵0 into the lth factor,
◦ 𝑣𝑙𝑖 ↦→ 𝑒𝑖 , where 𝑒𝑖 is the corresponding idempotent of A in the (𝑙, 𝑙 + 1)-component of 𝐵1,
◦ 𝑎∗ ↦→ 𝑢(𝑎∗), where 𝑢(𝑎∗) ∈ 𝑈 is in the (𝑛, 1)-component of 𝐵1.

These maps induce a homogeneous homomorphism 𝜑 : 𝑘𝑄 → 𝐵, which clearly preserves the relations.
Denoting by I the ideal generated by the relations, we obtain a homomorphism 𝑘𝑄/𝐼 → 𝐵. Since it is
an isomorphism in degree 0, it is enough to consider the degree 1 part. Let 𝑒 (𝑖,𝑙) be the idempotent of
𝑘𝑄/𝐼 at the vertex (𝑖, 𝑙), and set 𝑒𝑙 =

∑
𝑖∈𝑄0 𝑒 (𝑖,𝑙) . We denote their images under 𝜑 by the same symbols.

It is sufficient to show that 𝜑 induces an isomorphism 𝑒𝑙 (𝑘𝑄/𝐼)𝑒𝑚 → 𝑒𝑙𝐵𝑒𝑚 for each 1 ≤ 𝑙, 𝑚 ≤ 𝑛.
By the relation (iii), each term is 0 in degree 1 unless 𝑚 − 𝑙 = 1 or (𝑙, 𝑚) = (𝑛, 1), so we only have to
consider these two cases.

Case 1: The map 𝑒𝑙 (𝑘𝑄/𝐼)𝑒𝑙+1 → 𝑒𝑙𝐵𝑒𝑙+1 is an isomorphism for each 1 ≤ 𝑙 < 𝑛. By the relation (i),
any element in 𝑒𝑙 (𝑘𝑄/𝐼)𝑒𝑙+1 can be written as 𝑎 · (

∑
𝑖∈𝑄0 𝑣

𝑙
𝑖) for some 𝑎 ∈ 𝑘𝑄𝑙 = 𝐴. This observation

immediately shows the map is an isomorphism.
Case 2: The map 𝑒𝑛 (𝑘𝑄/𝐼)𝑒1 → 𝑒𝑛𝐵𝑒1 is an isomorphism. By the relation (ii), the space 𝑒𝑛 (𝑘𝑄/𝐼)𝑒1

is isomorphic to the degree 1 part of the preprojective algebra of Q; thus to U. On the other hand, the
space 𝑒𝑛𝐵𝑒1 is also clearly U. �

We look at the most special case 𝑑 = 1 and 𝑛 = 1.

Example 9.6. Let Q be a finite connected acyclic non-Dynkin quiver and 𝑘𝑄 its path algebra, which is
1-representation-infinite.

The 1-Iwanaga-Gorenstein algebra 𝐵 = 𝑘𝑄 ⊕𝑈 with𝑈 = 𝜏−1𝑘𝑄 is a truncation of the preprojective
algebra Π of Q, which is presented by the same quiver as Π and the additional relations ‘the elements
of U square to zero’, as stated in Proposition 9.4.

The equivalence Dsg (𝐵) � C2(𝑘𝑄) in Corollary 9.3 is given in [BIRS, ART] as the 2-CY category
associated to the square of the Coxeter element in the Coxeter group of Q. Our proof is different from
theirs since our equivalence comes from quasi-equivalence of DG orbit categories.

The next example is the case 𝑑 = 1 and 𝑛 = 2.
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Example 9.7. Let Q be the following quiver

◦
𝑎 ��
𝑏

�� ◦
𝑐 �� ◦ ,

thus 𝐴 = 𝑘𝑄 is 1-representation infinite. Let 𝑛 = 2, so by Proposition 9.4, the 1-Iwanaga-Gorenstein
algebra 𝐵 is presented by the following quiver with relations:

◦
𝑎 ��
𝑏

�� ◦
𝑐 ��

𝑎∗

����
��
��
��
��

𝑏∗

����
��
��
��
��

◦

𝑐∗
��
��
�

����
��
�

◦
𝑎 ��
𝑏

��

𝑣

��

◦ 𝑐
��

𝑣

��

◦

𝑣

�� 𝑎𝑣 = 𝑣𝑎, 𝑏𝑣 = 𝑣𝑏, 𝑐𝑣 = 𝑣𝑐

𝑎∗𝑎 + 𝑏∗𝑏 = 0, 𝑎𝑎∗ + 𝑏𝑏∗ = 𝑐∗𝑐, 𝑐𝑐∗ = 0

𝑣𝑎∗ = 0, 𝑣𝑏∗ = 0, 𝑣𝑐∗ = 0, 𝑎∗𝑣 = 0, 𝑏∗𝑣 = 0, 𝑐∗𝑣 = 0.

By Corollary 9.3, we have a triangle equivalence C3(𝑘𝑄) � Dsg(𝐵).

9.2. The case 𝑛 = 1.

We now turn to another special case of 𝑛 = 1. In this case, the algebra B is a truncation of the (𝑑 + 1)-
preprojective algebra of A.

Corollary 9.8. Let A be a d-representation infinite algebra,𝑈 = Ext𝑑𝐴(𝐷𝐴, 𝐴) and 𝐵 = 𝐴 ⊕𝑈. Then B
is d-Iwanaga-Gorenstein, and there is a triangle equivalence C𝑑+1(𝐴) � Dsg (𝐵).

This is a higher-dimensional analogue of Example 9.6 above. One can view [I2, Theorem 1.1(1)] as
a prediction that Dsg (𝐵) has a (𝑑 + 1)-cluster tilting object. We deduce this from our equivalence with
the (𝑑 + 1)-cluster category.

Let us now give an example. See also Example 11.2(1) for an example in 𝑑 = 2.

Example 9.9. (1) Let A be the tensor product of two path algebras of Kronecker quivers; thus it is
presented by the following quiver with relations:

1 𝑦
��𝑥 ��

𝑢

��
𝑣

��

2

𝑢

��
𝑣

��
3 𝑦

��𝑥 �� 4

𝑥𝑢 = 𝑢𝑥, 𝑥𝑣 = 𝑣𝑥, 𝑦𝑢 = 𝑢𝑦, 𝑦𝑣 = 𝑣𝑦.

This is a 2-representation infinite algebra [HIO, Theorem 2.10]. This is also the endomorphism algebra
of a tilting bundle 𝑇 = O ⊕ O(1, 0) ⊕ O(0, 1) ⊕ O(1, 1) over P1 × P1 (see, e.g., [Ki, Section 6, Section
8]), inducing a derived equivalence with compatible shifted Serre functors (see [Hu, Definition 3.11,
Theorem 3.12])

D𝑏 (mod 𝐴) �

𝜈−1
2

�� D𝑏 (coh P1 × P1)

(2,2)

�� .

Either by a direct calculation using Π =
⊕

𝑖≥0 HomcohP1×P1 (𝑇,𝑇 ⊗ O(2𝑖, 2𝑖)), or by [Ke6, Theorem
6.10], we see that the preprojective algebra Π of A is presented by the following quiver with suitable
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commutativity relations (where the four diagonal arrows represents 𝑥𝑢, 𝑦𝑢, 𝑥𝑣, 𝑦𝑣),

1 𝑦
��𝑥 ��

𝑢

��
𝑣

��

2

𝑢

��
𝑣

��
3 𝑦

��𝑥 �� 4

���������

���������

���������

���������

thus so is its truncation B with some additional relations.
By Corollary 9.8, we obtain a triangle equivalence C3 (𝐴) � Dsg(𝐵).
(2) Let 𝐴′ be the algebra presented by the following quiver with relations:

1
𝑥 ��
𝑦

�� 2
𝑢 ��
𝑣

�� 3
𝑥 ��
𝑦

�� 4 , 𝑥𝑢𝑦 = 𝑦𝑢𝑥, 𝑥𝑣𝑦 = 𝑦𝑣𝑥.

This is obtained from A by a mutation: Take the left mutation in the sense of [AI, Definition 2.30]
of T at the summand O(0, 1). By the exact sequence 0 → O(0, 1) → O(1, 1)⊕2 → O(2, 1) → 0,
we obtain another tilting bundle 𝑇 ′ = O ⊕ O(1, 0) ⊕ O(1, 1) ⊕ O(2, 1). Indeed, it is a silting object
by [AI, Theorem 2.31], and there are certainly no negative self-extensions since it is in the heart
coh P1 × P1. Then 𝐴′ is the endomorphism ring of 𝑇 ′. Now we have HomD(𝐴′) (𝐴

′, 𝜈−𝑖2 𝐴
′ [ 𝑗]) =

HomD𝑏 (cohP1×P1) (𝑇
′, 𝑇 ′ ⊗O(2𝑖, 2𝑖) [ 𝑗]), which vanishes for 𝑖 ≥ 0 and 𝑗 > 0. (We leave the verification

to the reader.) We conclude that 𝐴′ is also 2-representation infinite. Again either by a direct calculation
of

⊕
𝑖≥0 Homcoh P1×P1 (𝑇 ′, 𝑇 ′ ⊗ O(2𝑖, 2𝑖)) or by [Ke6, Theorem 6.10], its preprojective algebra Π′ is

given by the following quiver with commutativity relations,

1 𝑦
��𝑥 �� 2

𝑢

��
𝑣

��
4

𝑣

��

𝑢

��

3𝑥		 𝑦
		

𝑥𝑢𝑦 = 𝑦𝑢𝑥, 𝑥𝑣𝑦 = 𝑦𝑣𝑥,

𝑢𝑥𝑣 = 𝑣𝑥𝑢, 𝑢𝑦𝑣 = 𝑣𝑦𝑢,

thus its truncation 𝐵′ by the same quiver with suitable additional relations. By Corollary 9.8, we have a
triangle equivalence C3(𝐴

′) � Dsg (𝐵
′).

(3) The 2-representation infinite algebras A and 𝐴′ above are derived equivalent, hence their cluster
categories are equivalent; C3(𝐴) � C3 (𝐴

′). Therefore, we deduce that all the relevant 3-CY categories
are equivalent; Dsg (𝐵) � C3 (𝐴) � C3(𝐴

′) � Dsg(𝐵
′).

10. Examples: Polynomial rings

Let us start by recording the following well-known fact on the CY property of polynomial rings.

Lemma 10.1. Let 𝑅 = 𝑘 [𝑥0, . . . , 𝑥𝑑] be a polynomial ring with deg 𝑥𝑖 = −𝑎𝑖 . Then it is bimodule
(𝑑 + 1)-CY algebra with a-invariant 𝑎 =

∑𝑑
𝑖=0 𝑎𝑖 .

Proof. This is seen by the Koszul bimodule resolution. Let V be the graded vector space with basis
{𝑥0, 𝑥1, . . . , 𝑥𝑑}. Consider the complex

𝐾 : 0 �� 𝐾𝑑+1 �� 𝐾𝑑 �� · · · �� 𝐾1 �� 𝐾0 �� 0

with 𝐾𝑙 = 𝑅 ⊗
∧𝑙 𝑉 ⊗ 𝑅 and differential 𝐾𝑙 → 𝐾𝑙−1 given by the homogeneous 𝑅𝑒-linear map

1 ⊗ (𝑥𝑖1 ∧ · · · ∧ 𝑥𝑖𝑙 ) ⊗ 1 ↦→
𝑙∑
𝑗=1
(−1) 𝑗−1(𝑥𝑖 𝑗 ⊗ (𝑥𝑖1 ∧ · · · ∧ 𝑥𝑖 𝑗 ∧ · · · ∧ 𝑥𝑖𝑙 ) ⊗ 1 − 1

⊗ (𝑥𝑖1 ∧ · · · ∧ 𝑥𝑖 𝑗 ∧ · · · ∧ 𝑥𝑖𝑙 ) ⊗ 𝑥𝑖 𝑗 ),
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where 𝑥𝑖 𝑗 indicates that 𝑥𝑖 𝑗 is skipped. Then the complex K together with the multiplication map
𝐾0 = 𝑅 ⊗ 𝑅 → 𝑅 is a bimodule projective resolution of R (see [VdB1, Proposition 3.1]). It is easy
to see that applying Hom𝑅𝑒 (−, 𝑅𝑒) to K yields the isomorphic complex up to shifts, which shows our
assertion. �

The aim of this section is to apply our main results for polynomial rings and give a concrete description
of the d-representation-infinite algebra A and the d-Iwanaga-Gorenstein algebra B (see equation (8.2)
for the definitions). For a finite subgroup 𝐺 ⊂ GL𝑑+1 (𝑘), which naturally acts on R, the skew group
algebra 𝑅 ∗ 𝐺 is a vector space 𝑅 ⊗𝑘 𝑘𝐺 with multiplication (𝑎 ⊗ 𝑔) (𝑏 ⊗ ℎ) = 𝑎𝑔(𝑏) ⊗ 𝑔ℎ. We have
the following result on the algebras A and B.

Proposition 10.2. Let 𝑅 = 𝑘 [𝑥0, . . . , 𝑥𝑑] be a polynomial ring in 𝑑 + 1 ≥ 2 variables, with deg 𝑥𝑖 =
−𝑎𝑖 < 0 and 𝑎 =

∑𝑑
𝑖=0 𝑎𝑖 . Suppose that a is invertible in k, that there exists a primitive ath root of unity

𝜁 ∈ 𝑘 and that 𝑎0, . . . , 𝑎𝑑 are relatively prime.

1. The algebra A is presented by the quiver Q with the vertices {0, 1, . . . , 𝑎−1}, the arrows 𝑥𝑖 = 𝑥𝑙𝑖 : 𝑙 →
𝑙 + 𝑎𝑖 for each 0 ≤ 𝑖 ≤ 𝑑 and 0 ≤ 𝑙 ≤ 𝑎 − 1 such that 𝑙 + 𝑎𝑖 ≤ 𝑎 − 1 and with the commutativity
relations 𝑥𝑙+𝑎𝑖𝑗 𝑥𝑙𝑖 = 𝑥

𝑙+𝑎 𝑗

𝑖 𝑥𝑙𝑗 .
2. Let 𝑔 = diag(𝜁𝑎0 , . . . , 𝜁𝑎𝑑 ) ∈ SL𝑑+1 (𝑘) and G the cyclic subgroup generated by g. Then the (𝑑 + 1)-

preprojective algebra of A is isomorphic to 𝑅 ∗ 𝐺.
3. A is d-representation-infinite of type 𝐴, in the sense of [HIO].
4. B is presented by the quiver 𝑄 obtained by adding to Q the arrows 𝑢 = 𝑢𝑙 : 𝑙 → 𝑙 − 1 for each

1 ≤ 𝑙 ≤ 𝑎 − 1 and additional relations:
(i) 𝑥𝑙−1

𝑖 𝑢
𝑙 = 𝑢𝑙+𝑎𝑖𝑥𝑙𝑖 whenever 1 ≤ 𝑙 and 𝑙 + 𝑎𝑖 ≤ 𝑎 − 1.

(ii) 𝑥𝑎𝑖−1
𝑗 𝑢𝑎𝑖𝑥0

𝑖 = 𝑥
𝑎 𝑗−1
𝑖 𝑢𝑎 𝑗 𝑥0

𝑗 for every (𝑖, 𝑗) such that 𝑎𝑖 + 𝑎 𝑗 = 𝑎.
(iii) 𝑢𝑙−1𝑢𝑙 = 0 for all 1 ≤ 𝑙 ≤ 𝑎 − 1.
(iv) 𝑢𝑎−1𝑥0

𝑖 𝑢
1 = 0 for every i such that 𝑎𝑖 = 𝑎 − 1.

Proof. (1) Note that the category projZ𝑅 is presented by the quiver with vertices set Z, arrows 𝑥𝑙𝑖 : 𝑙 →
𝑙 + 𝑎𝑖 and with the commutativity relations. Since 𝐴 � EndModZ𝑅 (𝑅 ⊕ 𝑅(−1) ⊕ · · · 𝑅(−(𝑎 − 1))), it is
presented by its full subquiver with vertices {0, 1, . . . , 𝑎 − 1} and with the induced relations.

(2)(3) We follow the construction of d-representation-infinite algebras of type 𝐴 [HIO, Section 5].
Let L be the free Z-module with basis 𝛼1, . . . , 𝛼𝑑 , and set 𝛼0 := −𝛼1 − · · · − 𝛼𝑑 . Let Q be the

quiver with vertices 𝑄0 = 𝐿 and the set of arrows 𝑄1 = {𝑥𝑖 = 𝑥𝑙𝑖 : 𝑙 → 𝑙 + 𝛼𝑖 | 𝑙 ∈ 𝐿, 0 ≤ 𝑖 ≤ 𝑑}.
Moreover, for each 𝑙 ∈ 𝐿 and 0 ≤ 𝑖 < 𝑗 ≤ 𝑑, define the relation 𝑟𝑖 𝑗 = 𝑟 𝑙𝑖 𝑗 = 𝑥𝑖𝑥 𝑗 − 𝑥 𝑗𝑥𝑖 . Then we have a
category L presented by this quiver and relations. We assign for each point 𝑙 =

∑𝑑
𝑖=1 𝑙𝑖𝛼𝑖 ∈ 𝐿 the integer

𝑚(𝑙) =
∑𝑑
𝑖=1 𝑙𝑖𝑎𝑖 .

Now let 𝐵 ⊂ 𝐿 the subgroup consisting of points l in L such that 𝑚(𝑙) is a multiple of a. The
subgroup B has finite index a and acts on L by translation. We then have the orbit category L/𝐵, which
can naturally be identified with an algebra Π presented by the (finite) quiver 𝑄/𝐵 and induced relations
(i.e., identify the vertices and arrows along the action of B and the same for the relations). By [HIO,
Lemma 5.3], Π is isomorphic to the skew group algebra 𝑅 ∗ 𝐺.

Going back to the original quiver Q, we set

𝐶 = {𝑥 : 𝑙 → 𝑙 ′ in 𝑄1 | 𝑚(𝑙) < 𝑛𝑎 ≤ 𝑚(𝑙
′) for some 𝑛 ∈ Z},

which is a periodic and bounding cut in the sense of [HIO, Definitions 5.4, 5.5] and is stable under B.
Then C induces a grading on 𝑄/𝐵, hence on Π by

deg 𝑥 =

{
1 (𝑥 ∈ 𝐶)

0 (𝑥 ∉ 𝐶)
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for each 𝑥 ∈ 𝑄1. Now, by [HIO, Theorem 5.6], Π is the preprojective algebra of its degree 0 part Π0,
and we see that Π0 � 𝐴, since they are presented by the quiver (𝑄/𝐵) \ (𝐶/𝐵) and the commutativity
relations.

(4) We first compute the quiver of B using Lemma 8.7(3). Since R is generated in degree > −𝑎,
the vector space in the lower-left corner of 𝑈/(𝐽𝐴𝑈 + 𝑈𝐽𝐴) is 0. Therefore, the arrows we have to
add are just the ones corresponding to 1 ∈ 𝑅0/𝐽0 = 𝑘 , and the quiver of B is 𝑄. Then there exists a
natural homomorphism 𝑘𝑄 → 𝐵, which sends the relations (i)-(iv) to 0 and thus induces a surjective
homomorphism 𝜑 : 𝑘𝑄/𝐼 → 𝐵, where I is the ideal generated by the relations. We show that 𝜑 is an
isomorphism.

First we give a grading on𝑄 by deg 𝑥𝑖 = 0 and deg 𝑢 = 1 and similarly on 𝐵 = 𝐴⊕𝑈 by deg 𝐴 = 0 and
deg𝑈 = 1. We have seen in (1) that 𝜑 is an isomorphism in degree 0. Also, the relations (iii)(iv) shows
𝑘𝑄/𝐼 is concentrated in degree ≤ 1. To see this, we have to verify 𝑢𝑥𝑖𝑙 · · · 𝑥𝑖1𝑢 = 0 in 𝑘𝑄/𝐼. If 𝑙 > 1, the
source of 𝑥𝑖𝑙 is ≥ 𝑎𝑖1 + · · · + 𝑎𝑖𝑙−1 ≥ 1, so we can use the relation (i) and 𝑢𝑥𝑖𝑙 · · · 𝑥𝑖1𝑢 = 𝑥𝑖𝑙𝑢𝑥𝑖𝑙−1 · · · 𝑥𝑖1𝑢.
By induction, we are reduced to proving 𝑢𝑥𝑖𝑢 = 0, precisely 𝑢 𝑗−1+𝑎𝑖𝑥

𝑗−1
𝑖 𝑢 𝑗 = 0 whenever 𝑗 ≥ 1 and

𝑗 − 1 + 𝑎𝑖 ≤ 𝑎 − 1. When 𝑗 > 1, we can use (i) and (𝑢 𝑗−1+𝑎𝑖𝑥
𝑗−1
𝑖 )𝑢

𝑗 = (𝑥 𝑗−2
𝑖 𝑢 𝑗−1)𝑢 𝑗 , which is 0 by

(iii). Similarly, when 𝑗 − 1 + 𝑎𝑖 < 𝑎 − 1, we have 𝑢 𝑗−1+𝑎𝑖 (𝑥
𝑗−1
𝑖 𝑢 𝑗 ) = 𝑢 𝑗−1+𝑎𝑖 (𝑢 𝑗+𝑎𝑖𝑥

𝑗
𝑖 ) = 0. If 𝑗 = 1 and

𝑗 − 1 + 𝑎𝑖 = 𝑎 − 1, this forces 𝑎𝑖 = 𝑎 − 1, in which case it is nothing but our ‘exceptional’ relation (iv).
Therefore, it remains to consider the degree 1 part. We may truncate by the idempotents; denote by

𝑒𝑖 the idempotent of 𝑘𝑄/𝐼 at vertex i, and we show that the induced map 𝑒 𝑗𝑀𝑒𝑖 → 𝑒 𝑗𝑈𝑒𝑖 , where M is
the degree 1 part of 𝑘𝑄/𝐼, is an isomorphism for each 0 ≤ 𝑖, 𝑗 ≤ 𝑎 − 1.

Now we give another grading on𝑄 defined from that on R: that is, we set deg 𝑥𝑖 = −𝑎𝑖 and deg 𝑢 = 0.
Clearly, each space 𝑒 𝑗𝑀𝑒𝑖 is spanned by the monomials in 𝑥𝑙0, . . . , 𝑥

𝑙
𝑑 , 𝑢

𝑙 of degree −( 𝑗 − 𝑖 + 1), each
of which contains exactly one of the 𝑢𝑙s. We regard each monomial as a word in {𝑥0, . . . , 𝑥𝑑 , 𝑢} by
forgetting the superscripts. We say two monomials are equivalent if the associated words coincide up
to a permutation. We claim that, under the relations, a complete set of representatives of equivalence
classes of monomials actually span 𝑒 𝑗𝑀𝑒𝑖 . It is then clear by comparing the dimensions that 𝜑 is an
isomorphism from 𝑒 𝑗𝑀𝑒𝑖 to 𝑒 𝑗𝑈𝑒𝑖 = 𝑅−( 𝑗−𝑖+1) .

Case 1: (𝑖, 𝑗) ≠ (0, 𝑎 − 1). If 𝑖 ≠ 0, then any path in 𝑒 𝑗𝑀𝑒𝑖 can be written as 𝑝𝑢𝑖 for some
𝑝 ∈ 𝑒 𝑗 (𝑘𝑄)𝑒𝑖−1 under the relation (i), and p is equivalent to a monomial in 𝑥𝑖s of degree −( 𝑗 − 𝑖 + 1) by
the commutativity relations in (1), which shows our claim. Similar argument works for the case 𝑗 ≠ 𝑎−1.

Case 2: (𝑖, 𝑗) = (0, 𝑎 − 1). Let m be a path from 0 to 𝑎 − 1 in 𝑄 containing exactly one u. Since
deg 𝑥𝑖 > −𝑎, the path m has to contain at least 2 of the 𝑥𝑖’s (which is possibly the same). By the relation
(i), we may assume that u is the second arrow in the path m. We have to show that a permutation
of the 𝑥𝑖s appearing in m does not affect m as an element in 𝑘𝑄/𝐼. The assertion for permutations
of the 𝑥𝑖s appearing after u is clear by the commutativity relations in (1), so it remains to prove
𝑥𝑎𝑖−1
𝑗 𝑢𝑎𝑖𝑥0

𝑖 = 𝑥
𝑎 𝑗−1
𝑖 𝑢𝑎 𝑗 𝑥0

𝑗 . If the target 𝑎𝑖 − 1 + 𝑎 𝑗 of this length 3 path is not 𝑎 − 1, the assertion follows
from Case 1 above. If 𝑎𝑖 − 1 + 𝑎 𝑗 = 𝑎 − 1, then this is nothing but the relation (ii). �

Let us first look at the easiest case.
Example 10.3. This is a continuation of Example 4.11. Let 𝑅 = 𝑘 [𝑥, 𝑦] with deg 𝑥 = deg 𝑦 = −1, so R
is 2-CY of a-invariant 2. By Theorem 5.2, 𝑅dg is twisted 4-CY. As we have seen in Example 4.11, we
have an equivalence D𝑏 (qgr 𝑅) � D𝑏 (mod 𝐴) with A the Kronecker algebra, and its AR translation 𝜈1
has a square root. On the other hand, the Iwanaga-Gorenstein algebra B is presented by the following
quiver with relations:

0
𝑥 ��
𝑦

�� 1

𝑢

��
, 𝑥𝑢𝑦 = 𝑦𝑢𝑥, 𝑢𝑥𝑢 = 𝑢𝑦𝑢 = 0.

By equation (8.3), there are equivalences

D𝑏 (mod 𝐴)/𝜈−1/2
1 [1] � Dsg (𝐵) � C(𝑅dg)

https://doi.org/10.1017/fms.2022.30 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.30


38 N. Hanihara

of twisted 3-CY categories; note that the embedding from D𝑏 (mod 𝐴)/𝜈−1/2
1 [1] is dense by [Ke2,

Theorem 1]. Using the description as an orbit category, we can classify the objects in C(𝑅dg) or Dsg (𝐵),
which we leave to the reader.

We look at a higher-dimensional case.

Example 10.4. Assume 𝑑 > 1, and let 𝑅 = 𝑘 [𝑥0, 𝑥1, . . . , 𝑥𝑑] with deg 𝑥0 = · · · = deg 𝑥𝑑 = −1. Then R
is (𝑑 + 1)-CY of a-invariant 𝑑 + 1; thus, by Theorem 5.2, 𝑅dg is sign-twisted (2𝑑 + 2)-CY. It is well-
known that qgr 𝑅 is equivalent to the category coh P𝑑 of coherent sheaves over the projective space P𝑑 .
The tilting object in D𝑏 (qgr 𝑅) given in Proposition 4.9 is the tilting bundle 𝑇 =

⊕𝑑
𝑙=0 OP𝑑 (𝑙) on P𝑑 ,

whose endomorphism ring A is the d-Beilinson algebra. It is presented by the following quiver (with
𝑑 + 1 arrows between the vertices) and the commutativity relations:

𝐴 = 0
𝑥0 ��

···

𝑥𝑑
�� 1

𝑥0 ��
···

𝑥𝑑
�� · · ·

𝑥0 ��

···

𝑥𝑑
�� 𝑑 , 𝑥𝑖𝑥 𝑗 = 𝑥 𝑗𝑥𝑖 .

The category add{𝑅(−𝑖) | 𝑖 ∈ Z} = add{O(𝑖) | 𝑖 ∈ Z} = add{𝜈−𝑖𝑑 𝐴 | 𝑖 ∈ Z} (which are identified via
the equivalence D𝑏 (qgr 𝑅) � D𝑏 (coh P𝑑) � D𝑏 (mod 𝐴)) is presented by the following quiver:
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· · ·



�
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··· 

�
��
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···
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· · ·

��
···
��

𝑅

��
···
��

𝑅(−𝑑 − 1)

��
···
��

.

The autoequivalence 𝜈−1/(𝑑+1)
𝑑 on D𝑏 (mod 𝐴) acts on this subcategory by ‘moving one place’ along

the d-fold arrows. On the other hand, the Iwanaga-Gorenstein algebra 𝐵 = 𝐴 ⊕ 𝑈 is presented by the
following quiver with relations:

0
𝑥0 ��

···

𝑥𝑑
�� 1

𝑥0 ��

···

𝑥𝑑
��

𝑢

��
· · ·

𝑢

�� 𝑥0 ��

···

𝑥𝑑
�� 𝑑

𝑢

��
, 𝑢𝑥𝑖 = 𝑥𝑖𝑢, 𝑢2 = 0.

This is a truncation of 𝑇𝐴𝑈 = 𝐴 ⊕ 𝑈 ⊕ 𝑈2 ⊕ · · · , which is the endomorphism ring of a tilting object
𝜋∗𝑇 over the total space of the line bundle 𝜋 : O(−1) → P𝑑 (see, e.g., the computation in [W, Example
4.12], which carries over to P𝑑). Applying equation (8.3), we have an embedding and an equivalence

D𝑏 (mod 𝐴)/𝜈−1/(𝑑+1)
𝑑 [1] ↩→ Dsg (𝐵) � C(𝑅dg).

11. Examples: Jacobian algebras arising from dimer models

A dimer model is a finite bipartite graph Γ on a real 2-torus inducing a polygonal cell decomposition.
Being bipartite, we can color the vertices of Γ black and white so that each edge connects a black
vertex to a white vertex. We denote by Γ0, (respectively, Γ1, Γ2) the set of vertices (respectively, edges,
faces) of Γ. It gives rise to a quiver with potential (𝑄,𝑊) in the sense of [DWZ] in the following way.
Let Q denote the dual quiver of Γ; thus the set of vertices 𝑄0 (respectively, arrows 𝑄1) corresponds
bijectively to Γ2 (respectively, Γ1). By convention, the arrows of Q see white vertices of Γ on the right.
Then for each vertex v of Γ, there is a unique cycle 𝑐𝑣 of Q consisting of arrows corresponding to
the edges of Γ that are adjacent to v. Now define the potential by 𝑊 =

∑
𝑣 : white 𝑐𝑣 −

∑
𝑣 : black 𝑐𝑣 . We

then obtain the Jacobian algebra associated to the quiver with potential (𝑄,𝑊): that is, the algebra
𝑘𝑄/(𝜕𝑎𝑊 | 𝑎 ∈ 𝑄1), where 𝜕𝑎 denotes the cyclic derivative [DWZ, Definition 3.1] with respect to the
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arrow a. Thus for each edge in Γ connecting vertices x and y with the corresponding arrow 𝑎 ∈ 𝑄1, we
have a relation 𝜕𝑎𝑐𝑥 = 𝜕𝑎𝑐𝑦 (see [Bro, Remark 2.3]).

We assume that Γ is consistent in the sense that there exists a map R: Γ1 → R>0 such that

◦ ∑
𝑣 ∈𝜕𝑎 R(𝑎) = 2 for all 𝑣 ∈ Γ0, where the sum runs over 𝑎 ∈ Γ1 adjacent to v;

◦ ∑
𝑎∈𝜕 𝑓 (1 − R(𝑎)) = 2 for all 𝑓 ∈ Γ2, where the sum runs over 𝑎 ∈ Γ1 in the boundary of f.

We refer to [Boc2] for equivalence of various consistency conditions.
Fix a map

𝑑 : 𝑄1 = Γ1 −→ Z (11.1)

such that
∑
𝑣 ∈𝜕𝑎 𝑑 (𝑎) is a constant l for all 𝑣 ∈ Γ0. Such maps are typically given by perfect matchings

on Γ. Recall that a perfect matching on a graph is a set of its edges such that each vertex is contained in
precisely one edge in the set. It is known that the consistency condition ensures the existence of perfect
matchings [Bro, Section 2.3]. We can identify a perfect matching P on Γ with a map 𝑑 : Γ1 → {0, 1}
such that

∑
𝑣 ∈𝜕𝑎 𝑑 (𝑎) = 1 for all 𝑣 ∈ Γ0 by setting 𝑑 (𝑎) = 1 if and only if 𝑎 ∈ 𝑃. Consequently, any

Z-linear combination of perfect matchings gives a function satisfying equation (11.1).

Proposition 11.1 (See [Bro, Theorem 7.7], [AIR, Proposition 6.1]). Let Γ be a consistent dimer model,
and let d be a map in equation (11.1) such that

∑
𝑣 ∈𝜕𝑎 𝑑 (𝑎) = 𝑙 for all 𝑣 ∈ Γ0. Then d gives a grading

on the Jacobian algebra making it into a bimodule 3-CY algebra of a-invariant −𝑙.

Proof. Give a grading on the quiver Q by setting deg 𝑎 = 𝑑 (𝑎) for 𝑎 ∈ 𝑄1. Then the potential W is
homogeneous of degree l; thus d induces a grading on the Jacobian algebra R. Consider the complex

𝑃 :
⊕
𝑖∈𝑄0

𝑅𝑒𝑖 ⊗ 𝑒𝑖𝑅
𝑑3 ��

⊕
𝑎∈𝑄1

𝑅𝑒𝑠 (𝑎) ⊗ 𝑒𝑡 (𝑎)𝑅
𝑑2 ��

⊕
𝑎∈𝑄1

𝑅𝑒𝑡 (𝑎) ⊗ 𝑒𝑠 (𝑎)𝑅
𝑑1 ��

⊕
𝑖∈𝑄0

𝑅𝑒𝑖 ⊗ 𝑒𝑖𝑅

with maps

𝑑1(𝑒𝑡 (𝑎) ⊗ 𝑒𝑠 (𝑎) ) = 𝑎 ⊗ 𝑒𝑠 (𝑎) − 𝑒𝑡 (𝑎) ⊗ 𝑎

𝑑2(𝑒𝑠 (𝑎) ⊗ 𝑒𝑡 (𝑎) ) =
∑
𝑏∈𝑄1

𝑝 ⊗ 𝑞 for each cycle 𝑎𝑝𝑏𝑞 in𝑊

𝑑3(𝑒𝑖 ⊗ 𝑒𝑖) =
∑
𝑡 (𝑎)=𝑖

𝑎 ⊗ 𝑒𝑖 −
∑
𝑠 (𝑎)=𝑖

𝑒𝑖 ⊗ 𝑎.

By [Bro, Theorem 7.7], this complex P together with the multiplication map
⊕

𝑖∈𝑄0
𝑅𝑒𝑖 ⊗ 𝑒𝑖𝑅 → 𝑅

gives a bimodule projective resolution of R such that Hom𝑅 (𝑃, 𝑅) [3] � 𝑃 in C𝑏 (proj 𝑅𝑒), making it
into a 3-CY algebra. Now, since each of the summands

◦ 𝑅𝑒𝑡 (𝑎) ⊗ 𝑒𝑠 (𝑎)𝑅 → 𝑅𝑒𝑖 ⊗ 𝑒𝑖𝑅 of 𝑑1 has degree 𝑑 (𝑎),
◦ 𝑅𝑒𝑡 (𝑏) ⊗ 𝑒𝑠 (𝑏)𝑅 → 𝑅𝑒𝑡 (𝑎) ⊗ 𝑒𝑠 (𝑎)𝑅 of 𝑑2 has degree 𝑙 − 𝑑 (𝑎) − 𝑑 (𝑏) since the potential is

homogeneous of degree l, and
◦ 𝑅𝑒𝑖 ⊗ 𝑒𝑖𝑅 → 𝑅𝑒𝑡 (𝑏) ⊗ 𝑒𝑠 (𝑏)𝑅 of 𝑑3 has degree 𝑑 (𝑏),

we deduce that R is graded bimodule 3-CY of a-invariant −𝑙. �
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Example 11.2. Let Γ be a dimer model as in the left picture below, where the vertical and horizontal
ends are identified so that it has four faces that are labeled by 1, 2, 3 and 4. It gives a 3-CY algebra R
presented by the quiver in the right-hand picture:

1
2 ◦

������
•

������

3 2
• ◦

1 4
◦ • 1

2
������

������ ,

1
𝑎

����
��
�

2

𝑝 ��

𝑟

��

◦

�
�

� �����

�

� •

�
�

�

�

�
3𝑦2

��
𝑥2 �� 2

𝑞��

𝑟

��

�� • �����

�

� ◦ ��

�

�
1 𝑥1 �� 4

𝑏

��

𝑐
��

◦ ����� • 1
𝑦1

		

2𝑞

��

𝑝

���
�

�

�
�

�

Now we consider the grading d in equation (11.1). We discuss two variations.
(1) First we consider the grading below. The labels on the edges show the values under d, and

unlabeled ones have degree 0; thus it is a perfect matching. This grading makes R into a bimodule 3-CY
algebra of a-invariant 1; thus 𝐴 = 𝑅0 and 𝐵 = 𝑅≥−1 are given by quivers below. The relations for B are
given by that for R (induced by the potential) and 𝑅2

−1 = 0.

1
2 ◦

−1��

���

•

−1��

���

3 2
−1 • ◦ −1

1 4
◦ • 1

2−1���

��
−1���

��

,

1
𝑥1 ��
𝑦1

��

𝑎

��

4

𝑐

��
𝑏
��
��

����
��

𝐴 = 𝑦2𝑎 = 𝑐𝑦1, 𝑥2𝑎 = 𝑐𝑥1, 𝑥2𝑏𝑦1 = 𝑦2𝑏𝑥1.

3
𝑥2 ��
𝑦2

�� 2

1 �� ��

��

4

������
��
��
��
�

𝐵 =

3 �� �� 2

�����������

�����������

�����������

The algebra A is 2-representation infinite by Proposition 4.9. It is the endomorphism ring of a tilting
bundle T on the Hirzebruch surface Σ1 = P(OP1 ⊕ OP1 (−1)), which is the blow-up of P2 at one
point as well (see [Ki, Section 6, Section 8]). Also, R is the 3-preprojective algebra of A, which is the
endomorphism ring of a tilting bundle 𝜋∗𝑇 on the total space of the canonical bundle 𝜋 : 𝜔 → Σ1 over
Σ1 (see [BH, Theorem 3]). Now the DG algebra 𝑅dg is 4-CY by Theorem 5.2, and applying Corollary
9.8, we have triangle equivalences

Dsg (𝐵) � C3 (𝐴) � C(𝑅dg).

(2) We next consider the grading below; again the non-zero degree of each edge is labeled. This is
not given by a perfect matching (but by a sum of two perfect matchings) and makes R into a bimodule

3-CY algebra of a-invariant 2. In this case, the 2-representation infinite algebra 𝐴 =

(
𝑅0 0
𝑅−1 𝑅0

)
and the
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2-Iwanaga-Gorenstein algebra 𝐵 = 𝐴 ⊕ 𝑈 with𝑈 =

(
𝑅−1 𝑅0
𝑅−2 𝑅−1

)
are presented as follows:

1
2 ◦

−2��

���

•

−2��

���

3 2
−1 • −1 ◦ −1

1 4
◦ • 1

2−2���

��
−2���

��

,

1 �� ��

𝐴 =
��

4



�
��

��
��

��

1′

��

���� 4′

��
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����������
3′ ���� 2′

1 ����
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4



�
��

��
��

��

1′

��

������ 4′

��

��

3 ���� 2

��     

3′ ����!! 2′""

Here, the arrows 4 → 3′ and 2 → 1′ in the quiver of A are given by a and r, respectively. Also, in
the quiver of B, the two additional arrows 2 → 1′ are 𝑝, 𝑞 ∈ 𝑅2, and 𝑖′ → 𝑖 for 1 ≤ 𝑖 ≤ 4 are the
idempotents from 𝑅0.

Applying our results, the DG algebra 𝑅dg is sign twisted 5-CY, and there exist an embedding and a
triangle equivalence

D𝑏 (mod 𝐴)/𝜈−1/2
2 [1] ↩→ Dsg(𝐵) � C(𝑅dg).

A. Multiplying gradings

Let R be a graded ring. For a fixed integer 𝑛 ≥ 1, define the graded ring 𝑛𝑅 by

(𝑛𝑅)𝑖 =

{
𝑅𝑖/𝑛 if 𝑛 | 𝑖
0 if 𝑛 � | 𝑖

.

If R is twisted bimodule (𝑑 + 1)-CY of a-invariant a, then clearly 𝑛𝑅 is twisted bimodule (𝑑 + 1)-CY of
a-invariant 𝑛𝑎. Although the category qperZ𝑛𝑅 just splits as a direct product of n copies of qperZ𝑅 and
yields nothing new, the cluster category C(𝑛𝑅dg), being a triangulated hull of qperZ𝑛𝑅/(−1) [1], becomes
‘connected’ by the action of the automorphism (−1) [1], which yields something new.

The aim of this section is to describe the category C(𝑛𝑅dg) in terms of the relevant objects from R.
Although this can be regarded as a special case of our main results, we shall obtain a better presentation
of orbit categories.

Let 𝑑 ≥ 0, and let R be a negatively graded twisted bimodule (𝑑 + 1)-CY algebra of a-invariant
a with Nakayama automorphism 𝛼, such that each 𝑅𝑖 is finite dimensional. Recall the definitions of
the d-representation infinite algebra 𝐴 = 𝐴(𝑅), the cotilting bimodule 𝑈 = 𝑈 (𝑅) and the d-Iwanaga-
Gorenstein algebra 𝐵 = 𝐵(𝑅) from equation (8.2). Assuming (−)𝛼 � 1 on qperZ𝑅, we have the following
description of C(𝑛𝑅dg) in terms of A, which generalises Theorem 6.1 and Corollary 6.2.

Theorem A.1. There exists a fully faithful functor

D𝑏 (mod 𝐴)/𝜈−1/𝑎
𝑑 [𝑛] = qperZ𝑅/(−1) [𝑛] �� C(𝑛𝑅dg)

whose image generates C(𝑛𝑅dg) as a triangulated subcategory.
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Let the d-representation infinite algebra 𝐴 = 𝐴(𝑛𝑅), the cotilting (𝐴, 𝐴)-bimodule 𝑈 = 𝑈 (𝑛𝑅) and
the d-Iwanaga-Gorenstein algebra 𝐵 = 𝐵(𝑛𝑅) be as given in equation (8.2) for 𝑛𝑅; thus we have

𝐴 =

������
𝐴 0 · · · 0
0 𝐴 · · · 0
...
...
. . .

...
0 0 · · · 𝐴

������
� 𝐴 × · · · × 𝐴, 𝑈 =

������
0 𝐴 · · · 0
...
...
. . .

...
0 0 · · · 𝐴
𝑈 0 · · · 0

������
, 𝐵 = 𝐴 ⊕ 𝑈. (A.1)

Then we also have the consequence in terms of singularity category of 𝐵.

Corollary A.2. There exists a fully faithful functor

D𝑏 (mod 𝐴)/𝜈−1/𝑎
𝑑 [𝑛] �� Dsg (𝐵)

whose image generates Dsg (𝐵) as a triangulated subcategory.

Now we start the proof. The first step is to apply our results in Section 6 for the twisted CY algebra
𝑛𝑅. The assumption (−)𝛼 � 1 on qperZ𝑅 implies that the same isomorphism (−)𝛼 � 1 holds on qperZ𝑛𝑅,
so by Corollary 4.10, the d-AR translation 𝜈𝑑 on D𝑏 (mod 𝐴) has an 𝑛𝑎th root, and by Theorem 6.1 and
Corollary 6.2, we have an equivalence and an embedding

D𝑏 (mod 𝐴)/𝜈−1/𝑛𝑎
𝑑 [1] � qperZ𝑛𝑅/(−1) [1] ↩→ C(𝑛𝑅dg). (A.2)

We next compare the derived orbit categories of 𝑛𝑅 (respectively, 𝐴) and R (respectively, A). Obviously
there is a diagram of equivalences and compatible autoequivalences

(−1) �� qperZ𝑛𝑅

� ��

qperZ𝑅 × · · · × qperZ𝑅

�

��
𝜈−1/𝑛𝑎
𝑑 �� D𝑏 (mod 𝐴) D𝑏 (mod 𝐴) × · · · ×D𝑏 (mod 𝐴).

We describe the action of these autoequivalences on the right-hand side.

Lemma A.3.

1. The action of (−1) on qperZ𝑛𝑅 becomes (𝑋1, . . . , 𝑋𝑛) ↦→ (𝑋𝑛 (−1), 𝑋1, . . . , 𝑋𝑛−1) on qperZ𝑅 × · · · ×
qperZ𝑅.

2. The action of 𝜈−1/𝑛𝑎
𝑑 on D𝑏 (mod 𝐴) is (𝑋1, . . . , 𝑋𝑛) ↦→ (𝜈

−1/𝑎
𝑑 𝑋𝑛, 𝑋1, . . . , 𝑋𝑛−1) on D𝑏 (mod 𝐴) ×

· · · ×D𝑏 (mod 𝐴).

Proof. We only prove (2); the proof of (1) is similar. By the equation (A.1) form of 𝑈, we see that
−⊗L

𝐴
𝑈 maps (𝑋1, . . . , 𝑋𝑛) to (𝑋𝑛 ⊗L

𝐴𝑈, 𝑋1, . . . , 𝑋𝑛−1). �

We next relate the orbit categories arising from R and 𝑛𝑅.

Lemma A.4.

1. The functor qperZ𝑅 → qperZ𝑛𝑅 given by 𝑋 ↦→ (𝑋, 0, . . . , 0) induces an equivalence

qperZ𝑅/(−1) [𝑛] �−→ qperZ𝑛𝑅/(−1) [1] .

2. The functor D𝑏 (mod 𝐴) → D𝑏 (mod 𝐴) given by 𝑋 ↦→ (𝑋, 0, . . . , 0) induces an equivalence

D𝑏 (mod 𝐴)/𝜈−1/𝑎
𝑑 [𝑛]

�
−→ D𝑏 (mod 𝐴)/𝜈−1/𝑛𝑎

𝑑 [1] .
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Proof. Again, we only prove (2). We first want to show that there is a natural isomorphism⊕
𝑙∈Z

HomD(𝐴) (𝑋, (𝜈
−1/𝑎
𝑑 [𝑛])𝑙𝑌 ) ��

⊕
𝑙∈Z

HomD(𝐴) (𝐹𝑋, (𝜈
−1/𝑛𝑎
𝑑 [1])𝑙𝐹𝑌 ) ,

where 𝐹𝑋 = (𝑋, 0, . . . , 0). Since 𝐹 (𝜈−1/𝑎
𝑑 𝑌 [𝑛]) = (𝜈−1/𝑛𝑎

𝑑 [1])𝑛𝐹 (𝑌 ) and
HomD(𝐴) (𝐹𝑋, (𝜈

−1/𝑛𝑎
𝑑 [1])𝑙𝐹𝑌 ) = 0 unless 𝑛 | 𝑙 by Lemma A.3, we have a natural bijection.

We next verify that the functor is dense. Note that (0, . . . , 𝑋𝑖 , . . . , 0) � (𝑋𝑖 [−𝑖 +1], 0 . . . , 0) in the orbit
category D𝑏 (𝐴)/𝜈−1/𝑛𝑎

𝑑 [1]. Therefore,
⊕𝑛

𝑖=1 𝑋𝑖 [−𝑖 + 1] ∈ D𝑏 (𝐴) is mapped to (𝑋1, . . . , 𝑋𝑛). �

We now have our desired results.

Proof of Theorem A.1 and Corollary A.2. We have Theorem A.1 by equation (A.2) and Lemma A.4.
Then Corollary A.2 follows by Theorem 6.4. �

Let us demonstrate the difference of C(𝑅dg) and C(𝑛𝑅dg).

Example A.5. This is a generalization of Example 6.5, which is still almost trivial. Let

𝑅 = 𝑘 [𝑥], deg 𝑥 = −1,

which is bimodule 1-CY of a-invariant 1. Then we have 𝐴 = 𝑘 and𝑈 = 𝑘 . Now fix 𝑛 ≥ 1, and consider
the graded algebra 𝑛𝑅. We have

𝐴 =

������
𝑘 0 · · · 0
0 𝑘 · · · 0
...
...
. . .

...
0 0 · · · 𝑘

������
, 𝑈 =

������
0 𝑘 · · · 0
...
...
. . .

...
0 0 · · · 𝑘
𝑘 0 · · · 0

������
,

thus 𝐵 = 𝐴 ⊕ 𝑈 is the self-injective Nakayama algebra with n vertices and of Loewy length 2. By
Theorem A.1 and Corollary A.2, we have equivalences of triangulated categories

D𝑏 (mod 𝑘)/[𝑛] � C(𝑛𝑅dg) � Dsg (𝐵),

which is the n-cluster category of k.

Example A.6. This is a generalization of Example 6.6. As in Examples 4.13, 5.10 and 6.6, let

𝑅 = 𝑘〈𝑥1, . . . , 𝑥𝑚〉/(𝑥
2
1 + · · · + 𝑥

2
𝑚), deg 𝑥𝑖 = −1,

which is twisted 2-CY of a-invariant 2, the DG algebra 𝑅dg is 4-CY, and the 1-representation infinite
algebra A is the path algebra 𝑘𝑄𝑚 of the m-Kronecker quiver 𝑄𝑚.

Now we consider the cluster category C(𝑛𝑅dg). The algebra 𝐴 is just the n copies of 𝐴 = 𝑘𝑄𝑚, and
the 1-Iwanaga-Gorenstein algebra 𝐵 is presented by the following quiver with relations:

◦

𝑚
�##

◦
𝑣		

𝑚
�##

· · ·
𝑣		 ◦

𝑣		

𝑚
�##

◦

𝑢�����������

$$�����������

◦𝑣
		 · · ·𝑣

		 ◦𝑣
		

,

𝑥𝑖𝑣 = 𝑣𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑚), 𝑣2 = 0, 𝑢𝑣 = 𝑣𝑢 = 0

∑𝑚
𝑖=1 𝑥𝑖𝑢𝑥𝑖 = 0,

where we have denoted by 𝑥1, . . . , 𝑥𝑚 the m-fold arrows. By Theorem A.1, we obtain triangle equiva-
lences

D𝑏 (mod 𝑘𝑄𝑚)/𝜈−1/2
1 [𝑛] � Dsg (𝐵) � C(𝑛𝑅dg)
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since the orbit category is already triangulated [Ke2, Theorem 1]. Similarly to Example 6.6 and Remark
6.7, these are precisely the (2𝑛 + 1)-CY triangulated category in [KMV, Remark 3.4.5].

B. t-structure in D𝑏 (modZ𝑅)

We give a version of Theorem 3.1 for the derived category D𝑏 (modZ𝑅) for graded coherent rings, as
announced in Remark 3.2. Let R be a negatively graded, graded coherent ring. Then the category modZ𝑅
of finitely presented graded R-modules is abelian. We impose the following technical assumption.

(R3) The ideal 𝑅≤𝑖 is finitely generated as a right R-module for each 𝑖 ≤ 0.

Note that this is automatic when R is Noetherian.

Lemma B.1. Let R be a negatively graded ring satisfying (R3), and let X be a finitely presented graded
R-module. Then the truncation 𝑋>𝑖 is finitely presented for each 𝑖 ∈ Z.

Proof. Let 𝑃1 → 𝑃0 → 𝑋 → 0 be a finite presentation of X, and consider its truncation (−)>𝑖 . Since
the (𝑃0)>𝑖 and (𝑃1)>𝑖 are finitely presented by the assumption (R3), so is 𝑋>𝑖 . �

Theorem B.2 (compare Theorem 3.1). Let R be a negatively graded, graded coherent ring satisfying
(R3). Set

𝑡≤0 = {𝑋 ∈ D𝑏 (modZ𝑅) | 𝐻𝑖 (𝑋) ∈ mod≤−𝑖𝑅 for all 𝑖 ∈ Z},

𝑡≥0 = {𝑋 ∈ D𝑏 (modZ𝑅) | 𝐻𝑖 (𝑋) ∈ mod≥−𝑖𝑅 for all 𝑖 ∈ Z}.

Then (𝑡≤0, 𝑡≥0) is a t-structure in D𝑏 (modZ𝑅).

We give two independent proofs. The first one is a short proof using silting theory and DG categories.
For the sake of readers who are not familiar with these, we include the second direct proof.

B.1. The first proof

Recall from Lemma 3.4 that we have a t-structure (D≤0
M,D

≥0
M) in the big derived category D :=

D(ModZ𝑅), which is given by

D≤0
M = {𝑋 ∈ D(ModZ𝑅) | 𝐻𝑖 (𝑋) ∈ Mod≤−𝑖𝑅 for all 𝑖 ∈ Z},

D≥0
M = {𝑋 ∈ D(ModZ𝑅) | 𝐻𝑖 (𝑋) ∈ Mod≥−𝑖𝑅 for all 𝑖 ∈ Z}.

As in Section 3, we show that the t-structure (D≤0
M,D

≥0
M) above on D restricts to that on D𝑏 (modZ𝑅).

Proof of Theorem B.2. Since R is right-graded coherent, the small derived category D𝑏 (modZ𝑅) iden-
tifies with the thick subcategory of D consisting of complexes with bounded and finitely presented
cohomologies. Let 𝑋 ∈ D𝑏 (modZ𝑅), and consider the truncation triangle 𝑋 ′ → 𝑋 → 𝑋 ′′ → 𝑋 ′ [1] in
D. Since X has bounded cohomology, so do 𝑋 ′ and 𝑋 ′′ by Lemma 3.5(1). Moreover, since each 𝐻𝑖𝑋 is
finitely presented, so are 𝐻𝑖𝑋 ′ and 𝐻𝑖𝑋 ′′ by Lemma 3.5(2) and Lemma B.1. Therefore, the t-structure
in the big derived category restricts to that of the small one, which is precisely (𝑡≤0, 𝑡≥0). �

B.2. The second proof

We turn to the second direct proof. In this subsection we will use D for the small derived category
D𝑏 (modZ𝑅). We need several lemmas for the proof. Put, as usual, 𝑡≤𝑛 = 𝑡≤0 [−𝑛] and 𝑡≥𝑛 = 𝑡≥0 [−𝑛].
The first one is obvious.
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Proposition B.3. We have 𝑡≤−1 ⊂ 𝑡≤0 and 𝑡≥1 ⊂ 𝑡≥0.

The following easy observations will be useful.

Lemma B.4. Let A be an abelian category with enough projectives P. Let 𝑃 ∈ K−(P), 𝑋 ∈ D𝑏 (A),
and suppose that HomA(𝑃

𝑖 , 𝐻𝑖 (𝑋)) = 0 for all 𝑖 ∈ Z. Then HomD(A) (𝑃, 𝑋) = 0.

Proof. We may assume by induction on the length of X that 𝑋 ∈ A. Then we have HomD(A) (𝑃, 𝑋) =
HomK(A) (𝑃, 𝑋) � HomC(A) (𝑃, 𝑋) ⊂ HomA (𝑃

0, 𝑋) = 0. �

Lemma B.5. Let 𝑋 ∈ 𝑡≤0. Then there exists a quasi-isomorphism 𝑃 → 𝑋 such that each term 𝑃𝑖 ∈
add{𝑅( 𝑗) | 𝑗 ≥ 𝑖} for each 𝑖 ∈ Z.

Proof. This can be seen by recalling the construction of a quasi-isomorphism 𝑃 → 𝑋 . We denote
𝐵𝑛 = Im(𝑋𝑛−1 → 𝑋𝑛) and 𝐶𝑛 = Coker(𝑋𝑛−1 → 𝑋𝑛). We start with 𝐶 = 𝐶𝑚 for the largest m such that
𝑋𝑚 ≠ 0, 𝑃𝑚 → 𝐶 a surjection from a projective, and lift it to 𝑃𝑚 → 𝑋𝑚. Suppose we have constructed
such P for degree ≥ 𝑛. As in the diagram below, let 𝐵 = Ker(𝑃𝑛 → 𝐶), A the pull-back, 𝑃𝑛−1 → 𝐴 a
surjection from a projective, and lift it to 𝑃𝑛−1 → 𝑋𝑛−1:

𝑃𝑛−1 ����������

���
�
�
�
�

�� ���
�� 𝑃𝑛 ��

��

%% %%�
��

�

𝐴

���
�
�
�
�

�� ����

PB

𝐵
��

���
�

���
�
�
�
� 𝐶

��

�� ��

𝑋𝑛−1

&& &&��
��

�� 𝑋𝑛 ��

'' ''�
���

𝐶𝑛−1 �� �� 𝐵𝑛
((
((���

𝐶𝑛 �� �� .

Then 𝐵 ∈ mod≤−𝑛 𝑅 since it is a subset of 𝑃𝑛 and 𝑃𝑛 ∈ add{𝑅(𝑖) | 𝑖 ≥ 𝑛}. Also, since there exists
an exact sequence 0 → 𝐻𝑛−1(𝑋) → 𝐴 → 𝐵 → 0 and 𝐻𝑛−1 (𝑋) ∈ mod≤−𝑛+1 𝑅 by 𝑋 ∈ 𝑡≤0, we have
𝐴 ∈ mod≤−𝑛+1 𝑅. Therefore, we can take its projective cover 𝑃𝑛−1 ∈ add{𝑅(𝑖) | 𝑖 ≥ 𝑛 − 1}. �

These observations yield the following:

Proposition B.6. We have HomD (𝑋,𝑌 ) = 0 for all 𝑋 ∈ 𝑡≤0 and 𝑌 ∈ 𝑡≥1.

Proof. Take a projective resolution 𝑃 → 𝑋 in Lemma B.5. On the other hand, we have 𝐻𝑖 (𝑌 ) ∈
mod>−𝑖 𝑅 for each 𝑖 ∈ Z. Therefore, we deduce HomD (𝑋,𝑌 ) = HomD(𝑃,𝑌 ) = 0 by Lemma B.4. �

We now give a final observation.

Proposition B.7. For any 𝑋 ∈ D, there exists a triangle 𝑋 ′ → 𝑋 → 𝑋 ′′ → 𝑋 ′ [1] in D with 𝑋 ′ ∈ 𝑡≤0

and 𝑋 ′′ ∈ 𝑡≥1.

Proof. We proceed by induction on 𝑤(𝑋) = max{𝑖 ∈ Z | 𝐻𝑖 (𝑋) ≠ 0} −min{𝑖 ∈ Z | 𝐻𝑖 (𝑋) ≠ 0}.
If 𝑤(𝑋) = 0, then 𝑋 � 𝑌 [𝑛] for some 𝑌 ∈ modZ𝑅 and 𝑛 ∈ Z. In this case, truncating the graded

module Y as 0 → 𝑌≤𝑛 → 𝑌 → 𝑌>𝑛 → 0 in modZ𝑅 and shifting by [−𝑛] yields a desired triangle by
Lemma B.1.

https://doi.org/10.1017/fms.2022.30 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.30


46 N. Hanihara

If 𝑤(𝑋) > 0, there exists 𝑛 ∈ Z such that in the truncation 𝑋 ≤𝑛 → 𝑋 → 𝑋>𝑛 → 𝑋 ≤𝑛 [1] of X
with respect to (the shift of) the standard t-structure (D≤𝑛,D≥𝑛), one has 𝑤(𝑌 ), 𝑤(𝑍) < 𝑤(𝑋), where
𝑌 := 𝑋 ≤𝑛 and 𝑍 := 𝑋>𝑛. By induction hypothesis, there exist triangles 𝑌 ′ → 𝑌 → 𝑌 ′′ → 𝑌 ′ [1] and
𝑍 ′ → 𝑍 → 𝑍 ′′ → 𝑍 ′ [1] such that 𝑌 ′, 𝑍 ′ ∈ 𝑡≤0 and 𝑌 ′′, 𝑍 ′′ ∈ 𝑡≥1; thus the diagram below:

𝑍 ′ [−1] ��

���
�
� 𝑍 [−1] ��

��

𝑍 ′′ [−1] ��

���
�
� 𝑍 ′

���
�
�

𝑌 ′ �� 𝑌 ��

��

𝑌 ′′ �� 𝑌 ′ [1]

𝑋

��
𝑍 ′ �� 𝑍 �� 𝑍 ′′ �� 𝑍 ′ [1] .

We claim that HomD (𝑍
′ [−1], 𝑌 ′′) = 0. This allows us to complete the morphism 𝑍 [−1] → 𝑌 to a

morphism of triangles as in the dashed line above, thus the diagram above to a 3×3 diagram of triangles
by [BBD, Proposition 1.1.11]. We then have a triangle 𝑋 ′ → 𝑋 → 𝑋 ′′ → 𝑋 ′ [1] in the third row, which
is a desired one since the first and the third column are triangles and 𝑡≤0 and 𝑡≥0 are extension-closed.

We now prove the claim. By Lemma 3.5, any triangle𝑊 ′ → 𝑊 → 𝑊 ′′ → 𝑊 ′[1] in D with𝑊 ′ ∈ 𝑡≤0

and𝑊 ′′ ∈ 𝑡≥1 yields a short exact sequence

0 �� 𝐻𝑖 (𝑊 ′) �� 𝐻𝑖 (𝑊) �� 𝐻𝑖 (𝑊 ′′) �� 0

in modZ𝑅 for all 𝑖 ∈ Z. In particular, 𝑊 ′,𝑊 ′′ ∈ D≤𝑛 (respectively, ∈ D≥𝑛) if and only if 𝑊 ∈ D≤𝑛
(respectively, ∈ D≥𝑛). Now apply the above argument to 𝑍 ′ → 𝑍 → 𝑍 ′′ → 𝑍 ′ [1], which shows
𝑍 ′ ∈ D≥𝑛+1, hence 𝑍 ′ [−1] ∈ 𝑡≤1 ∩D≥𝑛+2. Therefore, 𝐻𝑖 (𝑍 ′ [−1]) ∈ mod≤−𝑛−1 𝑅 for all 𝑖 ∈ Z since it
is 0 for 𝑖 ≤ 𝑛 + 1 and is in mod≤−𝑖+1 𝑅 for 𝑖 ≥ 𝑛 + 2. Similarly, we have 𝐻𝑖 (𝑌 ′′) ∈ mod≥−𝑛+1 𝑅 for all i
since 𝑌 ′′ ∈ D≤𝑛 ∩ 𝑡≥1. Now R is negatively graded, so there is a quasi-isomorphism 𝑃→ 𝑍 ′ [−1] with
P consisting of projective modules such that each term is concentrated in degree ≤ −𝑛 − 1. Therefore,
HomD (𝑍

′ [−1], 𝑌 ′′) = HomK(ModZ𝑅) (𝑃,𝑌
′′) = 0, as desired. �

Now Theorem B.2 is a consequence of Propositions B.3, B.6 and B.7.

C. Proof of Proposition 4.9

In this section, we give a proof of Minamoto–Mori’s equivalence [MM] based on Theorem 4.6. The
main tool is the realization of the Verdier quotient as a subcategory given in Theorem 4.6(3).

We need the following computation of morphism in qperZ𝑅, which is not covered by Theorem 4.6(3).
Note that when R is graded coherent, this is clear from the standard t-structure on qperZ𝑅 = D𝑏 (qgr 𝑅).

Lemma C.1. Let 𝑋,𝑌 ∈ ModZ𝑅, which are perfect considered as stalk complexes, and
HomModZ𝑅 (𝐿,𝑌 ) = 0 for all 𝐿 ∈ flZ𝑅. Then we have HomqperZ𝑅 (𝑋,𝑌 [<0]) = 0.

Proof. Let 𝑙 < 0, and let a morphism 𝑋 → 𝑌 [𝑙] in qperZ𝑅 be presented by a diagram 𝑋
𝑠
←− 𝑍 −→ 𝑌 [𝑙]

in perZ𝑅 with 𝐿 := cone 𝑠 ∈ D𝑏 (flZ𝑅). We claim that we can replace s by a morphism whose cone lies
in flZ𝑅:
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First complete s to a triangle 𝑍 𝑠
−→ 𝑋 → 𝐿 → 𝑍 [1], and consider the truncation 𝐿≤0 → 𝐿 → 𝐿>0 →

𝐿≤0 [1] with respect to the standard t-structure. Since HomperZ𝑅 (𝑋, 𝐿
>0) = 0, there is a map 𝑋 → 𝐿≤0;

and setting 𝑍 ′ := cocone(𝑋 → 𝐿≤0) as in the left diagram above, the original morphism equals the
morphism 𝑋 𝑠′

←− 𝑍 ′ → 𝑍 → 𝑌 [𝑙] with cone 𝑠′ = 𝐿≤0 concentrated in (cohomological) degree ≤ 0.
Next consider the truncation of 𝑀 := 𝐿≤0 along the standard t-structure: 𝑀<0 → 𝑀 → 𝐻0𝑀 →

𝑀<0 [1]. By the octahedral axiom, we find a commutative diagram in the above right. Now, since we
have HomperZ𝑅 (𝑀

<0 [−1], 𝑌 [𝑙]) = 0, the morphism 𝑍 ′ → 𝑌 [𝑙] factors through 𝑍 ′′. Then the diagram

𝑋
𝑠′′

←−− 𝑍 ′′ −→ 𝑌 [𝑙] with cone 𝑠′′ = 𝐻0𝑀 ∈ flZ𝑅 gives the same morphism in qperZ𝑅 as the original one,
which establishes our claim.

Now let 𝑋 → 𝑌 [𝑙] be a morphism in qperZ𝑅 presented by the diagram 𝑋
𝑠
←− 𝑍 −→ 𝑌 [𝑙] in perZ𝑅

with 𝐿 := cone 𝑠 ∈ flZ𝑅. Since HomperZ𝑅 (𝐿 [−1], 𝑌 [𝑙]) = 0 by the assumption on Y, the map 𝑍 → 𝑌 [𝑙]
factors through s, hence we have HomqperZ𝑅 (𝑋,𝑌 [𝑙]) � HomperZ𝑅 (𝑋,𝑌 [𝑙]) = 0. �

Now we are ready to give our proof.

Proof of Proposition 4.9. (1) We first show the vanishing of extensions: that is, HomqperZ𝑅 (𝑇, 𝑇 [𝑖]) = 0
for all 𝑖 ≠ 0. Since we have HomModZ𝑅 (𝐿,𝑇) = 𝐷 Ext𝑑+1

ModZ𝑅
(𝑇, 𝐿𝛼 (𝑎)) = 0 for all 𝐿 ∈ flZ𝑅 by relative

Serre duality, the case 𝑖 < 0 follows from Lemma C.1. Also, when 𝑖 > 𝑑, we have HomqperZ𝑅 (𝑇, 𝑇 [𝑖]) =
𝐷 HomqperZ𝑅 (𝑇,𝑇 (𝑎) [𝑑 − 𝑖]) by Serre duality, thus 0 again by Lemma C.1. Therefore, it remains to
consider the case 0 < 𝑖 ≤ 𝑑. Note that in perZ𝑅, we have 𝑅(𝑙) = (𝑅(𝑙) [−𝑙]) [𝑙] ∈ M[𝑙], thus
𝑇 ∈M[−𝑎+1] ∗· · ·∗M. Therefore,𝑇 [𝑖] lies in the shifted fundamental domainM[−𝑎+1] ∗· · ·∗M[𝑑]
for all 0 ≤ 𝑖 ≤ 𝑑. This shows HomqperZ𝑅 (𝑇, 𝑇 [𝑖]) = HomperZ𝑅 (𝑇, 𝑇 [𝑖]) = 0 for 0 < 𝑖 ≤ 𝑑. We next have
to show that T generates qperZ𝑅, but this follows from [MM, Proposition 4.3]. Indeed, they actually
prove that all the shifts 𝑅(𝑙) for 𝑙 ∈ Z lie in the thick subcategory of D(ModZ𝑅) generated by T and the
finite length modules.

(2) We deduce by (1) that there exists a triangle equivalence qperZ𝑅 � per 𝐴 with

𝐴 =

������
𝑅0 0 · · · 0
𝑅−1 𝑅0 · · · 0
...

...
. . .

...
𝑅−(𝑎−1) 𝑅−(𝑎−2) · · · 𝑅0

������
,

the lower triangular matrix algebra with diagonal entries 𝑅0. Since 𝑅0 has finite global dimension by
Lemma 4.3, so does A, hence qperZ𝑅 � D𝑏 (mod 𝐴). Comparing the Serre functor of these categories,
we have (−)𝛼 (𝑎) [𝑑] ↔ 𝜈 := −⊗L

𝐴𝐷𝐴; thus (−)𝛼 (𝑎) ↔ 𝜈𝑑 := −⊗L
𝐴𝐷𝐴[−𝑑].

To prove that A is d-representation infinite, we first show 𝜈−𝑖𝑑 𝐴 ∈ mod 𝐴 for all 𝑖 ≥ 0. For this we
have to verify HomD𝑏 (mod 𝐴) (𝐴, 𝜈

−𝑖
𝑑 𝐴[𝑙]) = 0 for all 𝑙 ≠ 0 and 𝑖 ≥ 0. By the triangle equivalence, this

is to show HomqperZ𝑅 (𝑇, 𝑇 (−𝑖𝑎) [𝑙]) = 0 since 𝑅𝛼 � 𝑅, or HomqperZ𝑅 (𝑇 (𝑖𝑎), 𝑇 [𝑙]) = 0. By Lemma C.1
and the Serre duality, we may assume 0 < 𝑙 ≤ 𝑑. To prove this, we apply Theorem 4.6(3). Note that
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𝑇 (𝑖𝑎) ∈M[−(𝑎 − 1)] ∗ · · · for all 𝑖 ≥ 0 and 𝑇 [𝑙] ∈ · · · ∗M[𝑑] for all 𝑙 ≤ 𝑑. By Theorem 4.6(3), we
deduce HomqperZ𝑅 (𝑇 (𝑖𝑎), 𝑇 [𝑙]) = HomperZ𝑅 (𝑇 (𝑖𝑎), 𝑇 [𝑙]), which is zero for 𝑙 ≠ 0.

Finally, we prove gl. dim 𝐴 ≤ 𝑑. Since we have seen that gl. dim 𝐴 is finite, it is sufficient to show
Ext𝑙𝐴(𝐷𝐴, 𝐴) = 0 for 𝑙 > 𝑑. For any 𝑖 > 0, we have Ext𝑑+𝑖𝐴 (𝐷𝐴, 𝐴) = HomD𝑏 (𝐴) (𝜈𝐴, 𝐴[𝑑 + 𝑖]) =
HomD𝑏 (𝐴) (𝐴, 𝜈

−1
𝑑 𝐴[𝑖]), which is 0 by the previous claim. �
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