BEST APPROXIMATION BY POLYNOMIALS

SUNG GUEN KIM

In this paper we show that if E is a separable Banach space, F is a reflexive Banach space, and $n, k \in \mathbb{N}$, then every continuous polynomial of degree n from E into F has at least one element of best approximation in the Banach subspace of all continuous k-homogeneous polynomials from E into F.

1. INTRODUCTION AND NOTATION

We recall the basic definitions needed to discuss polynomials defined between Banach spaces E and F over the real or complex field K. We write B_E for the closed unit ball of E and the dual space of E is denoted by E^* . For $n \in \mathbb{N}$, we let $\mathcal{L}(^nE:F)$ denote the Banach space of all continuous *n*-linear maps from $E^n := E \times \cdots \times E$ into F endowed with the norm

$$||L|| := \sup \{ ||L(x_1, \ldots, x_n)|| : ||x_j|| \le 1, j = 1, \ldots, n \}.$$

A map $L \in \mathcal{L}({}^{n}E : F)$ is symmetric if $L(x_{1}, \ldots, x_{n}) = L(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ for all $x_{1}, \ldots, x_{n} \in E$ and $\sigma \in S_{n}$, where S_{n} denotes the set of permutations of the first n natural numbers. We let $\mathcal{L}_{s}({}^{n}E : F)$ denote the Banach subspace of all continuous symmetric *n*-linear maps from E^{n} into F. A map $P : E \to F$ is a continuous *n*-homogeneous polynomial if there is a unique $L \in \mathcal{L}_{s}({}^{n}E : F)$ such that $P(x) = L(x, \ldots, x)$ for all $x \in E$. In this case it is convenient to write $L = \check{P}$. More generally, a continuous polynomial of degree n from E into F is a map $P : E \to F$ of the form

$$P = P_0 + P_1 + \dots + P_n$$

where P_0 is a constant function, P_j $(1 \le j \le n)$ is a continuous *j*-homogeneous polynomial, and P_n is not identically zero. This abstract definition of a polynomial of degree *n* between Banach spaces agrees with the classical definition when $E = K^n$, F = K:

$$P(x_1,\ldots,x_n)=\sum_{k=0}^n\sum_{k_1+\cdots+k_n=k}a_{k_1\cdots+k_n}x_1^{k_1}\cdots x_n^{k_n},$$

Received 24th February, 2003

This paper was supported by the Korea Research Foundation made in the program KRF-2001-015-DP0010. The author wishes to sincerely thank Professor R.M. Aron and referees for several useful comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

where the indices k_1, \ldots, k_n are restricted to the non-negative integers and the coefficients $a_{k_1 \cdots k_n}$ are in K. We let $\mathcal{P}(E:F)$ denote the normed space of continuous polynomials of E into F endowed with the norm

$$\|P\| := \sup_{x \in B_E} \left\| P(x) \right\|$$

and the collection of all continuous k-homogeneous polynomials of E into F is a Banach subspace which we denote by $\mathcal{P}({}^{k}E : F)$. Note that $\mathcal{P}({}^{0}E : F) = F$ and $\mathcal{P}({}^{1}E : F)$ $= \mathcal{L}({}^{1}E : F) = \mathcal{L}(E : F)$, which is the Banach space of bounded linear operators from E into F. For general background on polynomials, we refer to ([2, 4]).

We recall that if M is a nonempty set in a normed space F and $x \in F$, then any element $y_0 \in M$ with the property

$$||x - y_0|| = \operatorname{dist}(x, M) := \inf_{y \in M} ||x - y||$$

is called an *element of best approximation* of x in M. In the particular case when M is a k-dimensional linear subspace of F it is well known that every $x \in F$ has at least one element of best approximation in M. Holmes and Kripke [7] proved that every bounded linear operator between Hilbert spaces has a best approximation in the space of compact linear operators. For the best approximation theory in a normed space, we refer to [8].

In this paper we prove the following results. Let k be a natural number.

(1) Suppose that E, F are complex normed spaces. Let $n \neq k$ be a natural number and $P_0 \in \mathcal{P}(^{n}E:F)$. Then $||P_0|| = \inf_{Q \in \mathcal{P}(^{k}E:F)} ||P_0 - Q||$.

In *real* normed spaces it is not true.

(2) If E is a separable Banach space and F is a reflexive Banach space, then for every $P_0 \in \mathcal{P}(E:F)$ there exists some $Q_0 \in \mathcal{P}(^kE:F)$ such that

$$||P_0 - Q_0|| = \inf_{Q \in \mathcal{P}(^k E:F)} ||P_0 - Q||.$$

2. RESULTS

LEMMA 1. Let F be a complex normed space. Let $a, b_1, \ldots, b_m \in E, c > 0, m \in \mathbb{N}$, and n_1, \ldots, n_m nonzero distinct integers. Suppose

$$||a + \sum_{j=1}^{m} z^{n_j} b_j|| \leq c \text{ for all } z \in \mathbb{C} \text{ with } |z| = 1.$$

Then $||a|| \leq c$.

PROOF: Let $g(z) = a + \sum_{j=1}^{m} z^{n_j} b_j$ for $z \in \mathbb{C} \setminus \{0\}$. Then there is some $k \in \mathbb{N}$ such that $f(z) = z^k g(z)$ is a holomorphic function. Since $||f(z)|| = ||g(z)|| \leq c$ for $z \in \mathbb{C}$ with |z| = 1, we have $k! ||a|| = ||f^{(k)}(0)|| \leq k! c$ by the Cauchy inequality.

THEOREM 2. Suppose E, F are complex normed spaces. Let k, k_1, \ldots, k_m be distinct natural numbers and $0 \neq P_j \in \mathcal{P}(^{k_j}E:F)$ for each $j = 1, \ldots, m$. Then

$$\max\{\|P_1\|,\ldots,\|P_m\|\} \leq \inf_{Q \in \mathcal{P}(^k E:F)} \left\|\sum_{j=1}^m P_j - Q\right\| \leq \left\|\sum_{j=1}^m P_j\right\|.$$

PROOF: The right inequality is obvious. For the left inequality, let $\varepsilon > 0$ and $j_0 \in \{1, \ldots, m\}$. Choose $x_0 \in S_E$ such that $||P_{j_0}(x_0)|| > ||P_{j_0}|| - \varepsilon$. Let $Q \in \mathcal{P}({}^kE : F)$ and $\lambda \in \mathbb{C}$ with $|\lambda| = 1$. It follows that

$$\begin{split} \left\| \sum_{j=1}^{m} P_{j} - Q \right\| \geq \left\| \sum_{j=1}^{m} P_{j}(\lambda x_{0}) - Q(\lambda x_{0}) \right\| \\ &= \left\| \lambda^{k_{j_{0}}} P_{j_{0}}(x_{0}) + \sum_{j \neq j_{0}} \lambda^{k_{j}} P_{j}(x_{0}) - \lambda^{k} Q(x_{0}) \right\| \\ &= \left\| P_{j_{0}}(x_{0}) + \sum_{j \neq j_{0}} \lambda^{k_{j}-k_{j_{0}}} P_{j}(x_{0}) - \lambda^{k-k_{j_{0}}} Q(x_{0}) \right\| \end{split}$$

By Lemma 1 we have

$$\|P_{j_0}\| - \varepsilon < \|P_{j_0}(x_0)\| \leq \left\|\sum_{j=1}^m P_j - Q\right\|,$$

showing $||P_{j_0}|| \leq \left\|\sum_{j=1}^m P_j - Q\right\|$ because $\varepsilon > 0$ is arbitrary. Since $Q \in \mathcal{P}({}^kE : F)$ is arbitrary, we have

$$\|P_{j_0}\| \leq \inf_{Q \in \mathcal{P}(^kE:F)} \left\| \sum_{j=1}^m P_j - Q \right\|.$$

Since $j_0 \in \{1, ..., m\}$ is arbitrary, we complete the proof of theorem.

COROLLARY 3. Suppose E, F are complex normed spaces. Let $n \neq k$ be a natural number and $P_0 \in \mathcal{P}(^{n}E : F)$. Then

$$||P_0|| = \operatorname{dist}(P_0, \mathcal{P}(^kE:F)) := \inf_{Q \in \mathcal{P}(^kE:F)} ||P_0 - Q||.$$

REMARK 4. In the real case Corollary 3 is not true. Indeed, let $E, F = \mathbb{R}, P_0(x) = x^2$. Then $1 = ||P_0||$. We claim that

$$\inf_{Q \in \mathcal{P}({}^{4}\mathbb{R})} \|P_0 - Q\| = \left\| x^2 - \frac{\sqrt{2} + 1}{2} x^4 \right\| = \frac{\sqrt{2} - 1}{2} < 1 = \|P_0\|.$$

0

[4]

PROOF OF CLAIM: It follows that

$$\begin{split} \inf_{Q \in \mathcal{P}({}^{4}\mathbb{R})} \|P_{0} - Q\| &= \inf_{a \in \mathbb{R}} \|x^{2} - ax^{4}\| \\ &= \min\{\inf_{a \leq 0} \|x^{2} - ax^{4}\|, \inf_{a \geq 0} \|x^{2} - ax^{4}\| \} \\ &= \min\{1, \inf_{a \geq 0} \|x^{2} - ax^{4}\| \} \\ &= \min\{\min_{0 \leq a \leq 1} \|x^{2} - ax^{4}\|, \inf_{a > 1} \|x^{2} - ax^{4}\| \} \\ &= \min\{\min_{0 \leq a \leq 1} \|x^{2} - ax^{4}\|, \min_{1 \leq a \leq (\sqrt{2} + 1)/2} \|x^{2} - ax^{4}\|, \inf_{(\sqrt{2} + 1)/2 < a} \|x^{2} - ax^{4}\| \} \\ &= \min\{\min_{0 \leq a \leq 1} \frac{1}{4a}, \min_{1 \leq a \leq (\sqrt{2} + 1)/2} \frac{1}{4a}, \inf_{(\sqrt{2} + 1)/2 < a} a - 1 \} \\ &= \min\{\frac{1}{4}, \frac{\sqrt{2} - 1}{2}, \frac{\sqrt{2} - 1}{2}\} = \frac{\sqrt{2} - 1}{2} = \|x^{2} - \frac{\sqrt{2} + 1}{2}x^{4}\|, \end{split}$$

showing

$$\|P\| = (2\sqrt{2}+2) \inf_{Q \in \mathcal{P}({}^{4}\mathbb{R})} \|P - Q\| \text{ for each } P \in \mathcal{P}({}^{2}\mathbb{R}).$$

THEOREM 5. Suppose that E, F are real normed spaces. Let $k, n \in \mathbb{N}$ with k + n is an odd integer and $P_0 \in \mathcal{P}(^{n}E : F)$. Then

$$||P_0|| = \inf_{Q \in \mathcal{P}(^k E:F)} ||P_0 - Q||.$$

PROOF: It suffices to show that $\max\{||P_0||, ||Q||\} \leq ||P_0 - Q||$ for each $Q \in \mathcal{P}({}^kE : F)$. Let $Q \in \mathcal{P}({}^kE : F)$ and $x_0 \in B_E$. Then:

$$||P_0(x_0) - Q(x_0)|| \leq ||P_0 - Q||$$

and

$$\left\|P_{0}(-x_{0})-Q(-x_{0})\right\|=\left\|(-1)^{n}P_{0}(x_{0})-(-1)^{k}Q(x_{0})\right\|=\left\|P_{0}(x_{0})+Q(x_{0})\right\|\leqslant \|P_{0}-Q\|.$$

By the triangle inequality, we have

$$\max\left\{ \|P_0(x_0)\|, \|Q(x_0)\| \right\} \le \|P_0 - Q\|.$$

Since $x_0 \in B_E$ is arbitrary, we have

$$\max\{\|P_0\|, \|Q\|\} \le \|P_0 - Q\|.$$

The following is an extension of the Banach-Steinhaus type theorem for continuous homogeneous polynomials due to Mazur and Orlicz (see [2]).

THEOREM 6. Let E and F be Banach spaces. Suppose $\langle Q_n \rangle$ is a sequence in $\mathcal{P}({}^kE:F)$. If $\langle Q_n(x) \rangle$ converges weakly to $Q(x) \in F$ for each $x \in E$, then $Q \in \mathcal{P}({}^kE:F)$.

271

PROOF: Let \hat{Q}_n be the symmetric k-linear map associated to Q_n for each $n \in \mathbb{N}$. It is easy to show that by the polarisation formula weak $-\lim_{n\to\infty} \check{Q}_n(x_1,\ldots,x_k)$ exists in F for $x_1,\ldots,x_k \in E$. Let

$$A(x_1,\ldots,x_k) = \operatorname{weak} - \lim_{n \to \infty} \check{Q}_n(x_1,\ldots,x_k) \text{ for } x_1,\ldots,x_k \in E.$$

Then A is a k-linear map and Q(x) = A(x, ..., x) for each $x \in E$. CLAIM. $\sup ||Q_x|| < \infty$.

CLAIM. $\sup_{n\in\mathbb{N}}\|Q_n\|<\infty.$

Since the sequence $\langle \check{Q}_n(x_1,\ldots,x_k) \rangle$ is weakly bounded in F for each $x_1,\ldots,x_k \in E$, $\langle \check{Q}_n(x_1,\ldots,x_k) \rangle$ is norm-bounded in F for each $x_1,\ldots,x_k \in E$. Note that $\mathcal{L}({}^kE:F)$ is isometric isomorphic to the space $\mathcal{L}(E:\mathcal{L}({}^{k-1}E:F))$. If we consider $\langle \check{Q}_n \rangle$ as a sequence in $\mathcal{L}(E:\mathcal{L}({}^{k-1}E:F))$, then by induction and the Uniform Boundedness Principle, we obtain $\sup_{n\in\mathbb{N}} ||\check{Q}_n|| \leq \sup_{n\in\mathbb{N}} ||\check{Q}_n|| < \infty$.

We claim that Q is continuous.

Let $x \in E$ with ||x|| = 1. By the Hahn-Banach theorem there is $x^* \in E^*$ with $||x^*|| = 1$ such that $|x^*(Q(x))| = ||Q(x)||$.

It follows that

$$\left\|Q(x)\right\| = \left|x^*(Q(x))\right| = \lim_{n \to \infty} \left|x^*(Q_n(x))\right| \le \|x^*\| \liminf_{n \to \infty} \left\|Q_n(x)\right\| \le \sup_{n \in \mathbb{N}} \|Q_n\|$$

Since $x \in E$ with ||x|| = 1 was arbitrary we have $||Q|| \leq \sup_{n \in \mathbb{N}} ||Q_n|| < \infty$. Thus $Q \in \mathcal{P}(^kE:F)$.

Here is the main result.

THEOREM 7. Suppose E is a separable Banach space and F is a reflexive Banach space. Let $k \in \mathbb{N}$ and $P_0 \in \mathcal{P}(E:F)$. Then there exists $Q_0 \in \mathcal{P}(^kE:F)$ such that $\|P_0 - Q_0\| = \inf_{\substack{Q \in \mathcal{P}(^kE:F)}} \|P_0 - Q\|$.

PROOF: Let $d = \operatorname{dist}(P_0, \mathcal{P}(^kE:F))$. By the definition of d, there exists a sequence $\langle Q_n \rangle$ in $\mathcal{P}(^kE:F)$ such that $||P_0 - Q_n|| \to d$. Note that $\langle Q_n \rangle$ is bounded in $\mathcal{P}(^kE:F)$. Suppose that $\{e_i\}$ be a countable dense subset of B_E . Since $\langle Q_n \rangle$ is bounded in $\mathcal{P}(^kE:E)$, $\langle Q_n(e_i) \rangle$ is bounded in F for each $i \in \mathbb{N}$. Since F is reflexive, $\langle Q_n(e_i) \rangle$ is relatively weakcompact in F, so there is a subsequence $\langle Q_{n1} \rangle$ of $\langle Q_n \rangle$ such that $Q_{n1}(e_1)$ converges weakly to $y_1 \in F$. Similarly, there is a subsequence $\langle Q_{n2} \rangle$ of $\langle Q_{n1} \rangle$ such that $Q_{n2}(e_2)$ converges weakly to $y_2 \in F$ and $Q_{n2}(e_1)$ converges weakly to y_1 . Continuing this process, we can construct subsequences $\langle Q_{ni} \rangle$ of $\langle Q_n \rangle$ for each i such that $\langle Q_{ni}(e_j) \rangle$ converges weakly to $y_j \in F$ for $1 \leq j \leq i$. By Cantor's diagonal process we have weak $-\lim_{n\to\infty} Q_{nn}(e_i)$ exists in F for each i. We claim that for each $x \in E$, weak $-\lim_{n\to\infty} Q_{nn}(x)$ exists in F. By the homogeneity of Q_{nn} , it suffices to show that for each $x \in B_E$, weak $-\lim_{n\to\infty} Q_{nn}(x)$ exists in F. Let $x \in B_E$. We claim that $\langle Q_{nn}(x) \rangle$ is weakly convergent in F.

Since F is weakly complete it is enough to show that $\langle Q_{nn}(x) \rangle$ is weakly Cauchy. Let $0 < \varepsilon < 1, x^* \in F^*$. Let

$$I = ||x^*||(2k^k)/(k!) \sup_n ||Q_n|| \sum_{0 \le j \le k-1} {}_k C_j.$$

Then there is e_l such that $||x - e_l|| < \min\{\varepsilon/(2I), 1\}$. Pick N_0 such that for $n, m > N_0$ we have

$$\left|x^*(Q_{nn}(e_l)) - x^*(Q_{mm}(e_l))\right| < \varepsilon/2$$

It follows that for $n, m > N_0$,

$$\begin{aligned} \left| x^* (Q_{nn}(x)) - x^* (Q_{mm}(x)) \right| &\leq \left| x^* (Q_{nn}(x) - Q_{nn}(e_l)) \right| \\ &+ \left| x^* (Q_{nn}(e_l)) - x^* (Q_{mm}(e_l)) \right| + \left| x^* (Q_{mm}(e_l) - Q_{mm}(x)) \right| \\ &\leq \left\| x^* \right\| \sum_{0 \leq j \leq k-1} {}_k C_j \left\| \check{Q}_{nn}(e_l^j, (x - e_l)^{k-j}) \right\| + \frac{\varepsilon}{2} \\ &+ \left\| x^* \right\| \sum_{0 \leq j \leq k-1} {}_k C_j \left\| \check{Q}_{mm}(e_l^j, (x - e_l)^{k-j}) \right\| \quad \text{(by the binomial theorem)} \\ &\leq \left\| x^* \right\| \left\| \check{Q}_{nn} \right\| \sum_{0 \leq j \leq k-1} {}_k C_j \left\| e_l \right\|^j \left\| x - e_l \right\|^{k-j} + \frac{\varepsilon}{2} \\ &+ \left\| x^* \right\| \left\| \check{Q}_{mm} \right\| \sum_{0 \leq j \leq k-1} {}_k C_j \left\| e_l \right\|^j \left\| x - e_l \right\|^{k-j} \\ &\leq 2 \left\| x^* \right\| \left\| x - e_l \right\| \frac{k^k}{k!} \sup_n \left\| Q_{nn} \right\| (\sum_{0 \leq j \leq k-1} {}_k C_j \left\| x - e_l \right\|^{k-j-1}) + \frac{\varepsilon}{2} \\ &\leq 2 \left\| x^* \right\| \left\| x - e_l \right\| \frac{k^k}{k!} \sup_n \left\| Q_n \right\| \left(\sum_{0 \leq j \leq k-1} {}_k C_j \right) + \frac{\varepsilon}{2} \\ &\leq \varepsilon, \end{aligned}$$

where \check{Q}_{mm} is the symmetric k-linear map associated to Q_{mm} . Define $Q_0(x)$ = weak $-\lim_{n\to\infty} Q_{nn}(x)$ for $x \in E$. By Theorem 6 we have $Q_0 \in \mathcal{P}({}^kE:F)$. We claim that $||P_0 - Q_0|| = d$.

Let $x \in E$ with ||x|| = 1. By the Hahn-Banach theorem there is $x^* \in E^*$ with $||x^*|| = 1$ such that

$$|x^*((P_0-Q_0)(x))| = ||(P_0-Q_0)(x)||$$

We have

$$\begin{aligned} \left\| (P_0 - Q_0)(x) \right\| &= \left| x^* (P_0(x)) - x^* (Q_0(x)) \right| = \left| x^* (P_0(x)) - \lim_{n \to \infty} x^* (Q_{nn}(x)) \right| \\ &= \lim_{n \to \infty} \left| x^* ((P_0 - Q_{nn})(x)) \right| \le \|x^*\| \liminf_{n \to \infty} \| (P_0 - Q_{nn})(x) \| \\ &\leq \lim_{n \to \infty} \| P_0 - Q_{nn} \| = d. \end{aligned}$$

Since $x \in E$ with ||x|| = 1 was arbitrary we have $||P_0 - Q_0|| \leq d$. By $Q_0 \in \mathcal{P}({}^kE : F)$ and the definition of d, we have $||P_0 - Q_0|| \geq d$, showing $||P_0 - Q_0|| = d$.

It is clear that if $P_0 \in \mathcal{P}(E)$ and Q, R are different elements of best approximation of P_0 in $\mathcal{P}(^kE)$, then every element of the line segment of Q and R is a best approximation of P_0 in $\mathcal{P}(^kE)$. We do not know if elements of best approximation in Theorem 7 are unique. In [1] it was shown that $\mathcal{P}(^kl_p)$ is reflexive if and only if k . We recall that a Banach space <math>E is polynomially reflexive ([3, 5]) if for every $n \in \mathbb{N}$, $\mathcal{P}(^nE)$ is a reflexive space. In ([1, 6]) it was shown that $E = T^*$, $l_\infty \otimes l_p$ ($2), <math>l_\infty \otimes T^*$ are polynomially reflexive where T^* be the original Tsirelson space.

REMARK 8. Suppose E is a Banach space such that $\mathcal{P}({}^{k}E)$ is reflexive for some $k \in \mathbb{N}$. Let M be a nonempty, closed, convex subset of $\mathcal{P}({}^{k}E)$ and $P_{0} \in \mathcal{P}(E)$. Then there exists $Q_{0} \in M$ such that $||P_{0} - Q_{0}|| = \operatorname{dist}(P_{0}, M)$.

REFERENCES

- [1] R. Alencar, R.M. Aron and S. Dineen, 'A reflexive space of holomorphic functions in infinitely many variables', *Proc. Amer. Math. Soc.* **90** (1984), 407-411.
- [2] S.B. Chae, Holomorphy and calculus in normed spaces (Marcel Dekker, New York, 1985).
- [3] Y.S. Choi and S.G. Kim, 'Polynomial properties of Banach spaces', J. Math. Anal. Appl. 190 (1995), 203-210.
- [4] S. Dineen, Complex analysis on infinite dimensional spaces (Springer-Verlag, London, 1999).
- [5] J.D. Farmer, 'Polynomial reflexivity in Banach spaces', Israel J. Math. 87 (1994), 257-273.
- [6] M. Gonzalez and J.M. Gutierrez, 'Polynomial Grothendieck properties', Glasgow Math. J. 37 (1995), 211-219.
- [7] R.B. Holmes and B.R. Kripke, 'Best approximation by compact operators', Indiana Univ. Math. J. 21 (1971), 255-263.
- [8] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces (Springer-Verlag, New York, Berlin, 1970).

Department of Mathematics Kyungpook National University Taegu Korea (702-701) e-mail: sgk317@knu.ac.kr

[7]

وز.