BEST APPROXIMATION BY POLYNOMIALS

Sung Guen Kim

In this paper we show that if E is a separable Banach space, F is a reflexive Banach space, and $n, k \in \mathbb{N}$, then every continuous polynomial of degree n from E into F has at least one element of best approximation in the Banach subspace of all continuous k-homogeneous polynomials from E into F.

1. Introduction and notation

We recall the basic definitions needed to discuss polynomials defined between Banach spaces E and F over the real or complex field K. We write B_{E} for the closed unit ball of E and the dual space of E is denoted by E^{*}. For $n \in \mathbb{N}$, we let $\mathcal{L}\left({ }^{n} E: F\right)$ denote the Banach space of all continuous n-linear maps from $E^{n}:=E \times \cdots \times E$ into F endowed with the norm

$$
\|L\|:=\sup \left\{\left\|L\left(x_{1}, \ldots, x_{n}\right)\right\|:\left\|x_{j}\right\| \leqslant 1, j=1, \ldots, n\right\}
$$

A map $L \in \mathcal{L}\left({ }^{n} E: F\right)$ is symmetric if $L\left(x_{1}, \ldots, x_{n}\right)=L\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ for all $x_{1}, \ldots, x_{n} \in E$ and $\sigma \in \mathcal{S}_{n}$, where \mathcal{S}_{n} denotes the set of permutations of the first n natural numbers. We let $\mathcal{L}_{s}\left({ }^{n} E: F\right)$ denote the Banach subspace of all continuous symmetric n-linear maps from E^{n} into F. A map $P: E \rightarrow F$ is a continuous n-homogeneous polynomial if there is a unique $L \in \mathcal{L}_{s}\left({ }^{n} E: F\right)$ such that $P(x)=L(x, \ldots, x)$ for all $x \in E$. In this case it is convenient to write $L=\check{P}$. More generally, a continuous polynomial of degree n from E into F is a map $P: E \rightarrow F$ of the form

$$
P=P_{0}+P_{1}+\cdots+P_{n}
$$

where P_{0} is a constant function, $P_{j}(1 \leqslant j \leqslant n)$ is a continuous j-homogeneous polynomial, and P_{n} is not identically zero. This abstract definition of a polynomial of degree n between Banach spaces agrees with the classical definition when $E=K^{n}, F=K$:

$$
P\left(x_{1}, \ldots, x_{n}\right)=\sum_{k=0}^{n} \sum_{k_{1}+\cdots k_{n}=k} a_{k_{1} \cdots k_{n}} x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.
where the indices k_{1}, \ldots, k_{n} are restricted to the non-negative integers and the coefficients $a_{k_{1} \cdots k_{n}}$ are in K. We let $\mathcal{P}(E: F)$ denote the normed space of continuous polynomials of E into F endowed with the norm

$$
\|P\|:=\sup _{x \in B_{E}}\|P(x)\|
$$

and the collection of all continuous k-homogeneous polynomials of E into F is a Banach subspace which we denote by $\mathcal{P}\left({ }^{k} E: F\right)$. Note that $\mathcal{P}\left({ }^{0} E: F\right)=F$ and $\mathcal{P}\left({ }^{1} E: F\right)$ $=\mathcal{L}\left({ }^{1} E: F\right)=\mathcal{L}(E: F)$, which is the Banach space of bounded linear operators from E into F. For general background on polynomials, we refer to ($[2,4]$).

We recall that if M is a nonempty set in a normed space F and $x \in F$, then any element $y_{0} \in M$ with the property

$$
\left\|x-y_{0}\right\|=\operatorname{dist}(x, M):=\inf _{y \in M}\|x-y\|
$$

is called an element of best approximation of x in M. In the particular case when M is a k-dimensional linear subspace of F it is well known that every $x \in F$ has at least one element of best approximation in M. Holmes and Kripke [7] proved that every bounded linear operator between Hilbert spaces has a best approximation in the space of compact linear operators. For the best approximation theory in a normed space, we refer to [8].

In this paper we prove the following results. Let k be a natural number.
(1) Suppose that E, F are complex normed spaces. Let $n \neq k$ be a natural number and $P_{0} \in \mathcal{P}\left({ }^{n} E: F\right)$. Then $\left\|P_{0}\right\|=\inf _{Q \in \mathcal{P}\left({ }^{k} E: F\right)}\left\|P_{0}-Q\right\|$.

In real normed spaces it is not true.
(2) If E is a separable Banach space and F is a reflexive Banach space, then for every $P_{0} \in \mathcal{P}(E: F)$ there exists some $Q_{0} \in \mathcal{P}\left({ }^{k} E: F\right)$ such that

$$
\left\|P_{0}-Q_{0}\right\|=\inf _{Q \in \mathcal{P}\left({ }^{k} E: F\right)}\left\|P_{0}-Q\right\|
$$

2. Results

LEMMA 1. Let F be a complex normed space. Let $a, b_{1}, \ldots, b_{m} \in E, c>0, m \in \mathbb{N}$, and n_{1}, \ldots, n_{m} nonzero distinct integers. Suppose

$$
\left\|a+\sum_{j=1}^{m} z^{n_{j}} b_{j}\right\| \leqslant c \text { for all } z \in \mathbb{C} \text { with }|z|=1
$$

Then $\|a\| \leqslant c$.
Proof: Let $g(z)=a+\sum_{j=1}^{m} z^{n_{j}} b_{j}$ for $z \in \mathbb{C} \backslash\{0\}$. Then there is some $k \in \mathbb{N}$ such that $f(z)=z^{k} g(z)$ is a holomorphic function. Since $\|f(z)\|=\|g(z)\| \leqslant c$ for $z \in \mathbb{C}$ with $|z|=1$, we have $k!\|a\|=\left\|f^{(k)}(0)\right\| \leqslant k!c$ by the Cauchy inequality.

Theorem 2. Suppose E, F are complex normed spaces. Let k, k_{1}, \ldots, k_{m} be distinct natural numbers and $0 \neq P_{j} \in \mathcal{P}\left({ }^{k_{j}} E: F\right)$ for each $j=1, \ldots, m$. Then

$$
\max \left\{\left\|P_{1}\right\|, \ldots,\left\|P_{m}\right\|\right\} \leqslant \inf _{\left.Q \in \mathcal{P}^{(} E: F\right)}\left\|\sum_{j=1}^{m} P_{j}-Q\right\| \leqslant\left\|\sum_{j=1}^{m} P_{j}\right\|
$$

Proof: The right inequality is obvious. For the left inequality, let $\varepsilon>0$ and $j_{0} \in\{1, \ldots, m\}$. Choose $x_{0} \in S_{E}$ such that $\left\|P_{j_{0}}\left(x_{0}\right)\right\|>\left\|P_{j_{0}}\right\|-\varepsilon$. Let $Q \in \mathcal{P}\left({ }^{\kappa} E: F\right)$ and $\lambda \in \mathbb{C}$ with $|\lambda|=1$. It follows that

$$
\begin{aligned}
\left\|\sum_{j=1}^{m} P_{j}-Q\right\| & \geqslant\left\|\sum_{j=1}^{m} P_{j}\left(\lambda x_{0}\right)-Q\left(\lambda x_{0}\right)\right\| \\
& =\left\|\lambda^{k_{j_{0}}} P_{j_{0}}\left(x_{0}\right)+\sum_{j \neq j_{0}} \lambda^{k_{j}} P_{j}\left(x_{0}\right)-\lambda^{k} Q\left(x_{0}\right)\right\| \\
& =\left\|P_{j_{0}}\left(x_{0}\right)+\sum_{j \neq j_{0}} \lambda^{k_{j}-k_{j_{0}}} P_{j}\left(x_{0}\right)-\lambda^{k-k_{j_{0}}} Q\left(x_{0}\right)\right\|
\end{aligned}
$$

By Lemma 1 we have

$$
\left\|P_{j_{0}}\right\|-\varepsilon<\left\|P_{j_{0}}\left(x_{0}\right)\right\| \leqslant\left\|\sum_{j=1}^{m} P_{j}-Q\right\|
$$

showing $\left\|P_{j_{0}}\right\| \leqslant\left\|\sum_{j=1}^{m} P_{j}-Q\right\|$ because $\varepsilon>0$ is arbitrary. Since $Q \in \mathcal{P}\left({ }^{k} E: F\right)$ is arbitrary, we have

$$
\left\|P_{j_{0}}\right\| \leqslant \inf _{Q \in \mathcal{P}\left(k^{k} E: F\right)}\left\|\sum_{j=1}^{m} P_{j}-Q\right\|
$$

Since $j_{0} \in\{1, \ldots, m\}$ is arbitrary, we complete the proof of theorem.
Corollary 3. Suppose E, F are complex normed spaces. Let $n \neq k$ be a natural number and $P_{0} \in \mathcal{P}\left({ }^{n} E: F\right)$. Then

$$
\left\|P_{0}\right\|=\operatorname{dist}\left(P_{0}, \mathcal{P}\left({ }^{k} E: F\right)\right):=\inf _{Q \in \mathcal{P}\left({ }^{k} E: F\right)}\left\|P_{0}-Q\right\|
$$

Remark 4. In the real case Corollary 3 is not true. Indeed, let $E, F=\mathbb{R}, P_{0}(x)=x^{2}$. Then $1=\left\|P_{0}\right\|$. We claim that

$$
\inf _{Q \in \mathcal{P}\left({ }^{4} \mathbb{R}\right)}\left\|P_{0}-Q\right\|=\left\|x^{2}-\frac{\sqrt{2}+1}{2} x^{4}\right\|=\frac{\sqrt{2}-1}{2}<1=\left\|P_{0}\right\| .
$$

Proof of claim: It follows that

$$
\begin{aligned}
\inf _{Q \in \mathcal{P}\left({ }^{4} \mathbb{R}\right)}\left\|P_{0}-Q\right\| & =\inf _{a \in \mathbb{R}}\left\|x^{2}-a x^{4}\right\| \\
& =\min \left\{\inf _{a \leqslant 0}\left\|x^{2}-a x^{4}\right\|, \inf _{a \geqslant 0}\left\|x^{2}-a x^{4}\right\|\right\} \\
& =\min \left\{1, \inf _{a \geqslant 0}\left\|x^{2}-a x^{4}\right\|\right\} \\
& =\min \left\{\min _{0 \leqslant \leqslant \leqslant 1}\left\|x^{2}-a x^{4}\right\| \inf _{a>1}\left\|x^{2}-a x^{4}\right\|\right\} \\
& =\min \left\{\min _{0 \leqslant a \leqslant 1}\left\|x^{2}-a x^{4}\right\|, \min _{1 \leqslant a \leqslant(\sqrt{2}+1) / 2}\left\|x^{2}-a x^{4}\right\|, \inf _{(\sqrt{2}+1) / 2<a}\left\|x^{2}-a x^{4}\right\|\right\} \\
& =\min \left\{\min _{0 \leqslant a \leqslant 1} \frac{1}{4 a}, \min _{1 \leqslant a \leqslant(\sqrt{2}+1) / 2} \frac{1}{4 a}, \inf _{(\sqrt{2}+1) / 2<a} a-1\right\} \\
& =\min \left\{\frac{1}{4}, \frac{\sqrt{2}-1}{2}, \frac{\sqrt{2}-1}{2}\right\}=\frac{\sqrt{2}-1}{2}=\left\|x^{2}-\frac{\sqrt{2}+1}{2} x^{4}\right\|,
\end{aligned}
$$

showing

$$
\|P\|=(2 \sqrt{2}+2) \inf _{Q \in \mathcal{P}\left({ }^{4} \mathbb{R}\right)}\|P-Q\| \text { for each } P \in \mathcal{P}\left({ }^{2} \mathbb{R}\right)
$$

Theorem 5. Suppose that E, F are real normed spaces. Let $k, n \in \mathbb{N}$ with $k+n$ is an odd integer and $P_{0} \in \mathcal{P}\left({ }^{n} E: F\right)$. Then

$$
\left\|P_{0}\right\|=\inf _{Q \in \mathcal{P}\left({ }^{k} E: F\right)}\left\|P_{0}-Q\right\| .
$$

Proof: It suffices to show that $\max \left\{\left\|P_{0}\right\|,\|Q\|\right\} \leqslant\left\|P_{0}-Q\right\|$ for each $Q \in \mathcal{P}\left({ }^{k} E\right.$: $F)$. Let $Q \in \mathcal{P}\left({ }^{k} E: F\right)$ and $x_{0} \in B_{E}$. Then:

$$
\left\|P_{0}\left(x_{0}\right)-Q\left(x_{0}\right)\right\| \leqslant\left\|P_{0}-Q\right\|
$$

and

$$
\left\|P_{0}\left(-x_{0}\right)-Q\left(-x_{0}\right)\right\|=\left\|(-1)^{n} P_{0}\left(x_{0}\right)-(-1)^{k} Q\left(x_{0}\right)\right\|=\left\|P_{0}\left(x_{0}\right)+Q\left(x_{0}\right)\right\| \leqslant\left\|P_{0}-Q\right\| .
$$

By the triangle inequality, we have

$$
\max \left\{\left\|P_{0}\left(x_{0}\right)\right\|,\left\|Q\left(x_{0}\right)\right\|\right\} \leqslant\left\|P_{0}-Q\right\|
$$

Since $x_{0} \in B_{E}$ is arbitrary, we have

$$
\max \left\{\left\|P_{0}\right\|,\|Q\|\right\} \leqslant\left\|P_{0}-Q\right\|
$$

The following is an extension of the Banach-Steinhaus type theorem for continuous homogeneous polynomials due to Mazur and Orlicz (see [2]).

ThEOREM 6. Let E and F be Banach spaces. Suppose $\left\langle Q_{n}\right\rangle$ is a sequence in $\mathcal{P}\left({ }^{k} E: F\right)$. If $\left\langle Q_{n}(x)\right\rangle$ converges weakly to $Q(x) \in F$ for each $x \in E$, then $Q \in \mathcal{P}\left({ }^{k} E\right.$: $F)$.

Proof: Let \check{Q}_{n} be the symmetric k-linear map associated to Q_{n} for each $n \in \mathbb{N}$. It is easy to show that by the polarisation formula weak $-\lim _{n \rightarrow \infty} \check{Q}_{n}\left(x_{1}, \ldots, x_{k}\right)$ exists in F for $x_{1}, \ldots, x_{k} \in E$. Let

$$
A\left(x_{1}, \ldots, x_{k}\right)=\text { weak }-\lim _{n \rightarrow \infty} \check{Q}_{n}\left(x_{1}, \ldots, x_{k}\right) \text { for } x_{1}, \ldots, x_{k} \in E
$$

Then A is a k-linear map and $Q(x)=A(x, \ldots, x)$ for each $x \in E$.
Claim. $\sup _{n \in \mathrm{~N}}\left\|Q_{n}\right\|<\infty$.
Since the sequence $\left\langle\check{Q}_{n}\left(x_{1}, \ldots, x_{k}\right)\right\rangle$ is weakly bounded in F for each $x_{1}, \ldots, x_{k} \in E$, $\left\langle\check{Q}_{n}\left(x_{1}, \ldots, x_{k}\right)\right\rangle$ is norm-bounded in F for each $x_{1}, \ldots, x_{k} \in E$. Note that $\mathcal{L}\left({ }^{k} E: F\right)$ is isometric isomorphic to the space $\mathcal{L}\left(E: \mathcal{L}\left({ }^{k-1} E: F\right)\right)$. If we consider $\left\langle\check{Q}_{n}\right\rangle$ as a sequence in $\mathcal{L}\left(E: \mathcal{L}\left({ }^{k-1} E: F\right)\right)$, then by induction and the Uniform Boundedness Principle, we obtain $\sup _{n \in \mathrm{~N}}\left\|Q_{n}\right\| \leqslant \sup _{n \in \mathrm{~N}}\left\|\check{Q}_{n}\right\|<\infty$.

We claim that Q is continuous.
Let $x \in E$ with $\|x\|=1$. By the Hahn-Banach theorem there is $x^{*} \in E^{*}$ with $\left\|x^{*}\right\|=1$ such that $\left|x^{*}(Q(x))\right|=\|Q(x)\|$.

It follows that

$$
\|Q(x)\|=\left|x^{*}(Q(x))\right|=\lim _{n \rightarrow \infty}\left|x^{*}\left(Q_{n}(x)\right)\right| \leqslant\left\|x^{*}\right\| \liminf _{n \rightarrow \infty}\left\|Q_{n}(x)\right\| \leqslant \sup _{n \in \mathbf{N}}\left\|Q_{n}\right\|
$$

Since $x \in E$ with $\|x\|=1$ was arbitrary we have $\|Q\| \leqslant \sup _{n \in \mathbb{N}}\left\|Q_{n}\right\|<\infty$. Thus $\left.Q+\mathcal{P}{ }^{k} E \cdot F\right)$. $\in \mathcal{P}\left({ }^{k} E: F\right)$.

Here is the main result.
Theorem 7. Suppose E is a separable Banach space and F is a reflexive Banach space. Let $k \in \mathbb{N}$ and $P_{0} \in \mathcal{P}(E: F)$. Then there exists $Q_{0} \in \mathcal{P}\left({ }^{k} E: F\right)$ such that $\left\|P_{0}-Q_{0}\right\|=\inf _{Q \in \mathcal{P}\left({ }^{k} E: F\right)}\left\|P_{0}-Q\right\|$.

Proof: Let $d=\operatorname{dist}\left(P_{0}, \mathcal{P}\left({ }^{k} E: F\right)\right)$. By the definition of d, there exists a sequence $\left\langle Q_{n}\right\rangle$ in $\mathcal{P}\left({ }^{k} E: F\right)$ such that $\left\|P_{0}-Q_{n}\right\| \rightarrow d$. Note that $\left\langle Q_{n}\right\rangle$ is bounded in $\mathcal{P}\left({ }^{k} E: F\right)$. Suppose that $\left\{e_{i}\right\}$ be a countable dense subset of B_{E}. Since $\left\langle Q_{n}\right\rangle$ is bounded in $\mathcal{P}\left({ }^{k} E: E\right)$, $\left\langle Q_{n}\left(e_{i}\right)\right\rangle$ is bounded in F for each $i \in \mathbb{N}$. Since F is reflexive, $\left\langle Q_{n}\left(e_{i}\right)\right\rangle$ is relatively weakcompact in F, so there is a subsequence $\left\langle Q_{n 1}\right\rangle$ of $\left\langle Q_{n}\right\rangle$ such that $Q_{n 1}\left(e_{1}\right)$ converges weakly to $y_{1} \in F$. Similarly, there is a subsequence $\left\langle Q_{n 2}\right\rangle$ of $\left\langle Q_{n 1}\right\rangle$ such that $Q_{n 2}\left(e_{2}\right)$ converges weakly to $y_{2} \in F$ and $Q_{n 2}\left(e_{1}\right)$ converges weakly to y_{1}. Continuing this process, we can construct subsequences $\left\langle Q_{n i}\right\rangle$ of $\left\langle Q_{n}\right\rangle$ for each i such that $\left\langle Q_{n i}\left(e_{j}\right)\right\rangle$ converges weakly to $y_{j} \in F$ for $1 \leqslant j \leqslant i$. By Cantor's diagonal process we have weak $-\lim _{n \rightarrow \infty} Q_{n n}\left(e_{i}\right)$ exists in F for each i. We claim that for each $x \in E$, weak $-\lim _{n \rightarrow \infty} Q_{n n}(x)$ exists in F. By the homogeneity of $Q_{n n}$, it suffices to show that for each $x \in B_{E}$, weak - $\lim _{n \rightarrow \infty} Q_{n n}(x)$ exists in F. Let $x \in B_{E}$.

We claim that $\left\langle Q_{n n}(x)\right\rangle$ is weakly convergent in F.
Since F is weakly complete it is enough to show that $\left\langle Q_{n n}(x)\right\rangle$ is weakly Cauchy. Let $0<\varepsilon<1, x^{*} \in F^{*}$. Let

$$
I=\left\|x^{*}\right\|\left(2 k^{k}\right) /(k!) \sup _{n}\left\|Q_{n}\right\| \sum_{0 \leqslant j \leqslant k-1}{ }_{k} C_{j} .
$$

Then there is e_{l} such that $\left\|x-e_{l}\right\|<\min \{\varepsilon /(2 I), 1\}$. Pick N_{0} such that for $n, m>N_{0}$ we have

$$
\left|x^{*}\left(Q_{n n}\left(e_{l}\right)\right)-x^{*}\left(Q_{m m}\left(e_{l}\right)\right)\right|<\varepsilon / 2
$$

It follows that for $n, m>N_{0}$,

$$
\left.\begin{array}{l}
\left|x^{*}\left(Q_{n n}(x)\right)-x^{*}\left(Q_{m m}(x)\right)\right| \leqslant\left|x^{*}\left(Q_{n n}(x)-Q_{n n}\left(e_{l}\right)\right)\right| \\
\quad+\left|x^{*}\left(Q_{n n}\left(e_{l}\right)\right)-x^{*}\left(Q_{m m}\left(e_{l}\right)\right)\right|+\left|x^{*}\left(Q_{m m}\left(e_{l}\right)-Q_{m m}(x)\right)\right| \\
\leqslant
\end{array} \quad \begin{array}{l}
\left\|x^{*}\right\| \sum_{0 \leqslant j \leqslant k-1}{ }_{k} C_{j}\left\|\check{Q}_{n n}\left(e_{l}^{j},\left(x-e_{l}\right)^{k-j}\right)\right\|+\frac{\varepsilon}{2} \\
\quad+\left\|x^{*}\right\| \sum_{0 \leqslant j \leqslant k-1}{ }_{k} C_{j}\left\|\check{Q}_{m m}\left(e_{l}^{j},\left(x-e_{l}\right)^{k-j}\right)\right\| \quad \text { (by the binomial theorem) } \\
\leqslant
\end{array} \quad\left\|x^{*}\right\|\left\|\check{Q}_{n n}\right\| \sum_{0 \leqslant j \leqslant k-1}{ }_{k} C_{j}\left\|e_{l}\right\|^{j}\left\|x-e_{l}\right\|^{k-j}+\frac{\varepsilon}{2}\right)
$$

where $\check{Q}_{m m}$ is the symmetric k-linear map associated to $Q_{m m}$. Define $Q_{0}(x)$ $=$ weak $-\lim _{n \rightarrow \infty} Q_{n n}(x)$ for $x \in E$. By Theorem 6 we have $Q_{0} \in \mathcal{P}\left({ }^{k} E: F\right)$.

We claim that $\left\|P_{0}-Q_{0}\right\|=d$.
Let $x \in E$ with $\|x\|=1$. By the Hahn-Banach theorem there is $x^{*} \in E^{*}$ with $\left\|x^{*}\right\|=1$ such that

$$
\left|x^{*}\left(\left(P_{0}-Q_{0}\right)(x)\right)\right|=\left\|\left(P_{0}-Q_{0}\right)(x)\right\| .
$$

We have

$$
\begin{aligned}
\left\|\left(P_{0}-Q_{0}\right)(x)\right\| & =\left|x^{*}\left(P_{0}(x)\right)-x^{*}\left(Q_{0}(x)\right)\right|=\left|x^{*}\left(P_{0}(x)\right)-\lim _{n \rightarrow \infty} x^{*}\left(Q_{n n}(x)\right)\right| \\
& =\lim _{n \rightarrow \infty}\left|x^{*}\left(\left(P_{0}-Q_{n n}\right)(x)\right)\right| \leqslant\left\|x^{*}\right\| \liminf _{n \rightarrow \infty}\left\|\left(P_{0}-Q_{n n}\right)(x)\right\| \\
& \leqslant \lim _{n \rightarrow \infty}\left\|P_{0}-Q_{n n}\right\|=d .
\end{aligned}
$$

Since $x \in E$ with $\|x\|=1$ was arbitrary we have $\left\|P_{0}-Q_{0}\right\| \leqslant d$. By $Q_{0} \in \mathcal{P}\left({ }^{k} E: F\right)$ and the definition of d, we have $\left\|P_{0}-Q_{0}\right\| \geqslant d$, showing $\left\|P_{0}-Q_{0}\right\|=d$.

It is clear that if $P_{0} \in \mathcal{P}(E)$ and Q, R are different elements of best approximation of P_{0} in $\mathcal{P}\left({ }^{k} E\right)$, then every element of the line segment of Q and R is a best approximation of P_{0} in $\mathcal{P}\left({ }^{k} E\right)$. We do not know if elements of best approximation in Theorem 7 are unique. In [1] it was shown that $\mathcal{P}\left({ }^{k} l_{p}\right)$ is reflexive if and only if $k<p<\infty$. We recall that a Banach space E is polynomially reflexive ($[3,5]$) if for every $n \in \mathbb{N}, \mathcal{P}\left({ }^{n} E\right)$ is a reflexive space. In ([1, 6]) it was shown that $E=T^{*}, l_{\infty} \dot{\otimes} l_{p}(2<p<\infty), l_{\infty} \dot{\otimes} T^{*}$ are polynomially reflexive where T^{*} be the original Tsirelson space.
Remark 8. Suppose E is a Banach space such that $\mathcal{P}\left({ }^{k} E\right)$ is reflexive for some $k \in \mathbb{N}$. Let M be a nonempty, closed, convex subset of $\mathcal{P}\left({ }^{k} E\right)$ and $P_{0} \in \mathcal{P}(E)$. Then there exists $Q_{0} \in M$ such that $\left\|P_{0}-Q_{0}\right\|=\operatorname{dist}\left(P_{0}, M\right)$.

References

[1] R. Alencar, R.M. Aron and S. Dineen, 'A reflexive space of holomorphic functions in infinitely many variables', Proc. Amer. Math. Soc. 90 (1984), 407-411.
[2] S.B. Chae, Holomorphy and calculus in normed spaces (Marcel Dekker, New York, 1985).
[3] Y.S. Choi and S.G. Kim, 'Polynomial properties of Banach spaces', J. Math. Anal. Appl. 190 (1995), 203-210.
[4] S. Dineen, Complex analysis on infinite dimensional spaces (Springer-Verlag, London, 1999).
[5] J.D. Farmer, 'Polynomial reflexivity in Banach spaces', Israel J. Math. 87 (1994), 257-273.
[6] M. Gonzalez and J.M. Gutierrez, 'Polynomial Grothendieck properties', Glasgow Math. J. 37 (1995), 211-219.
[7] R.B. Holmes and B.R. Kripke, 'Best approximation by compact operators', Indiana Univ. Math. J. 21 (1971), 255-263.
[8] I. Singer, Best approximation in normed linear spaces by elements of linear subspaces (Springer-Verlag, New York, Berlin, 1970).

Department of Mathematics
Kyungpook National University
Taegu
Korea (702-701)
e-mail: sgk317@knu.ac.kr

[^0]: Received 24th February, 2003
 This paper was supported by the Korea Research Foundation made in the program KRF-2001-015DP0010. The author wishes to sincerely thank Professor R.M. Aron and referees for several useful comments.

