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Abstract
This paper is concerned with the initial boundary value problem of a class of nonlinear
wave equations and reaction–diffusion equations with several nonlinear source terms of
different signs. For the initial boundary value problem of the nonlinear wave equations,
we derive a blow up result for certain initial data with arbitrary positive initial energy.
For the initial boundary value problem of the nonlinear reaction–diffusion equations, we
discuss some probabilities of the existence and nonexistence of global solutions and give
some sufficient conditions for the global and nonglobal existence of solutions at high
initial energy level by employing the comparison principle and variational methods.
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1. Introduction

In this paper, we consider the initial boundary value problem (IBVP) of the wave
equation with several nonlinear source terms of different signs,

utt − ∆u = f (u) ≡
l∑

k=1

ak|u|
pk−1u −

s∑
j=1

b j|u|
q j−1u, x ∈Ω, t > 0, (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈Ω; (1.3)
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and the IBVP of reaction–diffusion equations with several nonlinear source terms of
different signs,

ut − ∆u = f (u) ≡
l∑

k=1

ak|u|
pk−1u −

s∑
j=1

b j|u|
q j−1u, x ∈Ω, t > 0, (1.4)

u(x, 0) = u0(x), x ∈Ω, (1.5)

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0. (1.6)

Here Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω and ak > 0,
pk > 1, 1 ≤ k ≤ l, b j > 0, q j > 1, 1 ≤ j ≤ s. Furthermore, pk and q j satisfy1 < qs < qs−1 < · · · < q1 = q < p = pl < pl−1 < · · · < p1 <∞ if n = 1, 2,

1 < qs < qs−1 < · · · < q1 = q < p = pl < pl−1 < · · · < p1 ≤
n + 2
n − 2

if n ≥ 3.
(1.7)

This paper continues the work done by Liu and Xu [7], so we begin with just
a quick introduction. We refer the reader to the paper by Liu and Xu [7] and the
references therein for background. The motivation for studying such combined power
type nonlinearities can also be found in papers by Li and Zhang [4], Tao et al. [10] and
Vuillermot [11]. Liu and Xu [7] obtained both the global and nonglobal existence of
solutions for problems (1.1)–(1.3) and (1.4)–(1.6) for the case E(0) < d, where E(0) is
the initial energy and d is the depth of the potential well that will be given later. They
only proved the global existence of solutions for problem (1.1)–(1.3) in the critical
case E(0) = d. For this critical case, the nonexistence of global solutions for problem
(1.1)–(1.3) and the global existence of solutions for problem (1.4)–(1.6) were given by
Yu et al. [12]. However, the depth of the potential well d for problems (1.1)–(1.3) and
(1.4)–(1.6) is usually very small, which means that the initial conditions mostly do not
satisfy the high energy case E(0) > d. To our knowledge, the global well-posedness
of solutions for problems (1.1)–(1.3) and (1.4)–(1.6) at the high initial energy level
E(0) > d is an open problem, and it is tackled in this paper.

Wave equation. In the low initial energy case E(0) < d, it is required to prove the
invariance of the unstable set under the flow of problem (1.1)–(1.3) by contradiction
in advance. This plays an important role in proving the finite time blow-up of
solutions with arbitrary positive initial energy. In other words, we should deduce
that J(u(t0)) ≥ d, which is contradictory to J(u(t0)) ≤ E(0) < d. Under the condition
E(0) > d, this contradiction is not established, which is the biggest difficulty we face.
Thus it is worth investigating the qualitative properties of solutions for problem (1.1)–
(1.3) in the case of E(0) > d. By utilizing the technique of Gazzola and Squassina [2]
and the so-called concavity method [5, 6], this paper obtains the invariant unstable
set and derives a sufficient condition on the initial data with arbitrary positive initial
energy such that the corresponding local solution of problem (1.1)-(1.3) blows up in
finite time.

Reaction–diffusion equation. Although Gazzola and Weth [3] have obtained
the global existence and finite time blow-up of solutions for problem (1.4)–(1.6)
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with f (u) = |u|p−1u at high initial energy level J(u0) > d by the comparison principle
and variational methods, we find that there is only one source term in their problem and
the sign of that source term ( f (u) = |u|p−1u) is the same as the sign of u. In addition, for
problem (1.4)–(1.6) with several nonlinear source terms of different signs, in the high
initial energy case J(u0) > d we cannot find the corresponding comparison principle,
which plays a crucial role in proving the global existence of solutions for problem
(1.4)–(1.6) by employing the method of Gazzola and Weth [3]. Hence it is of great
meaning to solve this open problem. In this paper, by employing the strong maximum
principle we obtain the comparison principle of problem (1.4)–(1.6). Then, by using
this comparison principle together with variational methods, we prove finite time blow-
up and obtain global solutions for problem (1.4)–(1.6) for the high initial energy case
J(u0) > d.

The paper is organized as follows. The blow-up result of solutions with arbitrary
positive initial energy for problem (1.1)–(1.3) is proved in Section 2. In Section 3 we
determine for which initial data u0 in the phase space H1

0(Ω) the solution of problem
(1.4)–(1.6) blows up and for which initial data u0 the solution is globally defined at the
high initial energy level J(u0) > d.

Throughout the present paper, the following notation is used for precise statements:
Lp(Ω) (2 ≤ p <∞) denotes the usual space of all Lp-functions on Ω with norm

‖u‖p = ‖u‖Lp(Ω), ‖u‖ = ‖u‖L2(Ω),

and inner product

(u, v) =

∫
Ω

uv dx.

2. Wave equation: high energy blow-up

In order to obtain the blow-up result of solutions with arbitrary positive initial
energy for problem (1.1)–(1.3), we first introduce the energy functional

E(t) ≡ E(u) =
1
2
‖ut‖

2 +
1
2
‖∇u‖2 −

l∑
k=1

ak

pk + 1
‖u‖pk+1

pk+1 +

s∑
j=1

b j

q j + 1
‖u‖

q j+1
q j+1, (2.1)

the Nehari functional

I(t) ≡ I(u) = ‖∇u‖2 −
l∑

k=1

ak‖u‖
pk+1
pk+1 +

s∑
j=1

b j‖u‖
q j+1
q j+1 (2.2)

and the unstable set
V = {u ∈ H1

0(Ω) | I(u) < 0}.

Next we give a definition of the weak solution for problem (1.1)–(1.3).

D 2.1. We say that u = u(x, t) is a weak solution of problem (1.1)–(1.3) on
Ω × [0, T ) if u ∈ L∞(0, T ; H1

0(Ω)), ut ∈ L∞(0, T ; L2(Ω)) and
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(i) (ut, v) +
∫ t

0
(∇u, ∇v) dτ =

∫ t

0
( f (u), v) dτ + (u1, v) for all v ∈ H1

0(Ω), t ∈ (0, T );
(ii) u(x, 0) = u0(x) in H1

0(Ω), ut(x, 0) = u1(x) in L2(Ω);
(iii) E(t) = E(0), t ∈ [0, T ).

Definition 2.1 implies that if u is a weak solution of problem (1.1)–(1.3) on
Ω × [0, T ), then utt ∈ L∞(0, T ; H−1(Ω)) and

〈utt, v〉 = ( f (u), v) − (∇u, ∇v) for all v ∈ H1
0(Ω), t ∈ (0, T ), (2.3)

where 〈·, ·〉 denotes the standard pairing of H−1(Ω) and H1
0(Ω).

In order to obtain the invariance of the unstable set V under the flow of problem
(1.1)–(1.3), which plays an important role in obtaining the global nonexistence of the
weak solution for problem (1.1)–(1.3), we prove the following lemma in advance.

L 2.2. Assume that u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) and let u(x, t) be the weak

solution of equation (1.1) with initial data (u0, u1). Assume that the initial data satisfy∫
Ω

u0u1 dx ≥ 0. (2.4)

Then the map t 7→ ‖u(t)‖2 is strictly increasing as long as u(t) ∈ V.

P. Let
F(t) = ‖u(t)‖2. (2.5)

Then
F′(t) = 2(u, ut). (2.6)

Moreover, by using (2.3) and

〈utt(t), u(t)〉 =
d
dt

(u, ut) − ‖ut(t)‖2 for almost all t ∈ [0,∞),

we have
F′′(t) = 2〈utt, u〉 + 2‖ut‖

2. (2.7)

Notice that by testing equation (1.1) with u we get

〈utt, u〉 + ‖∇u‖2 =

l∑
k=1

ak‖u‖
pk+1
pk+1 −

s∑
j=1

b j‖u‖
q j+1
q j+1 for t ∈ [0,∞).

Then equation (2.7) gives
F′′(t) = 2‖ut‖

2 − 2I(u). (2.8)

Furthermore, from u(t) ∈ V ,

F′′(t) > 0 for t ∈ [0, Tmax).

By inequality (2.4), we have F′(0) =
∫

Ω
u0u1 dx ≥ 0. We see that F′(t) > F′(0) ≥ 0,

namely F′(t) > 0. Therefore, the map t 7→ ‖u(t)‖2 is strictly increasing. �
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In the following, we show the invariance of the unstable set under the flow of
problem (1.1)–(1.3).

L 2.3. Suppose that u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω), and that assumption (1.7) and

inequality (2.4) hold. Assume that the initial data satisfy

‖u0‖
2 > αE(0), (2.9)

where α = (2/C)(1 + 2/(p − 1)) and C is the coefficient of the Poincaré inequality

‖∇u‖2 ≥C‖u‖2.

Then all solutions of problem (1.1)–(1.3) with E(0) > 0 belong to V, provided u0 ∈ V.

P. We prove that u(t) ∈ V . If this is false, let t0 ∈ (0, T ) be the first time such that
I(u(t)) = 0, that is, I(u(t)) < 0 for t ∈ [0, t0) and I(u(t0)) = 0. Now let F(t) be defined
by (2.5) above. Hence from Lemma 2.2, we obtain that F(t) and F′(t) are strictly
increasing on the interval [0, t0). Then by inequality (2.9),

F(t) > ‖u0‖
2 > αE(0) for all t ∈ [0, t0).

Moreover, from the continuity of u(t) in t,

F(t0) > αE(0). (2.10)

On the other hand, by equations (2.1) and (2.2) and assumption (1.7), we obtain

E(0) = E(t0) ≥
1
2
‖∇u(t0)‖2 −

l∑
k=1

ak

pk + 1
‖u(t0)‖pk+1

pk+1 +

s∑
j=1

b j

q j + 1
‖u(t0)‖q j+1

q j+1

≥
1
2
‖∇u(t0)‖2 −

1
p + 1

( l∑
k=1

ak‖u(t0)‖pk+1
pk+1 −

s∑
j=1

b j‖u(t0)‖q j+1
q j+1

)
=

(1
2
−

1
p + 1

)
‖∇u(t0)‖2 +

1
p + 1

I(u(t0)).

Note that I(u(t0)) = 0. Hence

‖∇u(t0)‖2 ≤ 2
(
1 +

2
p − 1

)
E(0). (2.11)

Using the Poincaré inequality
‖∇u‖2 ≥C‖u‖2,

we obtain from inequality (2.11) that

F(t0) = ‖u(t0)‖2 ≤
1
C
‖∇u(t0)‖2 ≤

2
C

(
1 +

2
p − 1

)
E(0) = αE(0). (2.12)

Inequality (2.12) contradicts inequality (2.10). �
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We now present the main blow-up theorem for the weak solution with arbitrary
positive initial energy.

T 2.4. Let u0(x) ∈ H1
0(Ω), u1(x) ∈ L2(Ω) be given and assume that assump-

tion (1.7) and inequalities (2.4) and (2.9) hold. Assume that E(0) > 0 and u0 ∈ V.
Then the weak solution of problem (1.1)–(1.3) blows up in finite time.

P. Let u(t) be any weak solution of problem (1.1)–(1.3) with E(0) > 0 and u0 ∈ V .
Then from Lemma 2.3 we have u(t) ∈ V . Next, we prove that the weak solution of
problem (1.1)–(1.3) blows up in finite time. Suppose by contradiction that the solution
u(x, t) is global. Then for any T0 > 0, we define the auxiliary function F(t) by (2.5).

We have F(t) > 0 for all t ∈ [0, T0]. From the continuity of F(t) in t, there exists
ρ > 0 (independent of the choice of T0) such that

F(t) ≥ ρ for all t ∈ [0, T0]. (2.13)

Moreover, for t ∈ [0, T0], we obtain equations (2.6) and (2.8). From (2.6), by the
Schwarz inequality,

F′(t)2 = 4(u, ut)2 ≤ 4‖u‖2‖ut‖
2 = 4F(t)‖ut‖

2. (2.14)

Hence from inequality (2.14) and equation (2.8),

F′′(t)F(t) −
p + 3

4
F′(t)2 ≥ F(t)(F′′(t) − (p + 3)‖ut‖

2)

≥ F(t)(2‖ut‖
2 − 2I(u) − (p + 3)‖ut‖

2).

Now define
ξ(t) = −(p + 1)‖ut‖

2 − 2I(u). (2.15)

Note that
E(t) = E(0).

Then by equations (2.1) and (2.2) and assumption (1.7),

E(0) ≥
1
2
‖ut‖

2 +

(1
2
−

1
p + 1

)
‖∇u‖2 +

1
p + 1

I(u). (2.16)

Substituting (2.16) into (2.15), we deduce that

ξ(t) ≥ (p − 1)‖∇u‖2 − 2(p + 1)E(0).

Let
θ(t) = (p − 1)‖∇u‖2 − 2(p + 1)E(0).

Then from Lemma 2.2 and the Poincaré inequality, we conclude that

2
C

(
1 +

2
p − 1

)
E(0) < ‖u0‖

2 < ‖u‖2 <
1
C
‖∇u‖2. (2.17)
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By inequality (2.17), we have θ(t) > 0, that is, ξ(t) > σ > 0. Therefore,

F′′(t)F(t) −
p + 3

4
F′(t)2 ≥ ρσ > 0, t ∈ [0, T0].

Setting y(t) = F(t)−(p−1)/4, this inequality together with (2.13) gives

y′′(t) ≤ −
p − 1

4
σ

ρ
y(t), t ∈ [0, T0].

This proves that y(t) reaches 0 in finite time, say t→ T∗. Since T∗ is independent of
the initial choice of T0, we may assume that T∗ < T0. This tells us that

lim
t→T∗

F(t) = +∞.

This completes the proof. �

3. Reaction–diffusion: high energy global well-posedness

3.1. Set-up and notations In order to obtain the global existence and blow-up of
solutions for problem (1.4)–(1.6) at high initial energy level, we first define the cone
of nonnegative functions

K = {u ∈ H1
0(Ω) | u ≥ 0 almost everywhere in Ω}.

Given any u ∈ H1
0(Ω), we denote its positive part by

u+(x) := max{u(x), 0}

and its negative part by
u−(x) := min{u(x), 0}.

For problem (1.4)–(1.6) we also define the energy functional J(u) and the Nehari
functional I(u):

J(u) =
1
2
‖∇u‖2 −

l∑
k=1

ak

pk + 1
‖u‖pk+1

pk+1 +

s∑
j=1

b j

q j + 1
‖u‖

q j+1
q j+1, (3.1)

I(u) = ‖∇u‖2 −
l∑

k=1

ak‖u‖
pk+1
pk+1 +

s∑
j=1

b j‖u‖
q j+1
q j+1. (3.2)

Since the Nehari mainfold plays a crucial role, we define

N = {u ∈ H1
0(Ω)\{0} | I(u) = 0},

which separates the two unbounded sets

N+ = {u ∈ H1
0(Ω) | I(u) > 0} and N− = {u ∈ H1

0(Ω) | I(u) < 0}.
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Energy d is characterized by

d = min
u∈H1

0 (Ω)\{0}
max
s≥0

J(su) = min
u∈N

J(u).

We also need to consider the (open) sublevels of J:

Jk = {u ∈ H1
0(Ω) | J(u) < k}.

Hence,

Nα =N ∩ Jα ≡

u ∈ N
∣∣∣∣∣‖u‖H1

0
<

√
2d(p + 1)

p − 1

 , ∅ for all α > d.

The above alternative characterization of d also shows that

dist(0,N) = min
u∈N
‖u‖H1

0
= δ :=

√
2d(p + 1)

p − 1
> 0.

For all α > d, we define

λα = inf{‖u‖ | u ∈ Nα}, Λα = sup{‖u‖ | u ∈ Nα}. (3.3)

We have the following monotonicity properties:

α 7→ λα is nonincreasing, α 7→ Λα is nondecreasing.

In the following, we let T ∗(u0) denote the maximal existence time of the solution
with initial condition u0 ∈ H1

0(Ω). We denote by S (t) the nonlinear semigroup
associated with problem (1.4)–(1.6). Instead of u = u(t) we also write S (t)u0 for
t < T ∗(u0). The smoothing properties of this semigroup suggest that we consider the
space

C1
0(Ω) := {u ∈C1(Ω) | u = 0 on ∂Ω} = C1(Ω) ∩ H1

0(Ω),

endowed with the standard norm ‖ · ‖C1 of C1(Ω). If T ∗(u0) =∞, we denote by

ω(u0) :=
⋂
t≥0

{u(s) : s ≥ t}

the ω-limit set of u0 ∈ H1
0(Ω).

Let us introduce the sets

B = {u0 ∈ H1
0(Ω) | the solution u = u(t) of (1.4)–(1.6) blows up in finite time},

G = {u0 ∈ H1
0(Ω) | the solution u = u(t) of (1.4)–(1.6) exists for all t > 0},

G◦ = {u0 ∈G | u(t) 7→ 0 in H1
0(Ω) as t→∞}.
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3.2. Stationary problem and comparison principle To obtain the comparison
principle of problem (1.4)–(1.6), which is used to obtain the global existence and blow-
up of solutions for (1.4)–(1.6) with high initial energy J(u0) > d, we need to consider
the following stationary problem:

−∆u ≡ f (u) =

l∑
k=1

ak|u|
pk−1u −

s∑
j=1

b j|u|
q j−1u in Ω, (3.4)

u = 0 on ∂Ω. (3.5)

For problem (3.4)–(3.5), Simon [9] has proved the following lemma.

L 3.1 [9]. Let u0 ∈ H1
0(Ω) be such that T ∗(u0) =∞. Then we have the

convergence of solutions S (t)u0 to the solution of problem (3.4)–(3.5).

Throughout this paper, it is important to prove the comparison principle of problem
(1.4)–(1.6). To make extensive use of the following comparison principle for initial
data u0 ∈ H1

0(Ω), we first introduce some preliminary results (Lemma 3.2, Theorem 3.3
and Lemma 3.4).

L 3.2 (Gronwall inequality). Let y(t) ∈ L1[0, T ] and y(0) = a. If there exists a
constant b such that (d/dt)y(t) ≤ by(t), then y(t) ≤ aebt.

T 3.3 [8]. T ∗ : H1
0(Ω)→ (0,∞] is continuous. Moreover, for all u0 ∈ H1

0(Ω)
and for all t ∈ (0, T ∗(u0)), the semigroup S (t) maps an H1

0(Ω) neighbourhood of u0

continuously into C1
0(Ω).

L 3.4 (Strong maximum principle [1, p. 332]). Assume that

u(x, t) ∈C2,1(Ω × (0, T ))
⋂

C(Ω̄ × (0, T )),

where Ω is connected and bounded.

(i) If ut − ∆u ≤ 0 and u attains its maximum over Ω̄ × (0, T ) at a point (x0, t0) ∈
Ω × (0, T ), then u is constant on t = t0, x ∈Ω.

(ii) If ut − ∆u ≥ 0 and u attains its minimum over Ω̄ × (0, T ) at a point (x0, t0) ∈
Ω × (0, T ), then u is constant on t = t0, x ∈Ω.

We now state and prove the comparison principle of problem (1.4)–(1.6), which is
applied to prove the global existence and nonexistence of solutions.

L 3.5 (Comparison principle). Let u0, v0 ∈ H1
0(Ω) be such that u0 − v0 ∈ K. Then

[S (t)u0 − S (t)v0] ∈ K for all t ≥ 0. Moreover, if u0 , v0 then, for t > 0,

S (t)u0 − S (t)v0 > 0 in Ω.

P. We put u(t) := S (t)u0, v(t) := S (t)v0. For all T < T := min{T ∗(u0), T ∗(v0)}, let
ω := u − v. We subtract the two equations for u and v given by (1.4). We have

ωt − ∆ω =

l∑
k=1

ak(|u|pk−1u − |v|pk−1v) −
s∑

j=1

b j(|u|q j−1u − |v|q j−1v) in Ω × (0, T ).
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Use the mean value theorem, and for θ ∈ (0, 1) assume that

f (A) =

l∑
k=1

ak|A|
pk−1A −

s∑
j=1

b j|A|
q j−1A.

Then

f (A1) − f (A2) =

( l∑
k=1

ak

∫ 1

0
pk|A1 + θ(A1 − A2)|pk−1 dθ

)
(A1 − A2)

−

( s∑
j=1

b j

∫ 1

0
q j|A1 + θ(A1 − A2)|q j−1 dθ

)
(A1 − A2).

Let

f (A1) =

l∑
k=1

ak|u|
pk−1u −

s∑
j=1

b j|u|
q j−1u,

f (A2) =

l∑
k=1

ak|v|
pk−1v −

s∑
j=1

b j|v|
q j−1v.

Then
l∑

k=1

ak(|u|pk−1u − |v|pk−1v) −
s∑

j=1

b j(|u|q j−1u − |v|q j−1v)

=

( l∑
k=1

ak

∫ 1

0
pk|u + θω|pk−1 dθ −

s∑
j=1

b j

∫ 1

0
q j|u + θω|q j−1 dθ

)
ω.

For x ∈Ω, t ≥ 0, let

H(x, t) =

l∑
k=1

ak pk

∫ 1

0
|u + θω|pk−1 dθ −

s∑
j=1

b jq j

∫ 1

0
|u + θω|q j−1 dθ.

Because u, v are continuous functions, for all T ∈ (0, T ) we obtain

MT := sup
Ω×(0,T )

H(x, t) <∞.

Then 
ωt − ∆ω = H(t)ω in Ω × (0, T ),

ω(0) = u0 − v0 ≥ 0 in Ω,

ω = 0 on ∂Ω × (0, T ).

(3.6)

If we multiply (3.6) by ω− and integrate on Ω, then

1
2

d
dt
‖ω−(t)‖2 =

∫
Ω

H(t)|ω−(t)|2 dx − ‖∇ω−(t)‖2 ≤ MT ‖ω
−(t)‖2
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for all t ∈ [0, T ]. By the Gronwall inequality and since T is arbitrary, this proves that
ω−(t) ≡ 0 and, in turn, the comparison principle for smooth initial data u0 and v0.

For u0, v0 ∈ H1
0(Ω), choose two sequences {um

0 }, {v
m
0 } ⊂C∞c (Ω). For m→∞, we have

um
0 → u0, vm

0 → v0 in H1
0(Ω), vm

0 ≤ v0 ≤ u0 ≤ um
0 in Ω for all m. If v(X, T ) > u(X, T )

for some (X, T ) ∈Ω × (0, T ), vm = S (t)vm
0 , um = S (t)um

0 , by Theorem 3.3 we also have
vm(X, T ) > v(X, T ) > u(X, T ) > um(X, T ) for sufficiently large m. Then vm

0 > v0 > u0 >
um

0 . This contradicts the just proved comparison principle for smooth initial data.
Then we have ω(t) = S (t)u0 − S (t)v0 ≥ 0 and [S (t)u0 − S (t)v0] ∈ K. Now we prove
H(t) ≥ 0. Arguing by contradiction, suppose that H(t) < 0. Thenωt − 4ω = H(t)ω ≤ 0.
From Lemma 3.4 (the strong maximum principle), if ωt − ∆ω ≤ 0 and ω attains
its maximum over Ω̄ × (0, T ) at a point (x0, t0) ∈Ω × (0, T ), then ω = c. From the
Dirichlet boundary condition ω|∂Ω = 0 we know that ω = 0, which contradicts the fact
that ω is a nontrivial solution. Therefore, H(t) ≥ 0. Since ω(t) = S (t)u0 − S (t)v0

satisfies the equation ωt − 4ω = H(t)ω ≥ 0 together with a homogeneous Dirichlet
boundary condition, the strong maximum principle implies that ω(t) > 0 in Ω. The
comparison principle is proved. �

L 3.6. If u is a nontrivial solution of problem (3.4)–(3.5), then J′′(u)(u, u) < 0
and the first eigenvalue of the eigenvalue problem

−∆ψ −

l∑
k=1

ak pk|u|
pk−1ψ +

s∑
j=1

b jq j|u|
q j−1ψ = λψ in Ω,

ψ = 0 on ∂Ω,

(3.7)

is negative.

P. A nontrivial solution u of problem (3.4)–(3.5) satisfies

‖∇u‖2 =

l∑
k=1

ak‖u‖
pk+1
pk+1 −

s∑
j=1

b j‖u‖
q j+1
q j+1,

which implies that I(u) = 0. Hence

J′(u) = lim
ε→0

J((1 + ε)u) − J(u)
ε

= ‖∇u‖2 −
l∑

k=1

ak‖u‖
pk+1
pk+1 +

s∑
j=1

b j‖u‖
q j+1
q j+1

= 0,

J′′(u) = 2 lim
ε→0

J((1 + ε)u) − J(u)
ε2

= ‖∇u‖2 −
l∑

k=1

ak pk‖u‖
pk+1
pk+1 +

s∑
j=1

b jq j‖u‖
q j+1
q j+1
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<

l∑
k=1

ak‖u‖
pk+1
pk+1 −

s∑
j=1

b j‖u‖
q j+1
q j+1 −

l∑
k=1

ak pk‖u‖
pk+1
pk+1 +

s∑
j=1

b j pk‖u‖
q j+1
q j+1

= (1 − pk)
l∑

k=1

ak‖u‖
pk+1
pk+1 − (1 − pk)

s∑
j=1

b j‖u‖
q j+1
q j+1

= (1 − pk)‖∇u‖22 < 0.

Multiplying the first equation in problem (3.7) by u and integrating the result,

‖∇u‖2 −
l∑

k=1

ak pk‖u‖
pk+1
pk+1 +

s∑
j=1

b jq j‖u‖
q j+1
q j+1 = λ‖u‖2.

Consequently, the first eigenvalue of problem (3.7) is negative. �

T 3.7. Assume that u1, u2 ∈ H1
0(Ω)\{0} solve problem (3.4)–(3.5) with u1 ≤ u2.

Then either u1 < 0 < u2 or u1 ≡ u2.

P. Suppose that u1 . u2. Then, by comparison, we have u1 < u2 in Ω. By
Lemma 3.6, the first eigenvalues λu1 and λu2 of the eigenvalue problems

−∆ψ −

l∑
k=1

ak pk|ui|
pk−1ψ +

s∑
j=1

b jq j|ui|
q j−1ψ = λψ in Ω,

ψ = 0 on ∂Ω,

i = 1, 2, are negative. Denote by e1 and e2, respectively, the corresponding positive
first eigenfunctions. Then

J′′(u1)(e1, e1) < 0 and J′′(u2)(e2, e2) < 0.

Since J′′ is continuous,

J(u1 + δe1) = J(u1) +
δ2

2
J′′(u1)(e1, e1) + o(δ2) < J(u1), (3.8)

J(u2 − δe2) = J(u2) +
δ2

2
J′′(u2)(e2, e2) + o(δ2) < J(u2) (3.9)

for sufficiently small δ > 0. Consider the closed set

Q = {w ∈ H1
0(Ω) | u1 ≤ w ≤ u2 almost everywhere in Ω} ⊂ H1

0(Ω)

and put
m := inf

u∈Q
J(u).

Since u1 < u1 + δe1 < u2 − δe2 < u2 for small δ > 0, inequalities (3.8) and (3.9) imply
that

m < min{J(u1), J(u2)}. (3.10)
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We claim that m is achieved by a function w ∈ Q. Indeed, let {wn}n ⊂ Q be a minimizing
sequence for J|Q. Then

‖∇wn‖
2 = 2J(wn) +

l∑
k=1

2ak

pk + 1
‖wn‖

pk+1
pk+1 −

s∑
j=1

2b j

q j + 1
‖wn‖

q j+1
q j+1

≤ 2J(wn) +

l∑
k=1

2ak

pk + 1
(‖u1‖

pk+1
pk+1 + ‖u2‖

pk+1
pk+1)

−

s∑
j=1

2b j

q j + 1
(‖u1‖

q j+1
q j+1 + ‖u2‖

q j+1
q j+1)

≤ C,

where C > 0 is a constant independent of n. Passing to a subsequence, we have
wn→ w ∈ H1

0(Ω) and

wn→ w almost everywhere in Ω,

‖wn‖
pk+1
pk+1→ ‖w‖

pk+1
pk+1, ‖wn‖

q j+1
q j+1→ ‖w‖

q j+1
q j+1.

We conclude that w ∈ Q and that

J(w) =
1
2
‖∇w‖2 −

l∑
k=1

ak

pk + 1
‖w‖pk+1

pk+1 +

s∑
j=1

b j

q j + 1
‖w‖

q j+1
q j+1

≤
1
2

lim inf
n→∞

‖∇wn‖
2 −

l∑
k=1

ak

pk + 1
‖wn‖

pk+1
pk+1 +

s∑
j=1

b j

q j + 1
‖wn‖

q j+1
q j+1

= lim inf
n→∞

J(wn) = m.

This forces J(w) = m, so that w is a minimizer for J|Q. By (3.10) we have w , u1,
w , u2. Moreover, the comparison principle implies that S (t)w ∈ Q and therefore
J(S (t)w) ≥ m for all t > 0. On the other hand,

d
dt

J(u) = −‖ut‖
2 ≤ 0,

so J(S (t)w) ≥ m for all t > 0. These two facts enable us to conclude that S (t)w = w
for all t > 0, which implies that w is a solution of problem (3.4)–(3.5) and u1 < w < u2.
For |ε| sufficiently small, we have (1 + ε)w ∈ Q such that the minimization property of
w yields

J′′(w)(w, w) = 2 lim
t→0

J((1 + ε)w) − J(w)
ε2

≥ 0.

By Lemma 3.6, this implies that w ≡ 0 and completes the proof. �

R 3.8. The result and proof of Theorem 3.7 can carry over to the case where u1

is a subsolution and u2 is a supersolution of problem (3.4)–(3.5).
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3.3. Probabilities of the existence and nonexistence of global solutions We now
obtain a result on nontrivial solutions of problem (3.4)–(3.5), which plays a necessary
role in obtaining the global existence and blow-up at high energy level.

T 3.9. Let u be a nontrivial solution of problem (3.4)–(3.5), and u0 ∈ H1
0(Ω),

u0 . u.

(i) If u+ . 0 and u0 ≥ u, then u0 ∈ B.
(ii) If u− . 0 and u0 ≤ u, then u0 ∈ B.

(iii) If u > 0 and u ≥ u0 ≥ −u, then u0 ∈ G0.

P. (i) If u0 is not in B, then by Lemma 3.1 we have s(t)u0→ u′ as t→∞, where
u′ is a solution of problem (3.4)–(3.5). By comparison and since u0 . u, we have
S (t)u0 > S (t)u. Taking the limits of both sides, we obtain u′ > u. By Theorem 3.7 we
have u′ > 0 > u, which contradicts u+ . 0. Thus u0 ∈ B. Part (ii) is proved in the same
way.

(iii) Since u ≥ u0 ≥ −u, by comparison we have u ∈ G. By Lemma 3.1, we have
s(t)u0→ u′ as t→∞, where u′ is a solution of problem (3.4)–(3.5). We also obtain
u > u′ > −u by comparison. If u . 0, by Theorem 3.7 we have u > 0 > u′, which
contradicts u′ > 0 > −u. Hence u′ = 0, that is, u0 ∈ G0. �

L 3.10. Let u0 ∈ H1
0(Ω) and put u(t) = S (t)u0 for t ∈ [0, T ∗(u0)). Then for all

t ∈ (0, T ∗(u0)),
d
dt
‖u(t)‖2 = −2I(u). (3.11)

P. Multiplying equation (1.4) by u(t) and integrating the obtained result on Ω,∫
Ω

utu dx −
∫

Ω

∆uu dx =

l∑
k=1

ak

∫
Ω

|u|pk−1uu dx −
s∑

j=1

b j

∫
Ω

|u|q j−1uu dx.

Equivalently,

1
2

d
dt
‖u(t)‖2 = −

(
‖∇u(t)‖2 −

l∑
k=1

ak‖u(t)‖pk+1
pk+1 +

s∑
j=1

b j‖u(t)‖q j+1
q j+1

)
,

which implies the result. �

We see that Lemma 3.10 implies that, in a weak sense, equation (1.4) is dissipative
in N+. However, the following result shows that initial data in N+ with high energy
may generate both vanishing solutions and solutions which blow up.

T 3.11 (Global existence and blow-up at high energy level). For any M > 0,
there exist uM , vM ∈ N+ ∩ K ∩C1

0(Ω) with J(uM), J(vM) ≥ M and uM ∈ G0, vM ∈ B.

P. Let M > 0 and let v denote a positive solution of problem (3.4)–(3.5). Let c > 0
and let Ω′ ⊂Ω be an open subset such that v > c on Ω′. For k > 0, choose a positive
function ϕk ∈C1

0(Ω′) such that ‖∇ϕk‖ ≥ k and ‖ϕk‖∞ ≤ c.
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Fix k > 0 and put ω+ := v + ϕk, ω− := v − ϕk. Then ω± ∈ K, and

‖∇ω±‖ ≥ ‖ϕk‖ − ‖∇v‖ ≥ k − ‖∇v‖,

‖ω±‖pk+1 ≤ ‖v‖pk+1 + ‖ϕk‖pk+1 ≤ ‖v‖pk+1 + c|Ω′|1/(pk+1).

Hence, if k is sufficiently large,

J(ω±) =
1
2
‖∇ω±‖

2 −

l∑
k=1

ak

pk + 1
‖ω±‖

pk+1
pk+1 +

s∑
j=1

b j

q j + 1
‖ω±‖

q j+1
q j+1

≥
1
2
‖∇ω±‖

2 −

l∑
k=1

ak

pk + 1
‖ω±‖

pk+1
pk+1

≥
1
2

(k − ‖∇v‖)2 −

l∑
k=1

ak

pk + 1
(‖v‖pk+1 + c|Ω′|1/pk+1)pk+1

and

I(ω±) = ‖∇ω±‖
2 −

l∑
k=1

ak‖ω±‖
pk+1
pk+1 +

s∑
j=1

b j‖ω±‖
q j+1
q j+1

≥ ‖∇ω±‖
2 −

l∑
k=1

ak‖ω±‖
pk+1
pk+1

> (k − ‖∇v‖)2 −

l∑
k=1

ak(‖v‖pk+1 + c|Ω′|1/pk+1)pk+1.

For k sufficiently large we have both J(ω±) ≥ M and I(ω±) > 0, hence ω± ∈ N+. For
such a number k, take uM = ω− and vM = ω+. Because 0 ≤ uM ≤ v, we have uM ∈ G0

by Theorem 3.9(iii). Because vM ≥ v, we also have vM ∈ B by Theorem 3.9(i). �

3.4. Sufficient conditions for global and nonglobal existence of solutions In order
to acquire an abstract criterion for vanishing (respectively, blow-up) in terms of the
variational values λα and Λα defined by (3.3), we need some lemmas.

L 3.12 [7]. Let u ∈ H1
0(Ω) and ‖∇u‖ , 0. Then:

(i) lims→0 J(su) = 0 and lims→+∞ J(su) = −∞;
(ii) on the interval 0 < s <∞, there exists a unique s∗ = s∗(u) such that

d
ds

J(su)
∣∣∣∣∣
s=s∗

= 0;

(iii) J(su) is increasing on 0 ≤ s ≤ s∗, decreasing on s∗ ≤ s <∞, and takes its
maximum at s = s∗;

(iv) I(su) > 0 for 0 < s < s∗, I(su) < 0 for s∗ < s <∞, and I(s∗u) = 0.
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L 3.13. J(u) > 0 for any u ∈ N+. Moreover, for all u ∈ N , we have J(u) =

maxs≥0 J(su). Finally, for any k > 0, the set Jk ∩ N+ is bounded in H1
0(Ω).

P. As in Lemma 3.12, for s > 0,

J(su) =
s2

2
‖∇u‖2 −

l∑
k=1

ak spk+1

pk + 1
‖u‖pk+1

pk+1 +

s∑
j=1

b jsq j+1

q j + 1
‖u‖

q j+1
q j+1,

d
ds

J(su) = s‖∇u‖2 −
l∑

k=1

ak spk‖u‖pk+1
pk+1 +

s∑
j=1

b js
q j‖u‖

q j+1
q j+1,

and there exists an s∗ such that (d/ds)J(su)|s=s∗ = 0. From equations (3.1) and (3.2),
assumption (1.7) and since u ∈ N+,

J(u) =
1
2
‖∇u‖2 −

l∑
k=1

ak

pk + 1
‖u‖pk+1

pk+1 +

s∑
j=1

b j

q j + 1
‖u‖

q j+1
q j+1

>
1

p + 1
I(u) +

p − 1
2(p + 1)

‖∇u‖2 > 0. (3.12)

For u ∈ N , we obtain

I(u) = ‖∇u‖2 −
l∑

k=1

ak‖u‖
pk+1
pk+1 +

s∑
j=1

b j‖u‖
q j+1
q j+1 = 0.

From Lemma 3.12(iv) we have s∗ = 1 and by Lemma 3.12(iii) this implies that
J(u) = maxs≥0 J(su) for any u ∈ N . From J(u) < k, inequality (3.12) and I(u) > 0,

‖∇u‖2 <
2(p + 1)

p − 1
k.

Therefore, for any k > 0, the set Jk ∩ N+ is bounded in H1
0(Ω). �

We now give an abstract criterion for vanishing (respectively, blow-up) in terms of
the variational values λα and Λα defined by (3.3).

T 3.14. If u0 ∈ N+ and ‖u0‖ ≤ λJ(u0) then u0 ∈ G0. If u0 ∈ N− and ‖u0‖2 ≥ ΛJ(u0)

then u0 ∈ B.

P. Let u(t) := S (t)u0 for t ∈ [0, T ∗(u0)). Multiplying equation (1.4) by ut(t) and
integrating the obtained result on Ω,∫

Ω

utut dx −
∫

Ω

∆uut dx =

l∑
k=1

ak

∫
Ω

|u|pk−1uut dx −
s∑

j=1

b j

∫
Ω

|u|q j−1uut dx,

that is,

‖ut(t)‖2 +
1
2

d
dt
‖∇u(t)‖2 =

d
dt

l∑
k=1

ak

pk + 1
‖u(t)‖pk+1

pk+1 −
d
dt

s∑
j=1

b j

q j + 1
‖u(t)‖q j+1

q j+1.
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Equivalently,
d
dt

J(u) = −‖ut(t)‖2 < 0. (3.13)

Noting inequality (3.13), we find that

J′(u0) , 0 which implies J(u(t)) < J(u0) for all t ∈ (0, T ∗). (3.14)

Assume first that u0 ∈ N+ satisfies ‖u0‖ ≤ λJ(u0). We claim that u(t) ∈ N+ for all
t ∈ [0, T ∗(u0)). By contradiction, if there exists s > 0 such that u(t) ∈ N+ for 0 ≤ t < s
and u(s) ∈ N , then (3.11) and (3.14) imply that

‖u(s)‖ < ‖u0‖ ≤ λJ(u0), J(u(s)) < J(u0).

This contradicts the definition of λJ(u0) and proves the claim. Hence, Lemma 3.13
shows that the orbit {u(t)} remains bounded in H1

0(Ω) for t ∈ [0, T ∗(u0)), so that
T ∗(u0) =∞. Now for every ω ∈ ω(u0), by equation (3.11) and inequality (3.13) we
obtain

‖ω‖ < λJ(u0) and J(ω) ≤ J(u0).

By the definition of λJ(u0), u0 ∈ N+, and the definition of ω(u0), we obtain ω(u0) ⊂ N+.
Hence, we conclude that ω(u0) ∩ N = ∅. From the definition of N we know that
ω(u0) = {0}. In other words, u0 ∈ G0, as claimed.

Assume now that u0 ∈ N− satisfies ‖u0‖ ≥ ΛJ(u0). A similar argument to that above
shows that u(t) ∈ N− for all t ∈ [0, T ∗(u0)). Now if, by contradiction, T ∗(u0) =∞, then
for every ω ∈ ω(u0) we would have by equation (3.11) and inequality (3.13),

‖ω‖ > ΛJ(u0) and J(ω) ≤ J(u0).

By the definition of ΛJ(u0) we then infer that ω(u0) ∩ N = ∅. However, since
dist(0,N−) > 0, we also have 0 < ω(u0). This gives ω(u0) = ∅, contrary to the
assumption that u(t) is a global solution. We conclude that T ∗(u0) <∞, as claimed. �

4. Conclusion

In this paper we considered the initial boundary value problems of the nonlinear
wave equation and nonlinear heat equation. The two different equations share the same
nonlinear terms and we derived results for high initial energy level for both equations.
We point out that the results for the both equations are not parallel. At the high energy
level, we only showed the blow-up results for the nonlinear wave equation by the
potential well method. The conditions for this blow-up result are sufficient but not
necessary, and we have no idea whether the solution will exist globally at the high
energy level. For the heat equation, we discussed the probabilities of the existence and
nonexistence of global solutions and gave some sufficient conditions for the global
and nonglobal existence of solutions at high initial energy level by employing the
comparison principle and variational methods. We derived the sufficient conditions
not only for blow-up but also for global existence. This means that we know more
about the heat equation than the wave equation.
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