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DOMINATION OF THE SUPREMUM OF A BOUNDED
HARMONIC FUNCTION BY ITS SUPREMUM OVER A
COUNTABLE SUBSET

by F. F. BONSALL
(Received 11th April 1986)

1. Introduction

For what sequences {a,} of points of the open unit disc D does there exist a constant
k such that

suglf(z)|§xsu£ | f(ay)| (1) -

for all bounded harmonic functions f on D?
This question is of interest because these are the sequences such that every integrable
function f on the unit circle dD is of the form

=3 h, @

with Y’ |2,] < 0o (see [1]). Here
p)=(1—|aP)|1—at|"* ({edD, aeD),

that is p,(e') is the Poisson kernel P,(f).
Brown, Shields and Zeller [2] have proved the closely related result that

sup|f(z)|=sup|f(a,) (3)
zeD neN

for all fe H® (the space of bounded analytic functions on D) if and only if {a,} is non-
tangentially dense for dD, that is if and only if almost every point of dD is the non-
tangential limit of some subsequence of {a,}. Our main result, Theorem 2, is a list of
equivalent conditions on the sequence {a,} which includes conditions (1) and (3).

In Theorem 3, we establish an elementary property of the harmonic measure yH{z) of
a Lebesgue measurable subset F of R; namely, y{z) is arbitrarily small outside the
union of certain triangular domains associated with the points of F. This shows that if
the inequality (1) holds for all positive bounded harmonic functions, then {a,} is non-
tangentially dense.
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Theorem 2 describes the sequences {a,} for which the bounded linear mapping T of I!
into L' given by T{A,} =Y, A,p, is surjective. It is an immediate consequence that T is
never bijective. When is it injective? This question remains unanswered, but Theorem 6
shows that T has zero kernel and closed range if and only if {a,} is an interpolating
sequence for H®.

I am indebted to W. K. Hayman for asking a question that provoked this work and
also for an observation showing that there are no sequences {a,} for which the infimum
in Theorem 2(ii) is always attained.

2. Results

In the following elementary lemma, G denotes a simply connected domain in the
complex plane, H®(G) the space of bounded analytic functions on G, and BH(G) the
space of bounded complex valued harmonic functions on G.

Lemma 1. Let A be a subset of G, and let there exist a constant x such that
sup|f(2)| sk sup| /()] @)
for all invertible elements f of H®(G). Then
@Il ¥
for all f e BH(G).

Proof. Let u be a non-negative real valued element of BH(G). Since G is simply
connected, there exists a function g analytic on G with Reg=u. Let

f(2)=expg(z2) (z€G).

Since |f(z)]=expu(z), we have feH®(G), and plainly 1/f is also in H*(G). Therefore
inequality (4) holds, that is

supexp u(z) Sk supexp u(z).

z2eG ze A
Therefore
sup u(z) < log k + sup u(z).

zeG zeA

This inequality also holds with u replaced by au with positive «, and so

1
sup u(z) <-log x -+ sup u(z).
zeG o zeA
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Therefore, u satisfies (5). Next, if h is any real valued bounded harmonic function on G,
then M +h is non-negative for suitable positive M, and so h satisfies (5). Finally, given
any complex valued feBH(G), and 6eR, let hy(z)=Re(e??f(z)). Then h, satisfies (5).
We choose z, in G with |f(zo)| close to sup..g|f(z)|, and then choose 6 so that
ho(zo) =| f(2o)| to complete the proof.

In the following theorem, we write I? for I?(éD, d6/2r), and H® for H®(D).

Theorem 2. Given a sequence {a,} of points of D, the following conditions are
equivalent to each other.

(i) Every feL is of the form (2) with Y=, |4,| < 0.
(i)) Condition (i) holds and also

|71 =inf §

with the infimum taken over all sequences {1} satisfying (2).
(iii) There exists a constant k such that the inequality (1) holds for all f € BH(D).
(iv) The equality (3) holds for all f e BH(D).
(v) The equality (3) holds for all f e H.
(vi) Almost every point of 0D is the non-tangential limit of some subsequence of {a,}.
Proof. The order of proof is (i)—(iii) = (iv) = (v)—(vi) - (i) = (i).

(i) —(iii). Suppose that (i) holds, and, given 1={4,}el, let
TA: Z lnpa,,'
n=1

Since ||p,||;=1, T is a bounded linear mapping of I' onto L. It is therefore an open
mapping, and there exists k>0 such that the image of the ball in I' with centre 0 and
radius x contains the unit ball in I'. Thus (2) holds for all fel!, and

inf {||4]|;:(2) holds} <] f]|,- 6)

Now let ge L with g(z) its harmonic extension to D, and let ¢>0. Since |g||,, is the
norm of the linear functional on L' given by g, there exists feL' with ||f|l;=1 and
IKf:8>]>lgllo —& By (6), f =32 AP, With A={4,}e!" and ||4]|, <x +e&. Therefore

supe(2)| —e=[lgll. —< ¥, [4:|[<pa,, 8]

= 3 il let@| <[, supletan| < -+ ehsupeta,)].
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(iii))—(iv)—(v). H® =« BH(D) and Lemma 1.
(v)—(vi). Brown, Shields and Zeller [2].
(vi)—(ii). (See [1]). (ii))—(i). Clear.

Remarks. The equality ||f]|, =Y, |4, obviously holds if f=Y:>, 4,p, with 1,20
for all n. However there is no sequence {a,} such that this equality holds for all fel'.
For let feI! with zero essential infimum on D and ||f||, >0. By taking real parts, we
may assume that f=Y 2, Anpa, With all 4, real. If 2,20 for all n, then 4,p, < f and so
A,=0, for all n. We may therefore assume that A1, <0. Then, since f=0 almost
everywhere,

Il SIS +Ralpall =1l X, 2upefli S 3 [l

Theorem 2-also holds with the disc replaced by the upper half-plane. In fact, the non-
trivial step (v)—(vi) is easier to prove in that context and then transfer to D by
conformal mapping. See Corollary 5 below.

Notation. Let U={zeC:Imz>0}, let P,(t) denote the Poisson kernel for U, that is

1 y

O Gy

(teR, z=x+yiel),
and let |E| denote the Lebesgue measure of a measurable set E in R. With 0<d<I1,
0<b=x oo, teR, and k=tan(nd/2), let A(t, b,d) denote the triangular domain

A(t,b,8) = {x+ yi:x|x—t| <y<b}.
As usual, the harmonic measure yg(z) of a measurable subset F of R is the harmonic
extension to U of the characteristic function y, that is

e

@)= [ rOP()dt  (zeU).

— 0

Theorem 3. Let F be a Lebesgue measurable subset of R, let 0<d<1, and let
ndb2 |F|. Then x{z) <6 for all z in U\ J,cr A1, b, 9).

Proof. As before, we take x=tan(nd/2). If J=(—o0,f] with § real, we have for

x> P,
8 198 dy 1 y
= P l=— —_—— _—
x(2) _Iw (n)d - ,.!A 15 a2 —arctan _—
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Thus

1
O<y=k(x—B)=>x2) §; arctan x=g.
Similarly, if J =[a, 0c0) with « real, then

0<y§x(a—x)=>xj(2)§g.

Suppose first that F is a closed subset of R, so that R\F is a countable (perhaps finite
or void) union of disjoint open intervals I,. Let z=x+yie U\|J,.rA(t,b,8) with
O<y<b. Then xel, for some k. If I,=(—00,d) with d real, we take J=[d, o). Since
deF, z¢ A(d,b,d); and, since y<b, it follows that y<x(d—x). Since FcJ, we therefore
have

)
xr(2) = xA2) S 7

The same inequality holds if I,=(c,0). If I,=(c,d) with ~o0<c<d<o0, we take
J=(—o0,c], J'=[d, ). Since ceF, we have y,(z)<6/2; and similarly for yx,.. Then
since FcJu J,

xH2) S xs(2) + xs(2) S 6.
Finally, if y=b, then P,(t) < 1/=b for all real ¢, and so
X2 <|Fl/nb <3,
and the theorem is proved for closed sets F.
Finally, given any Lebesgue measurable subset F of R, there exists an increasing

sequence {F,} of closed subsets of F with its union differing from F by a set of measure
zero. We have y¢ (2) <6 for all z in U\( J,.rA(t, b, ), and the result follows.

Remark. The possibility of a result like Theorem 3 is suggested by the proof in
Brown, Shields and Zeller [2] to which we have referred already.

Corollary 4. Let 0<d<1 and let the sequence {a,} of points of U fail to satisfy the
following condition: for almost all te R, A(t, b, 6) N {a,:ne N} is non-empty for every b>0.

Then there exists a positive harmonic function g on U with sup, ,g(z)=1 but
SUP,en g(an) < 5

Proof. Let E=| ), A(b), with

Ab)={teR:A(t,b,0) n {a,:ne N} =0}.
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Since A(b)> A(b’) when b<b’, we have E=|_J,.n A(1/k); and, since each A(b) is closed, it
follows that E is measurable. By assumption, we now have |E|>0, and so we can choose
b=1/k with |A(b)|>0. We take a closed interval I chosen so that, with F=1n A(b), we
have 0 <|F|<énb. Theorem 3 now provides the required function g= ;.

Corollary 5. Let {a,} be a sequence of points of U such that there exists a constant
with

sup g(z) < x supg(ay) ™M

zelU neN

Jor all bounded positive harmonic functions g on U. Then almost every point of R is the
non-tangential limit of some subsequence of {a,}.

Proof. Immediate consequence of Corollary 4.

Corollary 5 can be transferred to the disc by conformal mapping. It is of interest,
because it is not obvious that the inequality (7) for bounded positive harmonic functions
g implies the same inequality for all ge BH(U), though this implication is obvious if
k=1

Let {a,} be a sequence of points of U, and let T be the bounded linear mapping of I
into L! = [}(R) defined by

Ti= ¥ AP, (A={i}el).
n=1

Theorem 2, for U in place of D, tells us that T is surjective if and only if {a,} is non-
tangentially dense for R. It is an immediate consequence that T is never bijective, for if
{a,} is non-tangentially dense, then so is {a,. ,} and we have

Po= 3, WP,

with 3, |4,/ <oo. In these circumstances, it is natural to ask for what sequences {a,}
the mapping T is injective. We do not know the answer to this question, but using an
argument due to J. B. Garnett, it is easy to prove the following result.

Theorem 6. T has zero kernel and closed range if and only if {a,} satisfies the
geometric condition for H® interpolation, that is there exists 6 >0 such that

inf [] |ac—aj|/|a.—a)|20.
kK jiFk

Proof. Since TeBL(!',L'), the wusual identification of dual spaces gives
T*e BL(I*,1°), and, with g(z) denoting the harmonic extension of geI® to U, we have
T*g={g(a)}el®. If {a,} is an interpolation sequence for H®, then T*L*=I[®, and, by

https://doi.org/10.1017/50013091500026869 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500026869

SUPREMUM OF A BOUNDED HARMONIC FUNCTION 477

Banach’s closed range theorem [3, p. 488], T has closed range and zero kernel. On the
other hand, if T has closed range and zero kernel, then there exists a constant M with

||a||1§M“ $apll  a=pgem
n=1

1

This is the inequality (4.5) in Garnett [4, p. 303] from which it is there deduced that
{a,} satisfies the geometric condition for H® interpolation.
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