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Abstract
The paper presents a review of dynamic stabilization mechanisms for plasma instabilities. One of the dynamic
stabilization mechanisms for plasma instability was proposed in the paper [Kawata, Phys. Plasmas 19, 024503 (2012)],
based on a perturbation phase control. In general, instabilities emerge from the perturbations. Normally the perturbation
phase is unknown, and so the instability growth rate is discussed. However, if the perturbation phase is known, the
instability growth can be controlled by a superimposition of perturbations imposed actively. Based on this mechanism
we present the application results of the dynamic stabilization mechanism to the Rayleigh–Taylor instability (RTI) and to
the filamentation instability as typical examples in this paper. On the other hand, in the paper [Boris, Comments Plasma
Phys. Control. Fusion 3, 1 (1977)] another mechanism was proposed to stabilize RTI, and was realized by the pulse train
or the laser intensity modulation in laser inertial fusion [Betti et al., Phys. Rev. Lett. 71, 3131 (1993)]. In this latter
mechanism, an oscillating strong force is applied to modify the basic equation, and consequently the new stabilization
window is created. Originally the latter was proposed by Kapitza. We review the two stabilization mechanisms, and
present the application results of the former dynamic stabilization mechanism.

Keywords: dynamic instability stabilization; filamentation instability; plasma instability; Rayleigh–Taylor instability; stabilization of
instability

1. Introduction

Dynamic stabilization mechanisms for plasma instabilities
are reviewed and discussed in this paper. So far, the dynamic
stabilization for the Rayleigh–Taylor instability (RTI)[1–6]

has been proposed and discussed intensively in order to
obtain a uniform compression[7, 8] of a fusion fuel pellet in
inertial confinement fusion. The RTI dynamic stabilization
was found many years ago[1, 2] and is important in inertial
fusion. It was implemented that the oscillation amplitude of
the driving acceleration should be sufficiently large to stabi-
lize RTI[1–6]. In inertial fusion, the fusion fuel compression
is essentially important to reduce an input driver energy[7, 8],
and the implosion uniformity is one of critical issues to
compress the fusion fuel pellet stably[9, 10]. Therefore, the
RTI stabilization or mitigation is attractive to minimize the
fusion fuel mix.

On the other hand, instability grows from a perturbation
in general, and normally the perturbation phase is unknown.
Therefore, it would be difficult to control the perturbation
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phase, and usually the instability growth rate is discussed.
However, if the perturbation phase is controlled and known,
we can find a new way to control the instability growth.
One of the most typical and well-known mechanisms is the
feedback control in which the perturbation phase is detected
and the perturbation growth is controlled or mitigated or
stabilized. In plasmas it is difficult to detect the perturbation
phase and amplitude. However, even in plasmas, if we
can actively impose the perturbation phase by the driving
energy source wobbling or so, and therefore, if we know
the phases of the perturbations, the perturbation growth can
be controlled in a similar way as shown in Figure 1[11, 12].
In instabilities, one mode of an initial perturbation, from
which an instability grows, may have the form of a =
a0eikx+γ t , where a0 is the amplitude, k = 2π/λ is the
wave number, λ the wave length and γ the growth rate of
the instability. An initial perturbation example is shown in
Figure 1(a). At t = 0 the perturbation is imposed. The initial
perturbation may grow at instability onset. After 1t , if the
feedback control works on the system, another perturbation,
which has an inverse phase with the detected amplitude
at t = 0, is actively imposed (see Figure 1(b)), and then
the actual perturbation amplitude is very well mitigated as
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Figure 1. An example concept of feedback control. (a) At t = 0 a
perturbation is imposed. The initial perturbation may grow at instability
onset. (b) After 1t , if the feedback control works on the system, another
perturbation, which has an inverse phase with the detected amplitude at
t = 0, is actively imposed, so that (c) the actual perturbation amplitude
is mitigated very well after the superposition of the initial and additional
perturbations.

shown in Figure 1(c). This is an ideal example for the
instability mitigation. This control mechanism is apparently
different from the dynamic stabilization mechanism shown
in the previous works in Refs. [1–6]. For example, the
growth of the filamentation instability[13–17] driven by a
particle beam or jet could be controlled by the beam axis
oscillation or wobbling. The oscillating and modulated beam
induces the initial perturbation and also could define the
perturbation phase. Therefore, the successive phase-defined
perturbations are superimposed, and we can use this property
to mitigate the instability growth. Another example can
be found in heavy ion beam inertial fusion; the heavy
ion accelerator could have a capability to provide a beam
axis wobbling with a high frequency[18–20]. The wobbling
heavy ion beams also define the perturbation phase. This
means that the perturbation phase is known, and so the
successively imposed perturbations are superimposed on
plasmas. We can again use the capability to reduce the
instability growth by the phase-controlled superposition of
perturbations. In this paper we discuss and clarify the

Figure 2. Kapitza’s pendulum, which can be stabilized by applying an
additional strong and rapid acceleration Asinωt .

dynamic mitigation mechanisms for plasma instabilities.
First, we discuss the dynamic stabilization mechanism based
on Refs. [1–6, 21] to stabilize the RTI by applying the strong
and rapid acceleration oscillation. Then we present the other
dynamic stabilization mechanism proposed in Refs. [12,
20, 22, 23], which is applied to the RTI and filamentation
instability stabilization.

2. Dynamic stabilization of plasma instability under
strong driving force oscillation

In Refs. [1–3], one dynamic stabilization mechanism was
proposed to stabilize the RTI based on the strong oscillation
of acceleration, which was realized, for example, by the
picket fence pulse train or the laser intensity modulation in
laser inertial fusion[4]. In this mechanism, the total accelera-
tion oscillates strongly, and so the additional oscillating force
is added to create a new stable window in the system. Orig-
inally this dynamic stabilization mechanism was proposed
by Kapitza[21], and it was applied to the stabilization of an
inverted pendulum. The inverted pendulum is an unstable
system, a strongly and rapidly oscillating acceleration is
applied on the system in Ref. [21], and then the inverted
pendulum system has a stable window. In this case, the
equation for the unstable system is modified, and has another
force term coming from the oscillating acceleration. In this
mechanism, the growth rate is modified by the strongly
oscillating acceleration.

When the inverted pendulum shown in Figure 2 is sub-
jected by a strongly oscillating acceleration Asinωt , we
obtain the following Mathieu-type equation[24] for θ(t):

d2θ(t)
dt2 =

g
l
θ(t)− Aω2θ(t) sinωt. (1)

Here l is the length of the pendulum. When A = 0, the
inverted pendulum becomes unstable. However, the second
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term of the right-hand side is added to the system, and stable
windows appear in the inverted pendulum system[21, 24]. In
Equation (1), the stability condition is described as A−0.5 <
2g/(lω2) < A2[24]. The stability condition shows that the
additional acceleration oscillation at the second term of the
right-hand side of Equation (1) should be very fast, and the
amplitude of A must satisfy the stability condition.

This dynamic stabilization mechanism works on the in-
verted pendulum in Figure 1. However, it would be difficult
to apply this mechanism to our tall buildings, bridges or large
structures in our society.

In laser inertial fusion, this dynamic stabilization mech-
anism was proposed and applied to stabilize the RTI based
on the strong oscillation of acceleration[3, 4], which was
realized by the picket fence pulse train or the laser intensity
modulation in laser inertial fusion[4]. In this mechanism, the
total acceleration strongly oscillates, and so the additional
oscillating force is added to create a new stable window in
the fuel pellet implosion in laser inertial fusion. In inertial
fusion, the spherical fuel pellet should be compressed to
a high density, for example, a thousand times of the solid
density[8–10]. The fusion fuel is imploded spherically by a
large inward acceleration. The typical implosion accelera-
tion is about 1013 m/s2, and lasts for 1–10 ns. During the
implosion time, the driver input energy, introduced by the
laser-pulse train series, would induce the strong implosion
acceleration oscillation, which contributes to stabilizing the
RTI during the fuel pellet implosion[3, 4, 25, 26].

In Ref. [27], this dynamic stabilization mechanism is
applied to the two-stream instability stabilization, in which
the classical two-stream instability driven by a constant
relative drift velocity is modified by the additional oscillation
on the relative velocity. The time-dependent drift velocity
opens a new stable window in the two-stream instability.

3. Dynamic stabilization of plasma instability under a
phase control

In plasmas the perturbation phase and amplitude cannot be
measured dynamically. However, by using a wobbling beam
or an oscillating beam or a rotating beam or so[18, 19], the
initial perturbation is actively imposed, and so the initial
perturbation phase and amplitude are defined actively. In this
case, the amplitude and phase of the unstable perturbation
cannot be detected, but can be defined by the input driver
beam wobbling at least in the linear phase. In plasmas
it would be difficult to realize a perfect feedback control,
but a part of it can be adapted to the instability mitigation
in plasmas. Actually, heavy ion beam accelerators would
provide a controlled wobbling or oscillating beam with a
high frequency[18–20, 28]. An intense electron beam axis can
be wobbled in its controlled way, and thus provides defined
phase and amplitude of perturbations.

If the energy driver beam wobbles uniformly in time, the
imposed perturbation for a physical quantity of F at t = τ
may be written as

F = δFeiΩτ eγ (t−τ)+i Ek·Ex . (2)

Here δF is the amplitude, Ω the wobbling or oscillation
frequency, and Ωτ the phase shift of superimposed pertur-
bations. At each time t = τ , the wobbler provides a new
perturbation with the controlled phase shifted and amplitude
defined by the driving wobbler itself. After the superposition
of the perturbations, the overall perturbation is described as∫ t

0
dτδFeiΩτ eγ (t−τ)+i Ek·Ex

∝
γ + iΩ
γ 2 +Ω2 δFeγ t ei Ek·Ex . (3)

At each time of t = τ the driving wobbler provides a new
perturbation with the shifted phase. Then each perturbation
grows with the factor of eγ t . At t > τ the superimposed over-
all perturbation growth is modified as shown above. When
Ω � γ , the perturbation amplitude is reduced by the factor
of γ /Ω , compared with the pure instability growth (Ω = 0)
based on the energy deposition nonuniformity[12, 22, 23, 29].

Figure 3 shows the superimposed perturbations decom-
posed, and at each time the phase-defined perturbation is
imposed actively by the driving wobbler. The perturbations
are superimposed at the time t . The wobbling trajectory is
under control, for example, by a beam accelerator or so,
the superimposed perturbation phase and amplitude are con-
trolled, and the overall perturbation growth is also controlled.

From the analytical expression for the physical quantity
F in Equation (3), the mechanism proposed in this paper
does not work, when Ω � γ . Only modes, fulfilling the
condition ofΩ > γ , can experience the instability mitigation
through a wobbling process. For RTI, the growth rate γ
tends to become larger for a short wavelength. If Ω � γ ,
the modes cannot be mitigated. In addition, if there are
other sources of perturbations in the physical system and
if the perturbation phase and amplitude are not controlled,
this dynamic mitigation mechanism also does not work. For
example, if the sphericity of an inertial fusion fuel target
is degraded, the dynamic mitigation mechanism does not
work. In this sense the dynamic mitigation mechanism is not
almighty. Especially for a uniform compression of an inertial
fusion fuel all the instability stabilization and mitigation
mechanisms would contribute to releasing the fusion energy.

Figure 4 shows an example simulation for RTI, which
has one mode. In this example, two stratified fluids are
superimposed under an acceleration of g = g0 + δg. The
density jump ratio between the two fluids is 10/3. In this
specific case the wobbling frequency Ω is γ , the amplitude
of δg is 0.1g0, and the results shown in Figure 4 are those at
t = 5/γ . In Figure 4(a) δg is constant and drives the RTI as
usual, and in Figure 4(b) the phase of δg oscillates with the
frequency of Ω as stated above for the dynamic instability
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Figure 3. Superposition of perturbations defined by the wobbling driver
beam. At each time the wobbler provides a perturbation, whose amplitude
and phase are defined by the wobbler itself. If the system is unstable,
each perturbation is a source of instability. At a certain time the
overall perturbation is the superposition of the growing perturbations. The
superimposed perturbation growth is mitigated by the beam wobbling
motion.

stabilization in this section. The RTI growth mitigation ratio
is 72.9% in Figure 4. The growth mitigation ratio is defined
by (H0−Hmitigate)/H0×100%. Here H is defined as shown
in Figure 4(a), H0 shows the deviation amplitude of the
two-fluid interface in the case in Figure 4(a) without the
oscillation (Ω = 0), and Hmitigate presents the deviation for
the other cases with the oscillation (Ω 6= 0). The example
simulation results support well the effect of the dynamic
mitigation mechanism. Other multi-modes RTI analyses are
found in Ref. [11].

In order to check the robustness of the dynamic instability
mitigation mechanism[29], here we study the effects of the
change in the phase, the amplitude and the wavelength of
the wobbling perturbation δF , that is, δg in Figure 4 on the
dynamic instability mitigation.

When the perturbation amplitude δF = δF(t) de-
pends on time or oscillates slightly in time, the dynamic
mitigation mechanism is examined first. We consider
δF(t) = δF0(1 + ∆eiΩ ′t ) in Equation (1). Here ∆ � 1.

In this case, Equation (3) is modified as follows:∫ t

0
dτδFeiΩτ eγ (t−τ)+i Ek·Ex

∝

{
γ + iΩ
γ 2 +Ω2 +∆

γ + i(Ω +Ω ′)
γ 2 + (Ω +Ω ′)2

}
δF0eγ t ei Ek·Ex . (4)

When ∆ � 1 in Equation (4), just a minor effect appears
on the dynamic mitigation of the instability.

We also performed the fluid simulations. In the simu-
lations δg(t) = δg(1 − ∆ sinΩ ′t). The RTI is simulated
again based on the same parameter values shown in Fig-
ure 4 except the perturbation amplitude oscillation δF(t).
In the simulations we employ Ω ′ = 3Ω , Ω and Ω/3 in
Equation (4). For ∆ = 0.1 and 0.3, and for Ω ′ = 3Ω , Ω
and Ω/3, the RTI growth reduction ratio is 54.9%–73.2%
at t = 5/γ . Figure 5 shows the results for ∆ = 0.3. The
results by the fluid simulations and Equation (4) demonstrate
that the perturbation amplitude oscillation δF = δF(t) is
uninfluential as long as ∆� 1.

When the oscillation frequency Ω of the perturbation δF
depends on time (Ω = Ω(t)), the time-dependent frequency
means that Ω(t) would consist of multiple frequencies:
eiΩt
=
∑

i ∆i eiΩi t . In this case Equation (3) becomes∫ t

0
dτδFeiΩτ eγ (t−τ)+i Ek·Ex

∝

∑
i

∆i
γ + iΩi

γ 2 +Ω2
i
δFeγ t ei Ek·Ex .

(5)
The result in Equation (5) shows that the highest frequency

of Ωi contributes to the instability mitigation. In a real
system the highest frequency would be the original wobbling
frequency Ω or so, and the largest amplitude of ∆i is
also that for the original wobbling mode. So when the
frequency change is slow, the original wobbler frequency of
Ω contributes to the mitigation.

The fluid simulations are also done for the RTI with
Ω(t) = Ω(1+∆ sinΩ ′t) together with the same parameter
values employed in Figure 4. In this case ∆ = 0.1 and 0.3,
and Ω ′ = 3Ω , Ω and Ω/3. The growth reduction ratio was
66.9%–74.0% at t = 5/γ . Figure 6 presents the simulation
results for ∆ = 0.3. The little oscillation of the imposed
perturbation oscillation frequency Ω(t) has a minor effect
on the dynamic instability mitigation.

When the wobbling wavelength λ = 2π/k depends on
time, one can expect as follows in a real system: k(t) = k0+

1keiΩ ′k t and k0 � 1k. In this case the wobbling wavelength
changes slightly in time, and Equation (3) becomes as
follows:∫ t

0
dτδFeiΩτ eγ (t−τ)+ik·x

∝ δFeγ t+ik0·x
∫ t

0
dτe(iΩ−γ )τ

∞∑
m=−∞

im Jm(1k · x)eimΩ ′kτ
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Figure 4. Example simulation results for the Rayleigh–Taylor instability (RTI) mitigation. δg is 10% of the acceleration g0 and oscillates with the frequency
of Ω = γ . As shown above and in Equation (3), the dynamic instability mitigation mechanism works well to mitigate the instability growth.

Figure 5. Fluid simulation results for the RTI mitigation for the time-dependent δg(t) = δg − ∆ sinΩ ′t at t = 5/γ . In the simulations ∆ = 0.3, and (a)
Ω ′ = Ω/3, (b) Ω ′ = Ω and (c) Ω ′ = 3Ω . The dynamic mitigation mechanism is robust against the time change of the perturbation amplitude δg(t).

Figure 6. Fluid simulation results for the RTI mitigation for the time-dependent wobbling frequencyΩ(t) = Ω(1+∆ sinΩ ′t) at t = 5/γ . In the simulations
∆ = 0.3, and (a) Ω ′ = Ω/3, (b) Ω ′ = Ω and (c) Ω ′ = 3Ω . The dynamic mitigation mechanism is also robust against the time change of the perturbation
frequency Ω(t).

∝

∞∑
m=−∞

im Jm(1k · x)
∫ t

0
dτei(Ω+mΩ ′k )τ−γ τ

∝

∞∑
m=−∞

im Jm(1k · x)
γ + i(Ω + mΩ ′k)
γ 2 + (Ω + mΩ ′k)

2 . (6)

Here Jm is the Bessel function of the first kind. Equa-
tion (6) demonstrates that the instability growth reduction

effect is not degraded by the small change in the wobbling
wavelength. In actual situations the mode m = 0 contributes
mostly to the instability mitigation, and in this case the
original reduction effect shown in Equation (3) is recovered.

The fluid simulations are also performed for this case
k(t) = k0+1keiΩ ′k t . Figure 7 shows the example simulation
results for 1k/k0 = 0.3 and Ω ′k = 3Ω , Ω and Ω/3.
Figure 7(a) shows the RTI growth reduction ratio of 61.3%
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Figure 7. Fluid simulation results for the RTI mitigation for the time-dependent wobbling wavelength k(t) = k0 +1keiΩ ′k t , at t = 5/γ . In the simulations
1k/k0 = 0.3, and (a) Ω ′k = Ω/3, (b) Ω ′k = Ω and (c) Ω ′k = 3Ω . The dynamic mitigation mechanism is also robust against the time change of the
perturbation wavelength k(t).

Figure 8. Filamentation instability. In this case an electron beam has a
density perturbation in the transverse direction, and is injected into a plasma.
In the plasma return current is induced to compensate for the electron
beam current. The perturbed electron beam itself defines the filamentation
instability phase, and the e-beam axis oscillates in the y direction in this
example case. Therefore, the filamentation instability is mitigated by the
dynamic stabilization mechanism.

for Ω ′k = Ω/3, Figure 7(b) shows 68.0% for Ω ′k = Ω , and
Figure 7(c) shows 93.3% for Ω ′k = 3Ω at t = 5/γ . For
a realistic situation Ω ′k ∼ Ω , where Ω is the wobbling or
modulation frequency.

All the results shown above demonstrate that the dynamic
instability mitigation mechanism proposed is rather robust
against the changes in the amplitude, the phase and the
wavelength of the wobbling or modulating perturbation of
δF in general or δg in RTI.

Another possible example is the filamentation insta-
bility[13–16, 23] as shown in Figure 8 schematically. In this
example, an electron beam is injected into a plasma, and
the electron beam has a density or current modulation in
the transverse direction. The modulation is the source of
the perturbation defined actively by the electron beam itself,
and so the perturbation phase is defined. From the initial

Figure 9. Dynamic stabilization mechanism for the filamentation instability.
(a) A modulated electron beam is imposed to induce the filamentation
instability. The electron beam axis is wobbled or oscillates transversally
with its frequency of Ω . (b) At a later time its phase-shifted perturbation is
additionally imposed by the electron beam itself. The overall perturbation is
the superimposition of all the perturbations, and the filamentation instability
is dynamically stabilized.

perturbation the filamentation instability grows with its
growth rate. In this filamentation instability a magnetic field
perturbation is induced by the electron beam modulation,
the electron trajectories are bent and then the electron beam
perturbation is further enhanced. Consequently the magnetic

https://doi.org/10.1017/hpl.2018.61 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2018.61


Dynamic stabilization of plasma instability 7

Figure 10. Filamentation instability simulation results without and with the electron beam oscillation. The current density Jx is shown at each time step.
When the electron beam axis oscillates in the y direction ((d)–(f) and (g)–(i)), the filamentation instability growth is clearly mitigated.

field is also enhanced. If the electron beam axis oscillates
transversally, the perturbations, which could have different
phases, are successively imposed in the system and the
dynamic mitigation mechanism works.

It is assumed that an electron beam moving in the x direc-
tion with vbe has a small density perturbation in the trans-
verse direction (y). The perturbed electron beam is injected
into a plasma as shown in Figure 9. The current density
perturbation induces the filamentation instability[13–16, 23], in
which the perturbation of the transverse magnetic field in the
z direction grows, the electron trajectories are bent by the
magnetic field, and consequently the current perturbation is
enhanced.

The growth rate of the filamentation instability is ex-
pressed by γF ∼= β

√
α/γbωpe, where β = vbe/c, α =

nbe/n p, nbe is the electron beam number density, n p the
number density of the background plasma electrons, γb =

1/
√

1− β2, and ωpe the plasma frequency of the back-
ground plasma electrons.

Figure 9 shows the dynamic stabilization mechanism for
the filamentation instability schematically. The input elec-
tron beam is injected into a plasma, and the electron beam
has a current modulation in the y direction. The electron
beam current modulation defines actively the filamentation
phase as shown in Figure 9(a). After a short time of 1t ,
the filamentation instability grows. Then the electron beam
oscillates in the y direction as shown in Figure 9(b), and
the electron beam modulation also moves in the y direction.
The new perturbation with the shifted phase is applied, and
the perturbations grow. The overall instability growth should
be defined by the sum of all the perturbations at t , and the
filamentation instability is dynamically stabilized as shown
in Figure 1(c).

In order to verify the filamentation instability stabilization,
we perform 2-dimensional particle-in-cell (PIC) simulations.
As an example case, we use the following parameter values:
α = nbe/n p = 1/9, β = vbe/c = 0.9, vpe/c = −0.1,
the temperatures of the beam electrons, the background
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Figure 11. Magnetic field Bz for the filamentation instability without and with the electron beam oscillation.

Figure 12. Histories of the normalized magnetic field energy UBz ∝

|Bz |
2. When the electron beam transverse oscillation frequency Ω in y

becomes larger than or comparable to γF , the dynamic stabilization effect
is remarkable.

electrons and the background ions are 100 eV. In our sim-
ulations, n p = 1.00× 10−3

× 4π2ε0mec2/(λe)2, the time is
normalized by 1/ωpe and the scale length is normalized by λ.

Figures 10–12 show the simulation results for the fila-
mentation instabilities with and without the electron beam
oscillation. The electron beam perturbation is imposed in
the beam density, and the amplitude is 10%. The oscillation
amplitude is 5λ in the y direction in these specific cases. The
electron beam oscillation frequency Ω is 2ωpe, 10ωpe and
20ωpe (> γF ). Figure 10 presents the current density for the
cases without and with the electron beam oscillation in the y
direction. Figure 11 show the magnetic field Bz distribution.
The stabilization effect of the filamentation instability is
clearly demonstrated in Figure 11. Figure 12 shows the
magnetic field energy history. The dynamic stabilization
ratio is introduced by Rr = [1−(UBz/UBz0)]×100%, where
UBz shows the magnetic field energy. UBz is normalized by
the magnetic field energy UBz0 obtained without the electron
beam oscillation. At t = 35ω−1

pe , the stabilization ratio
Rr = 58.6% in the case of Ω = 2ωpe. When the electron
beam transverse oscillation frequency Ω in the y direction
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Figure 13. 3D PIC simulation results for the filamentation instability growth at (a) t = 0 and (b) t = 32ωpe without the electron beam wobbling motion,
and (c) t = 0 and (d) t = 32ωpe with the wobbling motion. The histories of the normalized magnetic field energy UBz ∝ |Bz |

2 is shown in (e). When the
electron beam transverse oscillation frequency Ω in y becomes larger than or comparable to γF , the dynamic stabilization effect is also remarkable. The 3D
simulation results also confirm the instability mitigation mechanism in the plasma.

becomes larger than or comparable to γF , the dynamic
stabilization effect is remarkable. Figure 13 presents the
3D PIC simulation results for the filamentation instability
under the same parameter values as those in Figures 10–
12. The results shown in Figures 10–13 demonstrate that the
dynamic stabilization mechanism works well to stabilize the
filamentation instability.

4. Discussions and summary

In this paper we have discussed the dynamic stabilization
in plasmas. The dynamic stabilizations[1–4], based on the

‘Kapitza’s pendulum’[21], introduce a new strong oscillat-
ing force into the basic equation, and then the governing
equation is modified by the additional term to create a
new stable window in the system. Therefore, the growth
rate is modified, and the stable window appears in the sys-
tem. The dynamic stabilization mechanism has been applied
to the inverted pendulum[21], to a fuel target implosion
in laser inertial fusion[4], and also to the stabilization of
the two-stream instability[27]. Another dynamic stabiliza-
tion mechanism, which is also based on the strong forced
field but is different from the ‘Kapitza’s pendulum’, was
also proposed and applied to a new field in a dissipative
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dynamic system to find a stable region in the system[30–32].
On the other hand, the dynamic stabilization mechanism
based on the phase control was proposed and applied to the
stabilization of plasma instabilities including the RTI, the
filamentation instability, and also the fuel target implosion
in heavy ion inertial fusion (HIF)[20, 22, 23, 29]. Originally the
dynamic stabilization mechanism comes from the imperfect
feedback control, which is widely used to stabilize tall
buildings, structures, etc. in our society. In the perfect feed-
back control, the displacement and its phase are measured,
and the additional perturbation is added to stabilize the
systems. In plasmas we cannot measure the perturbation
phase and amplitude. As we discussed in this paper, we
can actively apply the perturbations. Before moving to the
system disruption or before developing the nonlinear phase,
the additional perturbations, which should have the reverse
phase, are applied actively, and then the superimposed total
amplitude could be mitigated.
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