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1, Introduction
Recently J. M. Osborn has investigated the structure of a simple com-

mutative non-associative algebra with unity element satisfying a polynomial
identity, (4), (5) and (6). From his work it seems likely that if such an algebra
is of degree three or more it is necessarily power-associative. In (4) he
establishes a hierarchy of identities with the property that each identity is
satisfied by an algebra satisfying no preceding identity. Following (5), (6),
the next identity to consider is

ay(x3x) + ( - c - %(x V ) + c(yx2)x2 + ( - c - h\yx)x2

+ ( - 4a + 5c + 5h)(yx3)x + (c + ti)(yx .x2)x + (6a - 9c - 8h)(yx2 . x)x
+ ( - 3a+4c+3h)((yx . x)x)x+h\yx . x)x2 = 0 (1.1)

where a, c and h are elements of the ground field.
In this paper we give two theorems useful in investigations of this kind (6),

and in § 3 we give a sketch of the application of our theorems to algebras
satisfying (1.1).

By an algebra we shall mean a commutative non-associative algebra with a
unity element over a field of characteristic not equal to 2, 3 or 5. An algebra
is said to be of degree m if the supremum of the cardinal numbers of all sets
of mutually orthogonal idempotents is m. If e is an idempotent of an algebra
A and a an element of the ground field, define Ae(a) = {x e A: xe = <xx).
Often xy is written xRy where Ry denotes the linear transformation induced by
right multiplication by y. If a e A then the component of a in the subspace
Ae(cc) is written aa(e) or aa.

2. Theorems 1 and 2

Theorem 1. Let Abe a simple algebra over afield F and X e F, X # 0, 1, ̂ ,
be such that for each idempotent e in A the following hold:

(i) If xe = ax, x e A, a e F, then a = 0, 1, X or l—X.

(ii) A = Ae(0) + Ae(X)+Ae(X~)+Ae(l) where J. = l-X.

t Some of the material given here has appeared in a dissertation presented to the University
of Wisconsin in partial fulfilment of the requirements for the Ph.D. in Mathematics. The
dissertation was written under the supervision of Prof. J. M. Osborn.
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(iii) Ae(0) . Ae(l) = 0;
Ae(l) . Ae(l) e Ae(l);
Ae(pc) . Ae(l) g Ala) for a = X or 1.

(iv) For all y, w, z e A,
yx • w0z0 = P(yxw0 • zo+yxzo . w0)
yx . wozo = S(yxw0 . zo+yxzo . w0)

for fixed p, 5 e F.
Then A is of degree at most 2.

Proof. We first show that if e is an idempotent of A such that e # 0 or 1
then Ae(0) is a Jordan subalgebra of A. If Ae(X)+Ae(l) = 0 then Ae(0) is an
ideal of A. Hence we must have Ae(0) = 0 or Ae{\) = 0 which implies e = 1
or e = 0, contradicting the hypothesis. Thus Ae(X) + Ae(l) ^ 0. Let

H = {x e Ae(0): bx = 0 for all b e Ae(k) + Ae(l)}.

Then H is an ideal of A. Indeed let x e H and a e A. Then

xa = xag+xa^ + xax + xai = xa0

by (iii) and the definition of//. Thus for all b e Ae{X)+Ae{l) we get b .xa =b .xa0

by (iv); so H is an ideal as desired. If H = A then A = Ae(0) and e = 0.
So H = 0. Then for />, ? e ^e(0) let r = p2q .p-p2 .qp. It follows from
repeated application of (iv) that br = 0 for all b e Ae(X) + Ae(l). Thus reHso
r = 0 and ^4e(0) is a Jordan algebra.

If 4̂ has degree 3 or more then 1 = e+f+g where e, f and g are mutually
orthogonal idempotents. Consider the subspace

B(p, a, T) = Alp) n ^ » n ^ ( T )

where p, CT, T range over 0, k,l,\. If 6 e 5(p, <x, T) and 6 ^ 0 , then

6 = ^ . 1 = b(e+f+g) = (p + o+r)b.

Thus p + <7+T = 1. That is B(p, a, T) = 0 unless at least one of p, a, r is 0.
If b e B(0, a, T) then bf = of in the Jordan algebra Ae(0). Thus a is one of
0. 1. i by (1). We have excluded the last by hypothesis. Thus B(p, a, T) # 0
.only if exactly one of p, a, r is not 0. Now

A =B(l, 0, 0)+fi(0, 1, 0)+B(0, 0, 1).

Furthermore e e B{\, 0, 0) = /4e(l), a non-zero proper ideal of A, contradicting
the simplicity of A. Hence A is of degree at most 2 as desired.

Theorem 2. Let A be a simple algebra over a field F with the following
properties for each idempotent e:

(i) A = Ae(l) + AeQ) + Ae(0).

(ii) All) . All) s All);
A10) . Ae(l) = 0;

^e(|) = ^e(i);
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(iii) Ify0, z0 e Ae(Q) and w2 e AH) then yozo . w2 = z0 . yQw2 +y0 . zow2.
(iv) Ify2, z2 e AH) and w0 e Ae(0) then

CV2Z2 • Wo)o = (yz • Z2H>0)0 + ( Z 2 . y2w0)0

and (y2 . w0z2)Y = (y2w0 . z2\.
Then if A is an algebra of degree 3 or more A is Jordan.

It is enough to show that A is power-associative, by (3). This will follow
from Lemmas 2.1-2.3. In each of these lemmas we assume that A is an algebra
satisfying the hypotheses of Theorem 2.

Lemma 2.1. If e ^ 0 or 1 then Ae(0) is a Jordan sub-algebra of A.
Proof. Let K = {xeAe(0): xb = 0 for all b e Ae(i)}. Then if as A,

k e K we have ka = ka0 by (ii). If b e Ae(i) then
ka . b = ka0 .b = k. aob+ao. kb = 0

by (iii) and the definition of K. Hence AT is a proper ideal of A and so must be
0. Also if p, q e Ae(0) and r = p2q . p —pl. qp then br = 0 for all b e Ae($) by
(iii). Thus reK,r = 0 and Ae(0) is Jordan.

If A has degree 3 or more then 1 = e+f+g for mutually orthogonal
idempotents e, f and g. As in Theorem 1 we define

B(p, a, T) = Alp) n A/&) n Ag(r)
where p, a,r range over 0, \, 1. The same argument as before tells us that

A = 5(1, 0, 0) + 2?(0, 1, 0)+B(0, 0, 1)+S(i, }, O)+2?(i, 0, ±)+2?(0, ±, *).
A standard idempotent is defined to be any one ofe,f, g, e+f, e+g,f+g where
e+f+g = 1.

Lemma 2.2. Let hbe a standard idempotent of A. Let y0 e Ah(0), xt e Ah(V),
z2 e Ae(i). Then

Proof. Assume A = e, and e+f+g = 1. This results in no loss of generality
for if h = f+g then 1—h = e and by interchanging the roles of x and y we
are back at the first case.

Thus we have xx e B{\, 0, 0). We may assume z2 e B(%, \, 0). We must
consider the three cases, y0 e B(0, 1, 0), y0 e B(0, O, 1), and y0 e 5(0, £, i). In
the first case the lemma holds because xx, x2 and y0 are all in Ag(0), and the
result holds in Jordan algebras (1). In the second case both sides of the equation
are zero by (ii). In the final case the lemma follows from (iii) since xu z2 e Ag(0).
Here x^z2 . y0 = xt . 22^0+^1^0 • zi where the last term is zero by (ii).

For fields of characteristic not equal to 2, 3 or 5, the commutative power-
associative identity is equivalent to x3x = x2x2, by (2). By repeated linearisa-
tion this is seen to be equivalent to P{x, y, v, z) = 0 where
P{x, y, v, z) = Ayz . xv + 4yv . xz+4yx . vz~(yz. v)x — {yz . x)v

~{xv . z)y-(xy . z)v-(vy . x)z-(vy . z)x-{xy . v)z
— (vy . y)x-(xz . y)v- (xv . y)z — (vz . x)y-(xz . v)y.
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Lemma 2.3. Let h be a standard idempotent of A. If x, y, v, z each belong
to Ah{\) or Ah(0) then P(x, y, v, z) = 0.

Proof. If all four elements are in Ah{V) or Ah(0) then they are all in a Jordan
subalgebra. But a Jordan algebra is power-associative (1). Thus P(x, y, v, z) =0.
If some of x, y, v, z are in Ah(Y) and some are in Ah(0) then all terms in the
expression are zero by (ii) and P = 0 trivially.

To check that A is power-associative it is sufficient to show Pipe, y, v, z) = 0
for x, y, v, z each belonging to one of the six B(p, a, T) that are non-zero. To
do this it is necessary to calculate P(x, y, v, z) in four specific cases. These are
given in the table below. Let x e Ah(a), y e Ah(fi), v e Ah(y), z e Ah{5) where h
is a standard idempotent.

Case P y S P(x,y,v, z) = 0 by:

1
2
3
4

i
0
1
0

0
i
i
i

0
i
i
0

1
1
1
0

(ii),
(ii),
(ii),
(ii),

(iii),
(iv),
(iv),
(iii).

Lemma
Lemma
Lemma

2
2
2

.2

.2

.2

All possible cases have been covered by Lemma 2.3 and the above table by
suitable choice of the standard idempotent h. The proof of Theorem 2 is now
complete.

3. Application to algebras satisfying an identity of degree five.
In this section we show that except for a few values of the parameters a, c

and h, simple algebras satisfying (1.1) of degree three or more are of the form
A = Ae(0)+AeQ)+Ae(l) and are Jordan.

We shall need the following well-known lemma:
Lemma 3.1. Let A be an algebra over a field F such that every subfield of

the centre of A is in F, and such that reF and r = k2 for no ke F. Then if A
is simple so is AK where K = F(k) andk is such that k2 = r.

Let e be an idempotent in an algebra A in which every pair of elements x, y
satisfy equation (1.1). Setting x = e in (1.1) and factoring gives

yRe{Re—1)[( — 3a + 4c+3h){R2 — Re) + ( — a + c+Ii)~\ = 0. (3.1)
If a = h and c = 0 equation (3.1) gives no information. If c / 0 but

-3a + 4c+3h = 0,
equation (3.1) becomes yRe(Re— 1) = 0 , and it can be shown that simple
algebras satisfying (1.1) and this condition must be of degree one. Otherwise
(3.1) becomes

yRe{Re - \){Re - X)(Re -1) = 0 (3.2)
where X and I are roots of the equation

(-3a+4c+3h)X2 + (3a-4c-3h)X+(-a+c + h) = 0,
that is,

a-h V
-3a + 4c+3h) '
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In view of Lemma 3.1 there is no loss in assuming that X, 1 e F. If A satisfies
(1.1) then so does AFW. If AFW is of degree m or is power-associative then so
is A. Note that X+l = 1. If a = ft, and of course c ¥= 0, we have X = X = i.
Finally we note that X or 1 is 0 or 1 exactly if a = c+h, and c ^ 0.

If A satisfies (1.1) and (3.2) with four distinct roots then

A = Ae(0) + Ae{X)+Ae{l)+Ae{\).

By using this decomposition, linearisation, and by finding suitable ideals, one
can prove the following theorem, f

Theorem 3. Simple algebras satisfying (1.1) are either of degree one or
satisfy the conditions for Theorem 1 and so are of degree at most two, unless the
coefficients are so that a = h, a = c+h, (—2a+3c+3h) + (3a~5c-5h)ix = 0
for ii = k or 1, or so that (a, c, h) is a multiple of one of the following (8, 7, - 1 ) ,
(6, - 3 , 7), (4, 1, 2), ( 1 6 , - 9 , 19), (40, - 1 9 , 49), (22, - 9 , 25), ( -26±10s /5 ,
121 + 33^5, - 1 5 8 + 34^5).

We next consider an algebra satisfying (1.1) with a — h and c ^ O . Our
identity then is

y{aRx,x+( - c - a)Rx2X2+c(Rx2)
2+( - c - a)RxRxi+(a + 5c)Rx3Rx

+ (a + c)RxRx2Rx+(-2a-9c)RxlRl + 4cR*+ aRxRx2} = 0. (3.3)

We recall that

e-tf =0
for all idempotents e of A. It follows that A can be written as the supplementary
sum

A = Ae(0) + Be(i) + Ae(l)
where

Be(i)={xeA: x(2Re-l)
2 =0}.

The usual techniques of non-associative algebra show us that

{yR£Re-l)(Re-l)}

is an ideal of A for most values of the parameters.

Lemma 3.2. Let A be a simple algebra satisfying (3.3) with c # 0 and the
pair (a, c) not a multiple of any of the following: (14, —3), (3, —1), (2, 1),
(2, - 1 ) . Then A = Ae(0)+Ae(i)+Ae(l)for any idempotent e of A.

We use Theorem 2 to give us the following:

Theorem 4, Let A be a simple algebra satisfying (3.3) with c # 0 and the
pair (a, c) not a multiple of any of the following: (14, —3), (3, —1), (2, 1),
(2, - 1 ) , (4, - 1 ) . Then if A is of degree 2> 3, A is Jordan.

t Most of the details of this and succeeding calculations have been omitted. A copy of
the complete calculations is available on request from the author.
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