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O N P R O P E R T Y B O F F A M I L I E S O F SETS 

BY 

H. L. ABBOTT AND A. C. LIU 

1. Introduction. A family & of sets is said to have property B if there exists 
a set S such that SnF^<f> and Sj>F for all F<^&. S is called a B-set for ®. 
Let n > 2 and N > 2 n - 1 . Let V = { 1 , 2 , . . . , N} and let ^ = 
{G:G<= V, |G| = rc}. Erdôs [3] defined mN(n) to be the size of a smallest 
subfamily of <& which does not have property B and proved the following 
results: 

(1) m 2 q _ 1 ( n ) > m 2 q ( n ) > 2 - i n ( l + ^ - ^ ) 

and 

(2) m2q+1(n)^m2q(n)^q2nllyi-^^^ . 

Erdôs also pointed out that 

(3) m 2 n_ 1(n)=m 2 n(n)=f j 

and remarked "I cannot compute m2n+i(n) and in fact do not know the value 
of m9(4)". 

In a recent paper [2] de Vries proved that 

which improves the lower bound for m2q-i(n) afforded by (1) by a factor 
q - n + 1 . From (4) it follows that 

(5) m 2 n + 1 ( n ) > -
n \ n - 1 / n \ n / 

The main result of [2] is the following theorem. 

THEOREM (de Vries). Equality holds in (5) if and only if there exists a Steiner 
system S(n - 1 , n, 2n +1). 
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The only values of n for which such Steiner systems are known to exist are 
n = 3 and n = 5 so that m7(3) = 7, (this was known earlier) and m11(5) = 66. 

We shall be concerned mainly with getting upper bounds for m2n+i(n). We 
remark that (2) is effective only when q is large compared to rc, say q>cn for 
some constant c>\. In fact, one may readily check that the right side of (2) 

(2n-l\ 
reduces to 2nl I when q = n. Our main result is contained in the 

following theorem: 

THEOREM 1. For every s>0 and all sufficiently large ny 

(c\ ( ^ / 2 * + l \ ( l + 6)logn 
(6) m 2 n + 1 (n)< . 

\ n J n 
Thus our upper hound differs from the lower estimate given by (5) by a factor of 
log n. 

The upper bound given by (6) holds only for all sufficiently large n. It is 
(2n-l\ 

natural to ask whether the trivial upper bound m2 n+i(n)<( ), which 

follows from (3) and the fact that mN(n) is non-increasing in N, can be 
improved for all rc>3. We shall show that this is indeed the case. 

THEOREM 2. There exists a constant c< 1 such that for all n>3 

(V)-m2n+1(n)<c 

Our final result concerns m9(4). It is implicit in [1] that m9(4)<27, and it 
follows from (4) that m 9 (4)>21. Moreover, since it is known that there is no 
Steiner system S(3, 4, 9), we have, from the theorem of de Vries, m9(4) > 22. 
We shall narrow the gap slightly by proving the following result: 

THEOREM 3. 24<m 9 (4 )<26 . 

2. Proof of theorem 1. We first state a lemma which will be our main tool in 
the proof. 

LEMMA. Let A and B be non-empty finite sets, Let Rbe a relation from A to B 
such that for each aeA there exists beB such that aRb and for each beB, there 
exists aeA such that aRb. For aeA let Ba={b:beB, aRb} and for beB let 
Ab={a:aeA, aRb}. Let u -min{|Ab|:beB} and v = max{|Ba\:ae A}. Then 
there exists a set A' ^ A such that for all beB, be Ba for some aeA' and such 
that 

\A'\J^{l + \ogv). 
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We do not prove this lemma since various formulations of it, which are 
essentially equivalent to that given above, have appeared recently in the 
literature (see, for example [4] or [5]). We only remark that the set A' is 
obtained by a type of greedy algorithm; that is, the elements of A' are selected 
one at a time by making the most efficient choice at each stage. Thus the set A' 
is not explicitly given. 

We return now to the proof of Theorem 1. Let V = { 1 , 2 , . . . , 2rc + l}, 
<ê = {G:GaV,\G\ = n} and W={H:Ha V, |H| = n - 1 } . In the lemma take 
A = B = ^ and let aRb mean a~b or aC\b = cj>. Then u = v = n + 2 and 
denoting A' in this case by 3*n we have 

i + 2) 
•2 

. ^ i /2n + l \ l + log(n-

Next, in the lemma, take A = ^ , B = <M and let <xRb mean a fl b = </>. Then 
/n + 2\ /n + l \ 

u = ( I and i; = I I and denoting A' in this case by £Fn_i we get 

n+1>-(T)) 
(8) '.-̂ m- m Let ^ = ^ n U ̂ n_x. We claim that ^ d o e s not have property B. Suppose, to the 
contrary, & has a B-set S. We may assume |S | ^n , since otherwise we take its 
complement. If \S\ = n then Se<& and S = F or S H F= <j) for some F e f n . If 
|S| = n - l , then S e ^ a n d SOF=4> for some F e f ^ . Finally if | S | < n - l 
then SczH for some H e $ £ and consequently |SHF | = 4> for some F e ^ ^ . 
Thus we get a contradiction in all cases. Hence 9 does not have property B. It 
is an immediate consequence of (7) and (8) that 

f2w + r \ ( l + e)logn 
n w<fV>): 

for every e > 0 , provided n>n0(s). This completes the proof of Theorem 1. 

REMARK. It is clear from (7) and (8) that 3^n_1 forms a very small part of 3*. 
It would be of interest to know whether 3*n may be chosen so that it does not 
have property B. We have not been able to decide this. 

3. Proof of theorem 2. We shall prove that for n > 6 , 

4rc2-10n + 3 
(9) m, ^MV) 4 n 2 - 8 n + 3 

It follows from (9), Theorem 1, and the fact that m7(3) = 7<( | ) , m 9 (4)<26< 
(I) and m11(5) = 66<(§) that Theorem 2 holds. 
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Let A = { l , 2 , . . . , 2 n - 5 } , B={2n-4,2n-3,2n-2} and C = 
{ 2 n - l , 2 n , 2 n + l}. Let V=AUBUC and let « = {G:G<= V, |G| = n}. A set 
G c Vis said to be of type (x, y, z) if \GHA\ = x, \GHB\ = y and | G H C | = z. 
The collection of all G e ^ of type (JC, y, z) will be denoted by [x, y, z]. It will be 
convenient to describe matters graph theoretically. Let <S be the graph (Fig. 1) 
whose vertices are the triples [JC, y, z], two distinct vertices [x, y, z] and 
[x', y', z'] being joined by an edge if x + x ' < 2 n - 5 , y + y ' < 3 , and z + z ' < 3 . 
Note then that if G G [X, y, z], there exists G' G [JC', y\ z'] such that GnG' = (f>. 

[ r c -5 ,2 ,3 ] -

[ n - l , ' l , 0 ] 

[ n - 4 , ' 1 , 3 ] 

[n - 6 , 3, 3] 

[ n - 3 , 0 , 3 ] [ n - 3 , 3 , 0 ] 

Figure 1. 

- [ n - 5 , 3 , 2 ] 

- [ n - 1 , 0 , 1 ] 

[ n - 4 , 3 , 1 ] 

[n-3, 1, 2] [ n - 3 , 2, 1] ( [ ^ - 2 ^ 2 ] ) 

Let ^ = [ n , 0 , 0 ] U [ n - 4 , 2 , 2 ] U [ n - 2 , 2 , 0 ] U [ n - 2 , 0 , 2 ] and let # be the 
corresponding vertices of <ë. $F thus consists of the circled vertices in Fig. 1. 
Note that every other vertex of <§ is adjacent to a vertex in &. 

We claim that 5Fdoes not have property B. Suppose, to the contrary, that 3* 
has a B-set S. We may assume \S\ = n or \S\ = n — 1. 

Suppose |S| = n. Then S G [ X , y, z] for some vertx [JC, y, z] of %. Then it is 
clear from the graph theoretic set up that either S G £F or SDF = cf) for some 
Fe&. 

Suppose now that |S| = n — 1. Then S is of type (x - 1, y, z) where [JC, y, z] is 
a vertex of (S. If [x, y, z] does not belong to # then S<^G for some G G 
[x, y, z]. Since G f l F = ^ for some F e ^ w e have SnF=4> also. If [x, y, z] 
belongs to # then S is of one of the types (n - 1, 0, 0), (n - 5, 2, 2), (n - 3, 2, 0) 
or ( n - 3 , 0 , 2 ) . Here we have SnF=cj> for some F in [ rc-4 , 2, 2], [n, 0, 0], 
[n —2, 0, 2] or [n — 2, 2, 0] respectively. Thus ^ d o e s not have property B. 
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Now 

|^| = |[n, 0, 0]| + \[n - 4,2,2]| + \[n - 2, 2, 0]| + |[n - 2,0,2]| 

/ 2 n - l \ 4 n 2 - 1 0 n - f 3 
\ n / 4n 2 -8n + 3 " 

This comples the proof of (9) and hence, at the same time, the proof of 
Theorem 2. 

REMARK. We have a number of similar constructions which result from 
taking different partitions of V. However, we do not present these here since, 
for large values of n, the bounds obtained are much inferior to (6). In fact, the 
only merit of Theorem 2 is that it improves the trivial bound for all n ^ 3 . 

4. Proof of theorem 3. We do not give all of the details, but we give an 
outline of the method used. 

Let V = {1,2,3,4,5,6,7,8,9} and let <S be the family of 4-subsets of V. 
Suppose there exists a subfamily 3* and *S which does not have property B and 
suppose | ^ | - 2 3 . Each member of £F is disjoint from five members of cê. If 
every member of ¥F were disjoint from some other member of ^ , there would 
be at most 41^ | - 92 members of ^-S* which are disjoint from some member 
of ^ . Since ^ - ^ 1 = 126-23 > 92 there would be a member of « - ^ which 
meets each member of & and is thus a B~set for 3*. Thus we may suppose that 
there is a set A e & which meets all other members of $\ Without loss of 
generality we may take A = {1, 2, 3,4}. 

We say that a member G of <0 is of type r, 0 < r < 4 , if |GflA| = r. Let<Sr be 
the set of members of *0 of type r. One may readily verify thjat 

\%\ = 5, \%\ = 40, fS2\ = 60, \%\ = 20, \%\ = 1. 

We make the following observations: 

(a) Each member of <S1 is disjoint from two members of <S3 and three 
members of (§2-

(b) Each member of ^ 2 is disjoint from two members of <S1 and three other 
members of ^3. 

(c) Each member of % is disjoint from one member of ^ and four members 
Of«!. 

For 0 < r < 4 let 

hr = \&n%\. 
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We have h4 = 1 and h0 = 0 so that 

(10) h1 + ft2+h3 = 22. 

In order to account for all of the sets in (S1 we must have, by observations (b) 
and (c), 

(11) h14-2h2 + 4h3>| (S1 | = 40. 

In order to account for all of the sets in ^ we must have, by observations (a) 
and (b) 

(12) 3h1 + 4h2>|<S2 | = 60. 

Similarly, in order to account for all of the sets in ^3 we must have, by 
observation (a) 

(13) 2h1 + h3>\%\ = 20. 

One may readily check that the only triples (hl9 h2, h3) which satisfy (10), (11), 
(12), and (13) are (12,6,4), (11,7,4), (10,9,3), (10,8,4), (9,10,3), (9,9,4), 
(8, 10, 4) and (8, 9, 5). 

In the case (hl9 h2, h3) = (12, 6, 4) we note that (12) holds with equality. 
Since hx = 12>( | ) = 10 there must be a 3-subset of {5, 6, 7, 8, 9}, say {5, 6, 7}, 
such that at least two of {1, 5, 6, 7}, {2, 5, 6, 7}, {3, 5, 6, 7} and {4, 5, 6, 7} are in 
^ f W . Without loss of generality, we may take these to be {1,5,6,7} and 
{2, 5, 6, 7}. However both of these sets are disjoint from {3,4, 8, 9} e^g2. This 
contradicts the fact that (12) must hold with equality. Thus (h1,h2,h3) = 
(12, 6, 4) is ruled out. 

Similar, although sometimes more complicated, arguments may be used to 
rule out the remaining seven cases. We suppress these details. 

We have not been able to carry out the above analysis in the cases \SF\ = 24 
or 25. However, in trying to apply it to the case | ^ | = 26, we found the 
following family of 26 sets which does not have property B, thus showing 
m9(4)<26. 

{1234}{1235}{1236}{1237}{1247}{1256}{1289}{1347} 

{1356}{1389}{1458}{1469}{1579}{1678}{2347}{2356} 

{2389} {2458} {2469} {2579} {2678} {3458} {3469} {3579} 

{3678} {4567}. 

This completes the proof of Theorem 3. 
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