
Appendix C

Canonical Manifold of Mappings

This appendix sketches the construction of a canonical manifold of mappings
structure for smooth mappings between (finite-dimensional) manifolds (for
details see Amiri et al., 2020, Appendix A). Before we begin, let us reconsider
for a moment the locally convex space C∞(M,E) (M a compact manifold and
E a locally convex space; see §2.1). The topology and vector space structure
allow us to compare two smooth maps f and g by measuring their difference
f − g on compact sets. As a general manifold N lacks an addition, we can-
not mimic this construction (though the topology still makes sense!). On first
sight it might be tempting to think that one could use the charts of N to con-
struct charts for C∞(M,N ). However, if N does not admit an atlas with only
one chart, there will be smooth mappings whose image is not contained in one
chart. Thus the charts of N turn out to be not very useful. Instead one needs
to find a replacement of the vector space addition to construct a way in which
‘charts vary smoothly’ over N .

C.1 Local Additions

In this section we first define a replacement for vector additions which allow
us to construct a canonical manifold structure on spaces of mappings.

C.1 Definition Let M be a smooth manifold. A local addition on M is a
smooth map

Σ : T M ⊇ U → M,

defined on an open neighbourhood U ⊆◦ T M of the zero-section of the tangent
bundle 0M � {0p ∈ TpM | p ∈ M } such that Σ(0p ) = p for all p ∈ M ,

U ′ � {(πM (v),Σ(v)) | v ∈ U }
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214 Canonical Manifold of Mappings

is open in M × M (where πM : T M → M is the bundle projection) and the
mapping θ � (πM ,Σ) : U → U ′ is a C∞-diffeomorphism.

C.2 Let G be a Lie group. Then G admits a local addition. To see this, let
ϕ : U → V be a chart of G with 1 ∈ U and ϕ(1) = 0. Then Ũ � T0ϕ

−1(V ) is
open in T1G and we define α1 : Ũ → U , v �→ ϕ−1(T1ϕ(v)). Note that α1 is a
diffeomorphism. Now the tangent bundle of G is trivial, that is, TG � G×T1G,
Lemma 3.12, and we obtain an open set Ω �

⋃
g∈G Tλg (Ũ) � G × Ũ ⊆◦

G × T1G. Define the smooth map

Σ : Ω→ G, v �→ πG (v) · α1(TλπG (v)−1 (v)).

We note thatΩ is a neighbourhood of the zero section and Σ(0g ) = g ·α1(01) =
g · 1 = g. Finally, (πG ,Σ) : Ω→ G ×G is a diffeomorphism (onto an open set)
with inverse (πG ,Σ)−1(g,h) = Tλg (α−1

1 (g−1h)).

C.3 Remark If (M,g) is a strong Riemannian manifold (see Chapter 4),
then the Riemannian exponential map expg of g induces a local addition on M
(Michor, 1980, Lemma 10.1).

We leave the proof of the following statement as Exercise C.1.1.

C.4 Lemma (Schmeding and Wockel, 2015, Lemma 7.5; or Michor, 1980,
10.11) Let M be a manifold which admits a local addition Σ. Then T M admits
a local addition (it is TΣ ◦ κ, where κ is the flip of the double tangent bundle).

With the help of a local addition we can pull to vector fields over a given
function.

C.5 Let f ∈ C∞(K,M) and assume that M admits a local addition Σ : T M ⊇
Ω→ M . If g ∈ C∞(K,M) such that

( f ,g)(K ) ⊆ (πM ,Σ)(Ω) ⊆◦ M × M,

define the mapping

Φ f (g) � (πM ,Σ)−1 ◦ ( f ,g) ∈ C∞(K,T M).

A quick computation shows that πM ◦Φ f (g) = f . The idea is thatΦ f (g) yields
at every x ∈ K a vector in Tf (x) M which gets mapped by the local addition
to g(x). Thus the mapping Φ f (g) measures the difference between f and g

(similar to f − g in the vector space case). Note that Φ f takes its values in the
subspace

C∞
f (K,T M) �

{
h ∈ C∞(K,T M) | πM ◦ h = f

}

of mappings over the given map f .
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C.2 Vector Bundles and Their Sections 215

To make mappings of the form Φ f into charts for C∞(K,M), we first need
to study spaces of the form C∞

f (K,T M). In particular, we need these spaces
to be locally convex spaces and will showcase this in the next section. The
idea will be to relate these sets to spaces of sections of certain vector bundles.
Note, however, that the space of functions C∞

f (K,T M) depends heavily on the
function f . In general, these spaces will not be isomorphic if we change the
base function f .

Exercise

C.1.1 Let M be a manifold, T M its tangent bundle and T2 M = T (T M)
the double tangent bundle. Assume that M admits a local addition
Σ : T M ⊇ U → M .

(a) Show that there is a bundle isomorphism κ : T2 M → T2 M over
the identity such that in local coordinates we have (up to iden-
tification) the identity κ(x,v,u,w) = (x,u,v,w). We call κ the
(canonical) flip of the double tangent bundle.

(b) Prove that TΣ ◦ κ is a local addition for T M . Explain then why
TΣ is not a local addition.

C.2 Vector Bundles and Their Sections

Recall that a vector bundle is a pair of manifolds E (total space) and M (base
(space)) together with a surjective submersion p : E → M such that for every
x ∈ M the fibre Ex � p−1(x) ⊆ E is a real vector space and there is x ∈ Ux ⊆◦
M and a diffeomorphism κx : Ux ×Fx → p−1(Ux ), a bundle trivialisation such
that

• p ◦ κx (y,v) = y, for all y ∈ Ux ;
• for each y ∈ Ux , the map κx (y, ·) : Fx → p−1(y) is a vector space isomor-

phism.

Finally, for two vector bundles pi : Ei → Mi , i = 1,2, a pair of smooth maps
F : E1 → E2 and f : M1 → M2 is called vector bundle morphism if p2 ◦ F =

f ◦ p1 and F |p
−1
2 ( f (x))

p−1
1 (x)

is linear for every x ∈ M1 (we also say that F is a bundle

morphism over f ).

C.6 (Sections of vector bundles) For a vector bundle p : E → M , a smooth
map f ∈ C∞(M,E) is called a smooth section if p ◦ f = idM . We denote the
set of all sections by
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216 Canonical Manifold of Mappings

Γ(E) � { f ∈ C∞(M,E) | p ◦ f = idM }.

Since every fibre of a vector bundle is a vector space, pointwise addition
and scalar multiplication of sections makes sense and Γ(E) becomes a vector
space. This space can be topologised as a locally convex space as follows.

C.7 Let p : E → M be a vector bundle. We pick a family of bundle triviali-
sations κi : p−1(Ui ) → Ui × Fi , i ∈ I which cover E (i.e. the Ui cover M). If
we denote by prFi

: Uϕ × Fi → Fi the canonical projection, then the principal
part of the section X in the trivialisation κi is defined as

Xκi � prFi
◦ κi ◦ X |Ui ∈ C∞(Ui ,Fi ).

Note that this entails that with respect to the bundle trivialisation we have

κi ◦ X = (idUi ,Xκi ), for all X ∈ Γ(E).

We declare a topology on Γ(E) as the initial topology with respect to the map

IE : Γ(E) →
∏

i∈I
C∞(Ui ,Fi ), X �→ (Xκi )i∈I ,

where the factors on the right-hand side carry the compact open C∞-topology.
Now by definition of the vector space operations we have IE (X + rU) =
IE (X ) + rIE (U). Note that since the right-hand side is a locally convex space
by Proposition 2.4, this also shows that Γ(E) is a locally convex space. We
shall see that this structure does not depend on the choice of trivialisations in
Exercise C.2.1.

Now to model spaces of smooth mappings, we need a certain type of bundle
constructed from a map and a vector bundle. While we study this situation we
recall two ways to construct new vector bundles from given vector bundles.

C.8 (Pullback bundles and their sections) Let M and K be smooth manifolds.
If p : E → M is a smooth vector bundle over M and f : K → M is a smooth
map, then

f ∗(E) �
⋃

x∈K
{x} × E f (x)

is a split submanifold of K × E (as it locally looks like graph( f ) × Ex inside
K×M×Ex around points in {x}×Ex ). We endow f ∗(E) with this submanifold
structure. Together with the natural vector space structure on {x} × E f (x) �
E f (x) and the map pf : f ∗(E) → K , (x, y) �→ x, we obtain a vector bundle
f ∗(E) over K , the so-called pullback of E along f . For each local trivialisation
θ = (p|E |U , θ2) : E |U → U × F of E and W := f −1(U), the map

f ∗(E) |W → W × F, (x, y) �→ (x, θ2(y))
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C.2 Vector Bundles and Their Sections 217

is a local trivialisation of f ∗(E). We endow

C∞
f (K,E) � {τ ∈ C∞(K,E) | p ◦ τ = f }

with the topology induced by C∞(K,E). With pointwise operations, C∞
f (K,E)

is a vector space and the map

Ψ : Γ( f ∗(E)) → C∞
f (K,E), σ �→ pr2 ◦ σ

is a bijection with inverse τ �→ (idK , τ). As (pr2)∗ : C∞(K,K×E) → C∞(K,E)
is a continuous map and also τ �→ (idK , τ) ∈ C∞(K,K ) × C∞(K,E) �
C∞(K,K × E) is continuous, we deduce that C∞

f (K,E) is a locally convex
topological vector space and Ψ is an isomorphism of topological vector spaces.

C.9 (Whitney sum of bundles) Let pi : Ei → M, i = 1,2 be vector bundles
over the same base M . Then we can form the direct product of these vector
bundles, which is the vector bundle

p1 × p2 : E1 × E2 → M × M

over the product manifold M×M . Consider the diagonal map Δ : M → M×M ,
m �→ (m,m). Then the Whitney sum of p1 and p2 is defined as the bundle

p1 ⊕ p2 : E1 ⊕ E2 � Δ∗(E1 × E2) → M.

Note that by construction we have as fibres (E1 ⊕ E2)x = (E1)x × (E2)x and
if κi is a bundle trivialisation of Ei over a common open set U ⊆◦ M , then the
restriction of κ1× κ2 to (p1 ⊕ p2)−1(U) is a bundle trivialisation of the Whitney
sum.

We just mention that there is a version of the exponential law for spaces of
sections; see Amiri et al. (2020, Appendix A).

Exercises

C.2.1 Show that the mapping IE : Γ(E) → ∏
i∈I C∞(Ui ,F) from C.7 has

a closed image. Then prove that the topology does not depend on the
choice of local trivialisations, that is, if B � {νj } j ∈J is another family
of trivialisations covering E, then the topologies induced by IE and
IE,B coincide.
Hint: If A,B are families of trivialisations, then A ∪ B is also such
a family. Thus we may assume without loss of generality that A ⊆ B
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218 Canonical Manifold of Mappings

and it suffices to prove that the topology induced by B cannot be finer
than the one induced by A. To prove this, adapt Lemma 2.5.

C.2.2 Verify that the pullback bundle in C.8 forms a split submanifold of
K × E.
Hint: Construct submanifold charts by hand as for the graph of a func-
tion.

C.2.3 Show that for two vector bundles pi : Ei → M there is a canonical
isomorphism of locally convex spaces Γ(E1) × Γ(E2) � Γ(E1 ⊕ E2).

C.3 Construction of the Manifold Structure

General Assumption We let K be a compact manifold and M be a smooth
manifold which admits a local addition Σ : T M ⊇ U → M such that

• Σ is normalised, that is, T0p (Σ |TpM ) = idTpM for all p ∈ M (a manifold
with local addition has a normalised local addition; see Amiri et al., 2020,
Lemma A.14);

• θ � (πM ,Σ) : U → U ′ is a diffeomorphism.

C.10 (Manifold structure on C∞(K,M)) For f ∈ C∞(K,M), the locally con-
vex space of C∞-sections of f ∗(T M) can be identified with

C∞
f (K,E) = {τ ∈ C∞(K,T M) | πM ◦ τ = f },

with the topology induced by C∞(K,T M). Use notation as in Definition C.1.
Then O f := C∞

f (K,E) ∩ C∞(K,U) is an open subset of C∞
f (K,E),

O′
f := {g ∈ C∞(K,M) | ( f ,g)(K ) ⊆ U ′}

is an open subset1 of C∞(K,M) and the map φ f : O f → O′
f , τ �→ Σ ◦ τ is

a homeomorphism with inverse g �→ θ−1 ◦ ( f ,g). By the preceding, if also
h ∈ C∞(K,M), then φ−1

h
◦ φ f has an open domain; φ−1

h
◦ φ f is smooth there,

since (by the exponential law, Theorem 2.12), we only need to observe that the
map

(τ, x) �→ (φ−1
h ◦ φ f )(τ)(x) = θ−1(h(x),Σ(τ(x))) (C.1)

is C∞. Hence C∞(K,M) has a smooth manifold structure such that each of the
maps φ−1

f is a local chart.

We prove that the manifold structure on C∞(K,M) is canonical and thus
by Lemma 2.16(b) the construction C.10 is independent of the choice of local
addition.
1 The proof is similar to Exercise B.2.4.
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C.3 Construction of the Manifold Structure 219

C.11 Lemma The manifold structure on C∞(K,M) constructed in C.10 is
canonical.

Proof We first show that the evaluation map ev: C∞(K,M) × K → M is
C∞. It suffices to show that ev(φ f (σ), x) is C∞ in (σ, x) ∈ O f × K for all
f ∈ C∞(K,M). But

ev(φ f (σ), x) = Σ(σ(x)) = Σ(ev(σ, x)),

where ev: C∞
f (K,E)×K → f ∗(T M), (σ, x) �→ σ(x) is C∞ (see Alzaareer and

Schmeding, 2015, Proposition 3.20). Now let h : L → C∞(K,M) be a map,
where L is a manifold. If h is C∞, then h∧ = ev ◦(h×idK ) is C∞. If, conversely,
h∧ is C∞, then h is continuous as a map to C(K,M) with the compact open
topology (see Proposition B.12) and h(x) = h∧(x, ·) ∈ C∞(K,M) for each
x ∈ L. Given x ∈ L, let f := h(x). Then

ψ f : C(K,M) → C(K,M) × C(K,M) � C(K,M × M), g �→ ( f ,g)

is a continuous map and W � h−1(O′
f ) = (φ f ◦ h)−1(C(K,U ′)) is an open

x-neighbourhood in L. Since

((φ f )−1 ◦ h|W )∧(y, z) = (θ−1 ◦ ( f ,h(y)))(z) = θ−1( f (z),h∧(y, z))

is C∞, the map φ−1
f ◦ h|W (and hence also h|W ) is C∞ (apply Theorem 2.12 to

the spaces C∞(Ui ,F) containing the principal parts of the sections). �

C.12 Let γ ∈ C∞(K,M) and view TγC∞(K,M) as a set of equivalence
classes of smooth curves c : ] − ε,ε[→ C∞(K,M),c(0) = γ. As the mani-
fold structure is canonical, c is smooth if and only if c∧ : ] − ε,ε[×K → M is
smooth. Hence for the canonical chart φγ : Oγ → O′

γ ⊆ C∞(K,M), the map
T0φγ : C∞

γ (K,T M) →→ TγC∞(K,M) is an isomorphism of TVS. For x ∈ K
denote by εx the point evaluation in x. Since Σ is normalised we obtain

TεxTφ f (0, τ) = Tεx ([t �→ Σ ◦ (tτ)]) = [t �→ Σ(tτ(x))]

= [t �→ Σ |Tf (x) M (tτ(x))] = TΣ |Tf (x) M (τ(x)) = τ(x).

Summing up, this implies that for each fibre there is a linear bijection

Φγ : TγC∞(K,M) → C∞
γ (K,T M), [c] �→ (k �→ [t �→ c∧(t, k)]). (C.2)

We will now sketch the proof that the fibre maps (C.2) induce a bundle
isomorphism

ΦM : TC∞(K,M) → C∞(K,T M), TγC∞(K,M) � V �→ Φγ (V )
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220 Canonical Manifold of Mappings

such that the following diagram commutes

TC∞(K,M) C∞(K,T M)

C∞(K,M).

ΦM

πC∞ (K,M ) (πM )∗

Sketch of Proof (See Amiri et al., 2020, Appendix A.) If λp : TpM → T M is
the inclusion and κ : T2 M → T2 M the canonical flip, then Θ : T M ⊕ T M →
π−1
TM (0M ) ⊆ T2 M,Θ(v,w) = κ(Tλπ(v) (v,w)) is a bundle isomorphism. Let

0 : M → T M be the zero-section. Then Θ induces a diffeomorphism

Θγ : Oγ → O0◦γ , η �→ Θ ◦ (0 ◦ γ,η).

From the local addition Σ, we construct a local addition Σ̃ on T M and consider
the charts φ0◦γ on C∞(K,T M). Then the sets Sγ � Tφγ (Oγ × C∞

γ (K,T M))
form an open cover of T (C∞(K,M)) for γ ∈ C∞(K,M). We deduce that the
setsΦM (Sγ ) form a cover of C∞(K,T M) by sets which are open as ΦM (Sγ ) =
(φ0◦γ ◦ φγ )(Oγ × C∞

γ (M,T M)) = φ0◦γ (O0◦γ ). Hence we can check that ΦM

restricts to a C∞-diffeomorphism on these open sets, that is,

ΦM ◦ Tφγ = φ0◦γ ◦ Θγ

for each γ ∈ C∞(K,M) (as all other mappings in the formula are smooth
diffeomorphisms). Now we can rewrite ΦM (Tφγ (σ,τ)) as

([t �→ Σ(σ(x) + tτ(x))])x∈K = ([t �→ (Σ ◦ λγ(x) )(σ(x) + tτ(x))])x∈K

= (T (Σ ◦ λγ(x) )(σ(x), τ(x)))x∈K = (ΣTM ((κ ◦ Tλγ(x) )(σ(x), τ(x))))x∈K

= ((ΣTM ◦ Θγ )(σ,τ)(x))x∈K = (φ0◦γ ◦ Θγ )(σ,τ).

Thus ΦM is a C∞-diffeomorphism.

C.13 (Smooth maps into the Whitney sum over strong Riemannian mani-
folds) By Lemma C.4, T M admits a local addition whose product with itself
yields a local addition on the product manifold. Thus C∞(K,M),C∞(K,T M),
C∞(K,T M×T M) are canonical manifolds. Taking the Whitney sum of (πM )∗:
C∞(K,T M)→C∞(K,M) (C.12) with itself, we obtain the bundle C∞(K,T M)⊕
C∞(K,T M). Our aim is to identify it with the bundle C∞(K,T M ⊕ T M). Ob-
serve that C∞(K,T M) ⊕ C∞(K,T M) is a split submanifold of C∞(K,M) ×
C∞(K,T M)2. Now the factors of the product are canonical manifolds. Thus
Lemma 2.16 yields a diffeomorphism

C∞(K,M) × C∞(K,T M)2 � C∞(K,M × (T M)2),
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which takes the split submanifold C∞(K,T M) ⊕ C∞(K,T M) to
C∞(K,T M ⊕ T M). As diffeomorphisms preserve split submanifolds, see
Exercise 4.4.2, C∞(K,T M ⊕ T M) must be a split submanifold of
C∞(K,M × (T M)2). Finally, Lemma 2.16(c) shows that C∞(K,T M ⊕ T M)
is a canonical manifold diffeomorphic to TC∞(K,M) ⊕ TC∞(K,M).

C.14 Remark By uniqueness of canonical manifolds, C∞(K,T M ⊕ T M)
from C.13 coincides with the manifold structure we could have obtained via
a local addition on T M ⊕ T M . The same proof works if we only assume that
C∞(K,M) and C∞(K,T M) are canonical manifolds (without assuming that M
has a local addition).

Exercise

C.3.1 Work out the missing details in the sketch of the proof in C.12.
C.3.2 Prove that a manifold with a local addition admits a normalised local

addition.

C.4 Manifolds of Curves and the Energy of a Curve

In this appendix we consider the manifold structure on spaces of curves on
a compact interval. The reason for this is that we defined for a (weak) Rie-
mannian manifold (M,g) the energy En: C∞([0,1],M) → R of a curve and
would like to differentiate En to find geodesics. Hence a manifold structure on
the space of curves C∞([0,1],M) is needed. Many details of the construction
will be left to the reader as Exercise C.4.1. Moreover, we will not systemati-
cally introduce tangent bundles for manifolds with boundary such as [0,1] (see
e.g. Michor, 1980). Thus the compact open C∞-topology needs to be defined
without recourse to tangent bundles.

C.15 Let M be a (possibly infinite-dimensional) manifold. Let c : [0,1] → M
be a smooth curve and K ⊆ [0,1] compact such that c(K ) ⊆ U , where (U, ϕ) is
a chart of M . If ϕ(U) ⊆◦ E for the locally convex space E, we pick a seminorm
‖·‖ on E and define a Ck -neighbourhood Nk (c,K, (U, ϕ), ‖·‖, ε) as the set

{
g ∈ C∞([0,1],M)

�
�
�
�
�

g(K ) ⊆ U, sup
0≤�≤k

sup
x∈K

�
�
�
�
�

d�

dxk
(ϕ ◦ g − ϕ ◦ c)(x)

�
�
�
�
�

< ε

}
.

Then the family Nk (c,K, (U, ϕ), ‖·‖, ε), where c ∈ C∞([0,1],M), K ⊆ [0,1]
compact, ‖·‖ is a continuous seminorm of E and ε > 0 forms the base of a
topology on C∞([0,1],M) called the compact-open C∞-topology. If M = E is
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222 Canonical Manifold of Mappings

a locally convex space, then C∞([0,1],E) is also a locally convex space2 and
the exponential law, Theorem 2.12, carries over to C∞([0,1],O), O ⊆◦ E.

C.16 Proposition Let (M,Σ) be a manifold with local addition Σ and topol-
ogise the space C∞([0,1],M) with the compact-open C∞-topology. Then we
have that C∞([0,1],M) is a canonical manifold and TC∞([0,1],M) � C∞

([0,1],T M).

C.17 Lemma Let (M,g) be a (weak) Riemannian manifold such that M and
T M admit local additions. Then the energy

En: C∞([0,1],M) → R, c �→ 1
2

∫ 1

0
gc (t ) (ċ(t), ċ(t))dt

is smooth. We can express its derivative in a local chart (U, ϕ) (suppressing
most identifications) as

dEn(c; h) =
∫ 1

0

1
2

d1gU
(
c,c′(t),c′(t); h

) − d1g
(
c(t),h(t),c′(t); c′(t)

)

− gU
(
c(t),h(t),c′′(t)

)
dt,

where we view g as a map of three arguments, gU (c,a,b) and
h ∈ TcC∞([0,1],M) � {g ∈C∞([0,1],T M) | π ◦ g = c} with h(0) = 0c (0)

and h(1) = 0c (1) .

Proof Since M and T M admit local additions, Exercise C.4.4 implies that
both C∞([0,1],M) and C∞([0,1],T M) are canonical manifolds. Applying the
exponential law, C∞([0,1],M) → C∞([0,1],T M), c �→ ċ = (t �→ Ttc(1)) is
smooth if and only if C∞([0,1],M) × [0,1] → T M, (c, t) �→ Ttc(1) is smooth.
We check this locally in a neighbourhood of a c: Pick a chart (U, ϕ) of M and
[a,b] ⊆ [0,1] with c([a,b]) ⊆ U . As the topology on C∞([0,1],M) is finer
than the compact-open topology, there exists a whole neighbourhood of curves
g with g([a,b]) ⊆ U . Cover [0,1] by compact intervals which c maps into a
chart domain and work locally. To keep the notation simple, we will assume
that c([0,1]) ⊆ U or in other words, assume without loss of generality that
M ⊆◦ E for some locally convex vector space E. Thus we need to prove that
C∞([0,1],M) × [0,1] → M × E, (c, t) �→ (c(t),c′(t)) = (ev(c, t),ev(c′, t)) is
smooth. The evaluation map is smooth on canonical manifolds and the map-
ping C∞([0,1],M) → C∞([0,1],E), c �→ c′, is the restriction of the con-
tinuous linear map C∞([0,1],E) → C∞([0,1],E), c �→ c′, to the open subset
C∞([0,1],M) ⊆◦ C∞([0,1],E) (here we exploit the compact open
C∞-topology). We conclude that the mapping C∞([0,1],M)→C∞([0,1],T M),

2 For M = R, we have described this structure already in Example 1.6.
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c �→ ċ is smooth. Since Exercise C.4.6 identifies the Whitney sums, we deduce
from (ċ, ċ) ∈ T M ⊕ T M that C∞([0,1],M) → C∞([0,1],R), c �→ g∗(ċ, ċ)
is smooth (as pushforwards are smooth on canonical manifolds). However,
1
2

∫ 1
0

: C∞([0,1],R) → R is continuous linear, whence En can be written as a
composition of smooth mappings and is thus smooth.

To compute the derivative of the energy, we work in a local chart (U, ϕ) of
M (though we will only label g and suppress the other identifications). Then
the metric g becomes a map of three arguments gU which is bilinear in the
last two. Recall that the vector component of ċ is c′. Now by choice of h,
there is a smooth curve q : ] − ε,ε[→ C∞([0,1],M) such that ∂

∂s
�
�
�s=0

q(s) = h
and q(t)(0) = c(0) and q(t)(1) = c(1) for all t (a smooth variation; see also
Definition 7.1 for the meaning of the partial derivative). Then we compute,
with the help of the exponential law (Exercise C.4.3),

dEn(c; h) =
d
ds

�
�
�
�
�s=0

En(q(s))

=
1
2

∫ 1

0

d
ds

�
�
�
�
�s=0

gU

(
q(s)(t),

d
dt

q(s)(t),
d
dt

q(s)(t)

)
dt

=

∫ 1

0

1
2

d1gU (c(t),c′(t),c′(t); h(t)) + gU

(
c(t),

d
ds

�
�
�
�
�s=0

d
dt

q(s)(t),c′(t)

)
dt

=

∫ 1

0

1
2

d1gU (c(t),c′(t),c′(t); h(t)) − d1gU

(
c(t),

d
ds

�
�
�
�
�s=0

q(s)(t),c′(t); c′(t)

)

− gU

(
c(t),

d
ds

�
�
�
�
�s=0

q(s)(t),c′′(t)

)
dt

=

∫ 1

0

1
2

d1gU (c(t),c′(t),c′(t); h(t)) − d1gU (c(t),h(t),c′(t); c′(t))

− gU (c(t),h(t),c′′(t))dt.

In passing from the second to the third lines we used integration by parts
together with the fact that d

ds
�
�
�s=0

q(s, t) vanishes at the endpoints of the
interval. �

Almost all of the terms in the formula for the derivative of the energy in
Lemma C.17 can be globalised to the Riemannian manifold. Derivation
exploits of course that we work locally, and the second derivative of c needs
to be taken (from the perspective of the Riemannian manifold M) in the fibre
over c(t). This already hints at the connection of this formula to the covariant
derivative (which, however, was not yet needed).
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Exercises

C.4.1 Prove that the neighbourhoods defined in C.15 form the base of a
topology.

C.4.2 Let E be a locally convex space. Show that the compact-open C∞-
topology turns C∞([0,1],E) into a locally convex space. Show then
that for M = R this topology coincides with the compact-open C∞-
topology from Example 1.6.

C.4.3 Establish a variant of the exponential law, Theorem 2.12, for mani-
folds of smooth mappings on [0,1] (with values in open sets of locally
convex spaces).

C.4.4 Generalise C.10 to prove Proposition C.16. Then proceed to show that
C∞([0,1],M) is a canonical manifold.

C.4.5 Follow the argument in C.12 to prove that TC∞([0,1],M) can natu-
rally be identified with C∞([0,1],T M).

C.4.6 Adapt the argument in C.13 to establish an isomorphism

C∞([0,1],T M ⊕ T M) � C∞([0,1],T M) ⊕ C∞([0,1],T M)

if M and T M admit local additions.
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