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Abstract. We describe the dynamical behaviour of the entire transcendental function
exp (z). We use symbolic dynamics to describe the complicated orbit structure of
this map whose Julia Set is the entire complex plane. Bifurcations occurring in the
family ¢ exp (z) are discussed in the final section.

0. Introduction

The study of the dynamics of complex analytic maps has a long history. The iteration
of these maps was studied extensively in the early part of the twentieth century,
notably by Fatou [3] and Julia [4]. See [1] for a good summary of their work.
Recently, there has been renewed interest in this subject. Work of Maiié, Sad, and
Sullivan [6], [8], [9], Mandelbrot [5], and Douady and Hubbard [2] has shed new
light on the richness of the dynamics of complex analytic maps.

Most of the recent work has centred on rational maps of the complex plane and
the structure of the Julia set, J(f), of such a map. Recall that the Julia set of a map
is the set of points at which the family of iterates of a given map fails to be a normal
family. Equivalently, the Julia set is the closure of the set of expanding periodic
orbits of f. The Julia set is often a rather complicated set and the dynamics of the
map restricted to J(f) is extremely rich.

Our goal in this paper is to examine the dynamics of a specific complex analytic
map that is not rational, namely, the complex exponential map z - exp (z). The Julia
set for this map has been studied by Misiurewicz {7}, who showed that J(f)=C. It
follows that periodic points of exp (z) are dense in C and that the map is topologically
transitive. Our aim is to describe further the dynamics of this map.

Our main result is a topological classification of the orbits of exp (z). Using
symbolic dynamics, we assign an infinite sequence of integers to each orbit. Roughly
speaking, this sequence gives the itinerary of the orbit—which of the various
fundamental domains successive points on the orbit fall into. Not all sequences are
possible; sequences which grow too fast must be excluded. In §§ 1 and 2 we give
necessary and sufficient conditions for the existence of an orbit with prescribed
itinerary. This then gives an interesting semi-conjugacy between exp (z) and the well
known shift automorphism.

Our methods show that there is a unique periodic point corresponding to each
repeating sequence of non-zero integers. Moreover, each such periodic point (with
two exceptions) comes equipped with ‘strings” attached. These are continuous curves
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in the plane which connect the periodic point to co. Each string is preserved by the
map and consists of all points which share the same itinerary as the periodic point.

The two exceptions are the fixed points which lie in the primary fundamental
domains containing the unit circle. Here the dynamics are quite different from other
fundamental domains. In § 5 we show that the strings associated to these fixed
points contain a Cantor set of curves.

We conjecture that all other orbits come equipped with similar strings (or Cantor
sets of strings). In § 3 we show that the set of points which share the same itinerary
and which proceed monotonically to the right to o lie on a continuous curve or
‘tail’. We can in fact show that this curve is Lipschitz.

In the final section, we discuss the dynamics of A exp (z) for A real. Much of
what we say goes over verbatim to this case. However, a spectacular bifurcation
occurs as A decreases through 1/e. The Julia set changes at this parameter value
into a Cantor set of curves. All periodic points discussed above remain, but there
is also an attractive fixed point or sink whose basin of attraction is open and dense
in the plane.

1. Dynamics of exp (z).

Let f(z) = exp (2). Our goal in this paper is to describe the behaviour of points under
iteration of f. The orbit of z is the set of points {f"(z)|[n =0} where f"=fe---of
is the n’th iterate of £ The point z is periodic if there is n> 0 such that f"(z)=z.
The least such n is the period of z. If z is periodic with period n, then f""(z) = z for
all ie Z™. Periodic points play a central role in any dynamical system. One of our
aims is to provide a complete description of the periodic point structure for exp (z).

A periodic point p of period n is a sink if |(f")(p)l < 1. It is well known that if
p is a sink of period n, then there exists a neighbourhood U of p such that f"(U)< U.
Moreover, if ze U, then f"(z)>p as i-». A periodic point p is a source if
(/Y ()| > 1; p is indifferent if |(f")'(p)|=1.

For a complex analytic map, most of the interesting dynamics occur on the Julia
set, J(f). J(f) consists of all points at which the family of iterates of f fails to be
a normal family of functions. More precisely, z € J(f) iff there exists no neighbour-
hood U of z such that the maps f"|U form a normal family of functions. The
following characterization of the Julia set was proved by Fatou [3].

THEOREM. Let g be an entire transcendental function.
(1) J(g) is a closed, non-empty perfect set.
(2) Periodic points are dense in J(g).
(3) J(g) is both forward and backward invariant under g.

It is known that periodic sinks are never in the Julia set, while periodic sources
always are. Indifferent points may or may not be in the Julia set. We refer to [1]
for a complete discussion of these ideas for a rational map.

The following theorem, originally conjectured by Fatou, was proved by
Misiurewicz [7] in 1981.
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THEOREM. J(exp (z2))=C.

Thus the dynamics of exp (z) are quite complicated. Periodic points are dense in C
and one can also show that there is a dense orbit (see also [7]). Our aim is to shed
more light on this complicated orbit structure.

We first recall some elementary facts about f(z)=exp (z). f(z) is 2wi-periodic,
and if ze R, then so is f"(z) for all n>0. Hence the real line is invariant under f.
Moreover, if Im z = 2k for k€ Z then f(z)e R™. If Im (z) = (2k + 1), then f(z)eR".
We therefore divide the plane into infinitely many fundamental domains bounded
by the lines Im z =2k#. If k=1, we define the strip R(k) by

R(k)={zeC|2(k— )7 <Im z < 2km}.
If k=< —1, let

R(k)={ze C|2kw <Im z<2(k +1)7}.
Note that f maps each R(k) diffeomorphically onto C —(R™ U 0). Finally, let R(0)
be the real axis. We also let R(0")=R"* and R(07)=R".

Our aim for the remainder of this section is to describe the set of possible orbits
for exp (z). Toward that end we introduce symbolic dynamics into the problem as
follows. Let A denote the set of non-zero integers augmented by the symbols 0*
and 0™. To each z € C we assign an infinite sequence s of elements of A, § = 5¢5,5,. . .,
as follows. Suppose first that Im f/(z) # 2k for any j, k€ Z. If f/(z) € R(k) we then
set 5; = k. If f(z) e R*, we set s; = 0™. Thus the sequence associated to z is determined
by listing the successive fundamental domains in which successive iterates land.
The only possible confusion arises when Im f/(z) =2k, k # 0. In this case we set
5=k

We denote the sequence associated to z by S(z) and its j’th entry by s;(z). S(z)
is called the itinerary of z. The proof of the following proposition is straightforward.

PropPoOSITION 1.1. Let S(2) = 5085,52....

(1) If s;=07, then s;,, =0".

(2) If s;=0", then 5;,, =0" forallkeZ".

A3) S(f(2))=s5,525;5-...
(3) of this proposition relates the dynamics of exp (z) to the well known shift
automorphism of symbolic dynamics. This map is defined by

T 5p5y 85+ .. ) =[5 5587 . . . ).

Thus (3) above gives S(f(z)) = o(S(2)).

Not all sequences of elements of A actually correspond to orbits of f. For example,
by the above proposition, 0" must always follow 0*. There is another less obvious
necessary condition.

Definition. A sequence 55,5, . . . is of exponential order if there exists a real number
x such that 2m7|s;| < f(x) for all j.

Remark. Repeating sequences and bounded sequences are clearly of exponential
order. However, not all sequences are. For example, it is easy to check that the
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sequence
3,3%,3" ...
is not of exponential order.
Let X denote the set of all sequences s,s,5, ... with s5;€ A and which satisfy:
(1) if s5;=07, then 5;,,=0";
(2) if 5;=07, then 5;,,=0";
(3) 5055, ... is of exponential order.
A sequence of X is called allowable. The following proposition shows that these
three conditions are necessary for a sequence to correspond to an actual orbit of f

ProrosITION 1.2. Let ze C have itinerary s. Then s X.
Proof. Proposition 1.1. gives the necessity of (1) and (2). For (3), first let y ={Re (2)|.
Then | f(z)| < ¢’, and by induction it follows that | f'(z)| < f/(y).
Now let x =y +24. Since y>0,
f(x)=e’e>" = e’ +2m.
By induction, we have f/(x)= f/(y)+2w as well. Therefore, we have
2a|s;| <|f(2)| +2m

=f(y)+2m

=f(x).
Hence s is of exponential order. O

S gives a map from € to X. There is a topology on = which makes this map
continuous. Hence we have

THEOREM. f(2) is topologically semi-conjugate to the shift automorphism on X.

Remark. Let A > 0. Let f,(z) = A exp (). One may also describe the dynamics of f,
using symbolic dynamics. A sequence of elements of A is exponential of order A if
there exists x € R such that

27|s;| < fi(x) for all j.
Let 2, denote the set of all sequences which are exponential of order A and which

also satisfy (1) and (2) of proposition 1.2. One may then easily show that f, is
topologically semiconjugate to the shift map on X,.

2. Itineraries of exp (z)

The goal of this section is to prove the converse of proposition 1.2, i.e. to show that
for any s € X, there exists ze C with S(z)=s. The case where s ends in a tail of I’s
(or of —1’s) will necessitate special arguments both here and elsewhere, so we begin
with this case.

PROPOSITION 2.1. There exists a unique fixed point in R(1) (resp. in R(—1).) This fixed
point is a source.

Proof. There exists a fixed point in R(1) iff e cosy=x and e*siny=y with
0 <y <27. One checks easily that these two curves meet transversely at a unique
point outside the unit circle, at approximately 0.3 +1.34. O
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Remark. One can use similar methods to find a unique fixed source in each R(j).
We will use different methods, however, which generalize to the case of periodic
points. Let s, ..., s, €Z —{0}. Let

V(so, ..., sa)={z€ R(so)| f/(z) € R(s)), 1 <j=<n}
V(so, ..., S,) consists of all points whose itinerary begins with s¢s, - - * s,.

ProPosITION 2.2 Suppose s; #0 for all i. Then V(s,,...,s,) is non-empty and is
mapped onto R(s,) by f".

Proof. f maps R(s,) onto C —(R* U 0). Let f;' be the inverse of f|R(so). By induction,
V(SO, cres sn)= R(so)r‘\f;l(V(s,, sy sn))
is non-empty. Also, f(V(s,, ..., s,))= V(s,,..., s,), and so the second part follows.

a
It follows that f"*'(V(so, ..., s,))=C—(R"u0). Hence we have

PROPOSITION 2.3. Let s=548, 5,1 1 1 1...(resp. s9...5,—1 —1 —=1...) with
s;#0. Then there exists z with S(z)=s.

Proof. Some point in V(s,, ..., s,) is mapped onto the fixed point in R(1) given by
proposition 2.1. O

As another special case, consider sequences in £ of the form s, - - - 5,07 07 07 0"...
or s+ 5,07 0" 0%.... Using arguments as above, it follows that there are two
curves in V(so,...,s,) whose itineraries are of this form. We remark that this
situation is typical: the set of points which share the same itinerary usually forms
a curve. We will discuss this phenomenon in more detail later.

The remainder of this section is devoted to proving the existence result in the
general case. Let s € X and suppose s does not end in a tail of 0’s, 1’s, or —1’s. Since
s is of exponential order, there exists X €R such that

FR)=2mx(s for all j.
In the following construction, we assume that X > 2. We first construct a sequence
of squares B; defined as follows:

(1) B;c=clos R(s));

(2) each side of B; is parallel to the x- or y-axis and has length 27;

(3) the leftmost vertical side of B; lies in Re z = f'(%).

A similar set of boxes can be constructed for each x> £.

ProposITION 2.4. Each B, lies in the sector |Im z| < Re z. Moreover, | f'(z)|> 1 for any
z€ B,

Proof. The upper (resp. lower) left corner of B; is given by f/(£) +i2ws; when 5=1
(resp. 5;= —1). Since f’(x)=2mls;|, the result follows. a

PRrOPOSITION 2.5. f(B;) > B,

Proof. The f-image of B; is contained in the annulus of inner radius f*'(%) and
outer radius f(f (X) +27). Note that the outer circle meets the lines y = £x at points
with real part (v2/2) e*"f*'(%). One checks easily that this number is larger than
(X)) +2m provided f/*'(£)> 1. This completes the proof. 0
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Let us make the restrictive assumption that |s;{ # 1 for all i. Then we define
V,={ze By|f'(z)€ B; fori<n}.

Clearly, V, is closed. Since |s,|# 1, V,., is contained in the interior of V,. Hence
the intersection [ ),., V, is non-empty. It is trivial to check that any point in this
intersection has the desired itinerary. Moreover, this point is unique, since |(f")'(z)| >
(") (%) for ze f"(B,).

The above argument breaks down if some of the s; are 1. There are two problems.
First, if s, =+1 then V, need not be connected. Indeed, V,, consists of two com-
ponents, the first of which is a curve mapped into R, and the second a ‘rectangular’
components mapped by f" onto B,. The above construction must be modified by
choosing W, to be this latter component of V.

The second problem is that W, ., is not contained in the interior of W, if 5,,,, = 1.
If arbitrarily large s; satisfy [s;| # 1, then the above argument goes through. If, on
the other hand, all s; satisfy |s;| = 1, then the intersection may yield a point with
itinerary eventually all 0’s. This indeed happens if s ends in a tail of +1’s or of
—1’s. However, this case was handled earlier. If the sequence continually changes
from +1 to —1 and vice versa, then the above argument works. We leave the details
to the reader. This completes the proof of the following theorem.

THEOREM. Let s€ X. There exists z€ C with S(z)=35.

Remark 1. The point z with itinerary s constructed above has orbit which tends to
infinity with monotonically increasing real part. Even if s is bounded or repeating,
the orbit of z is unbounded. This suggests two questions. For any periodic itinerary,
is there a corresponding periodic point for f? More generally, what is the nature
of the set of points in C which share the same itinerary? We will answer these
questions in subsequent sections.

Remark 2. A similar result is valid for f,(z) = A exp (z) with A > 0. We must of course
assume that s is exponential of order A.

3. Tails of itineraries
In this section we discuss in more detail the set of points which share the same
itinerary. We will deal exclusively with s € 3 which does not end in the constant
sequence 1,1,1...0or —1,—-1,—-1....

Fix s €2 of the above type and let n € R. Define

Yo(8)={z€ R(50)|S(z)=s and Re f(z)=f(n)}

¥.(s) consists of the set of points in S$™'(s) which move sufficiently quickly to the
right. Our goal in this section is to show that vy, (s) is Lipschitz if 7 is sufficiently large.

We first recall the construction of the previous section. For each x = X there is
defined a set of squares B;(x)< R(s;) with the property that [ );.of ’(B;(x)) is a
unique point (where the appropriate inverse is chosen at each stage). Let {(x) be
this unique point. One checks easily that {(x) is a parametrization of y ¢(s). Moreover,
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{(x)is continuous. This can be seen as follows. Let z, = {(x,) and take any neighbour-
hood U of z, There exists N such that VN (By(x,))< U. If x is close enough to
X, then £~ N(Bn(x))< U as well.
To prove that vy, is Lipschitz we need several lemmas.
LEMMA 3.1. If A >2 then f/(A%)> AV ().
Proof. Recall that X > 2#. By induction, for j=1 we have
ST (A%) = exp (f (A%)

>exp (A (%))

>exp (A7 +£(3)),
since the product of two numbers larger than 2 is larger than the sum.
Therefore

LA >exp (W) - )
> A2 AM(R). 0O
Let 6,(z) =arg (f(2)).
LEMMA 3.2. Let £ > 0. There exists n > 0 such that, if f’(z) € R(s;) and Re f(z)> f(n),
then

Zo tan 6;(z)| <e.
=

Proof. Let z be such that Re z = A% with A as chosen below. We have, using lemma

3.1
27is;]
tan 6,(z)| < ~
I an ](z)l Ref-](z)
j A
< SO
N
Hence we may choose A so that )], |tan 6;(z)| is arbitrarily small. O

In particular, we have shown

PropPOSITION 3.3 Given £>0, there exists 7>0 such that if zey,(s), then
Lizol0i(2)| <e.
Now define the semi-infinite strip

Ci(n)={ze R(s;)|Re 2> f'(m)}.
If n> %42, it is easily seen that f(C;) covers C,.,. Let
Di(n)=fi(Ci)
where the inverses are chosen so that ze D,=f(z)€ ; for 0=<j=<i. The D;’s form
a nested sequence of strips in R(sy). One boundary component of each Dj lies in
the line Re z = 7. The others are smooth curves which tend to infinity.

Let £ >0. Choose n = AX as in lemma 3.2 so that Y ;2,]6,(z)| < & for any z € y,(s).
We now show that y, is Lipschitz.
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Let I';; denote the upper and lower boundaries of D,. By lemma 3.2 these curves
have the form f+iu.(¢) for t=n where u. is smooth and satisfies

lni(n)l <e.
The vertical widths of the D; tend to zero as was shown in § 2. Hence I'; > y,(s)
as n- 0. Since the slopes of the I'; are bounded by ¢, it follows that y,(s) is
Lipschitz with Lipschitz constant e.

Remark. This proves that the set of points corresponding to a given itinerary (not
ending with 1, 1, 1,...0or —1, —1, —1 ...) which tend monotonically to infinity (rela-
tive to the real axis) forms a nice curve in C. We conjecture that this tail is in fact
smooth.

4. Periodic points of exp (z)

Our goal in this section is to prove that there exists a unique periodic point
corresponding to each repeating sequence in X. Moreover, each such point is
expanding and comes equipped with a ‘string’, i.e. a continuous curve of points
which limits on the periodic point and which consists of all points which share the
same itinerary, provided s #1,1,1,...0or =1, -1, ~1....

Definition. A region H in C is called horseshoe-shaped if:
(1) Hcint (R(i)) for some i;
(2) H is bounded by two smooth curves (), i =1, 2 defined for —c0 <t < c0:
(3) lim Re {i(t)=;

t=» 00
(4) lim,_ ., slope {i(t)=0.
See figure 1.

FIGURE 1

PrOPOSITION 4.1. If H is horseshoe-shaped, then f;'(H) is also horseshoe-shaped,
where f; = fIR()).

Proof. Since f;: int R(j)>C —(R* —0) is a diffeomorphism, f;'(H) is bounded by
two smooth curves in R(j). Let I', ={z€ R(j)|Re z=a}. T, is mapped onto the
circle of radius a by f,. Therefore fi(I',) meets H in two arcs for large enough a.
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Moreover, the angles between f;(I',) and the boundary of H tend to /2 as a - 0.
Since f; is conformal, the same is true for the angle between I', and f;'(H). This
completes the proof. O

Recall that V(s,, ..., s,)={ze€ R(s)|f'(z)e R(s;), | <i=n}.
ProPosITION 4.2, Suppose s, # £1. Then V(s,, s,) is a horseshoe-shaped region.

Proof. Since f maps R(s,) diffeomorphically onto C —R*, it follows that f~"(8(R(s,)))
consists of two smooth curves in R(s;). As in proposition 4.1, the image of I',, cuts
R(s;) in two arcs of circles for large enough a. Therefore, if f~'(0R(s,)) is para-
metrized by the real part along dR(s,), then it follows that Re f'(3R(s,)) > ® as
t-> +00. Moreover, the angle between fo(I',) and dR(s,) tends to 7/2 as a - oo.
Hence the slope of f;'(dR(s,)) tends to zero as a -> . By conformality, the slopes
of £'(3(R(s)))) tend to zero as required. 0

PrROPOSITION 4.3. Suppose s, # x1. Then V(s,, ..., s,) is horseshoe-shaped.

Proof. By induction, suppose V(sy, ..., s,)is horseshoe-shaped. Then V(s,, ..., s,) =
fo'V(sy,-..,s,) is horseshoe-shaped by proposition 4.1. a

The following result is due to Misiurewicz; (see [6, p. 103]).
PrOPOSITION 4.4. |(f")'(2)| = |Im f"(2)|.

We now prove the existence of strings in the special case where at least one of the
s; # 1. Without loss of generality we may assume so# £1. Let s=5,---5,_; be a
repeating sequence. Since [so| # 1, V(so,..., S,_1, o) is a horseshoe-shaped region
in R(s,), and f" maps V(s,, ..., S,_y, So) diffecomorphically onto R(s,). Let

Vo={z€ V(so,...,5,_1, So)IRe z= a}.
Let

W,={ze V,]Re z=a}.

Since V(sy, . .., S, S¢) is horseshoe-shaped, it follows that if « is large enough, then
W, consists of two disjoint intervals. Moreover the results of § 3 imply that these
two intervals are mapped into the region {z € R(so)||Re z| > a}, one to the left of
Re z=—a and one to the right of Re z = a. See figure 2.

It follows that f"(V,) = V,. Moreover, if z € V,, then |[(f")'(z)| = 27 by proposition
4.4. Hence f"|V, has an inverse which is a contraction. Therefore there is a unique
fixed point for " in V,. Since the argument is independent of « for « large, it
follows that there is a unique periodic point in R(s,) with itinerary s.

f"(v<\ y \ o
|
° rd

Rez=-a Rez=a

FIGURE 2
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Remark. This argument fails in the case where all of the s; are +1’s for two reasons.
First, the V(s,..., S,_1, So) Will not be horseshoe-shaped in this case. And secondly,
J" need not be an expansion in this case. Nevertheless, we can adapt the previous
argument to most itineraries of £1’s as follows.

Let s=s5g,..., S,_, ... be a repeating sequence with |s;| = 1 for all i. Let us assume
that not all 5;=1 (or =—1). So s is not the constant sequence identically equal to
+1 or to —1. We may assume that s,=1 and s, =—1 by applying f several times.

If $(z) =5, then we must have that 7 <Im z <24, i.e. z lies in the upper half strip

of R(1). Let us denote this strip by H. Let

V={ze H|f'(z)e R(s;) for i< n and f"(z)€ H}.
One checks easily that V is a horseshoe shaped region. The previous argument then
applies with V in place of V(sq,..., s,_1, So)-

Hence the only unsettled cases correspond to the constant sequences 1,1,1...
and —1, -1, —~1.... We are indebted to E. Ghys and L. Goldberg who showed us
the following argument to prove that f~' has a global sink in each of R(1) and R(-1).

Since R(1) is conformally equivalent to the disk and f~' has a sink in R(l), it
follows from the Schwarz Lemma that ' is a contraction, i.e. || f~'(2)] <|z|. It
follows that there is a unique periodic point whose orbit lies in R(1). This point is
the fixed source described in § 2. a

We now prove the following:

THEOREM. Let s be a repeating sequence in X and suppose s#1,1,1... or
—1,—-1,~-1.... Let y={z€ C|S(z) =5s}. Then v is a continuous curve in the plane.

Proof. Simply take v, (s) defined in § 3 and iterate it backwards (using the appropriate
inverses at each stage). All points in y,(s) are backward asymptotic to the unique
periodic point with itinerary . O
Remark. 1t follows that y(s) is a curve or ‘string’ which spirals into the periodic
point with itinerary s. See figure 3.

Remark. It is not true that the set of points which share the exceptional itineraries
1,1,1,...and —1, -1, —1... form strings. Indeed we show below that these points
contain a Cantor set of curves in C.

5. Dynamics in R(1)
In this section we describe the dynamics of f(z) in R(1). More precisely, we attempt
to describe the set of points whose forward orbits remain in R(1). Our results are
valid for R(—1) as well, since f(Z) = f(z). It turns out that the set of points which
remain for all iterates in R(1) or in R(—1) is remarkably different from those which
have other repeating itineraries. In particular, there is a Cantor set of curves
consisting of points whose orbits remain in R(l), as opposed to a single curve
corresponding to other repeating itineraries.

We remark that our results are valid for f,(z)=Ae” as long as A > 1/e.

Recall that there exists a unique fixed point in R(1), and that this point is a source
(proposition 2.1). We denote this fixed point by p,.
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R (@
@ &_— /s-‘(a 333..)
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PROPOSITION 5.1. The unstable manifold of p,, W*(p,), contains R(1). Moreover, if
{z,} ={f"(2)} is an orbit of f completely contained in R(1), then z, approaches the
boundary of R(1) as n—» o0,

Proof. Let h be a conformal mapping of R(1) onto the unit disk with h(p,)=0.
Recall that f is 1-1 on R(1) and that f(R(1))> R(1). Let g be the restriction of the
branch of f~' satisfying g(po)=po to R(1). Obviously, g(R(1))c R(1). Let g§=
hogoh™'. ¢ maps the unit disk into itself, |g'(0)| <1, and g(0)=0. Therefore, by
the Schwarz Lemma, |§(z)| <|z| for all z# 0 in the unit disk. If {z,} is an orbit of f
contained in R(1), then, by the above, |h(z,.,)| > |h(z,)|, so that |h(z,)] > 1 as n > co.

)

We now describe the behaviour of orbits living in R(1) in more detail.
PROPOSITION 5.2. (1) There exists k> 0 such that if 0=y =1Im (z)<j arccos (1/Ae),
then
Ae*cosy=Ref(z)=Rez+k=x+k
(2) For each m=>0 there is a constant K = K(m)>0 such that if Rez=x>K
and 0<y=Imz<m/3, then

Ae*cosy=Ref(z)=Rez+m=x+m.
Proof. (1) By hypothesis, cos y =+v3(1 +cos 2y)> a =v3(1 +(1/Ae)). It is easy to check
that a > 1/e. By elementary calculus we have
k=inf(ae*—x)>0
Thus

Ae*cosy—x=ae —x=k
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This proves (1). For (2), since 0<y < 7/3, we have 3 <cos y < 1. Hence
Ae*cosy>(A/2) e
Clearly, for sufficiently large x, (A/2) e*>x +m. O

PrROPOSITION 5.3. For each M > there exists c(M) such that if Re z =x=c(M) and
0<y<m/2, then
Im f(z)=A e*siny= My

Proof. We have A e* sin y > (2/7)A ey = My for x =In (M) —In (21). O

PROPOSITION 5.4. If 0<y < and A e” sin y > ar, then at least one of the points f(z)
or fX(z) is not in R(1).

Proof. Assume f(z)e R(1). Then w<Ae siny<2w Hence Imf(z)<0 so
fA(2)¢ RQ). O
We can now describe the behaviour of a point whose entire orbit lies in R(1).
Suppose that p is such a point and that p lies inside the unit circle. Typically, the
first few iterations of f move p to the right but close to the x-axis. Eventually, an
iteration of f maps p close to y = #. Then p is mapped into the left half plane, and
finally the next iterate of p lands inside the unit circle again. It turns out that this
last iterate brings p much closer to the x-axis than p was originally. Then the whole
process begins again, with p taking a longer time to jump to y = .

ProPOSITION 5.5. Suppose z, € R(1) for all n. Then

(1) there exists a subsequence (z,,) converging to 0, and satisfying

(2) for k sufficiently large, the points

Zpy+1s Zng+2s + -+ 2oy, -3

lie in the right half plane below the curve A e* sin y = . The point z,_,_, lies in the
right half plane above the curve A e sin y = m. The point z,,__ _, lies in the left half plane.

(3) limy,o Re z,, = +0; lim; . Re 2z, , _ =—c0.
Proof. Recall that the plane Re z < —a <0 is mapped inside the circle of radius
A e ® <\ centred at the origin. Also, since z,€ R(1) for all n, we have that 0<
Im(z,)< . Let a> 10 satisfy a> K(k) as in proposition 5.2 and a>c(4) as in
proposition 5.3 and finally A e <1, a>In 7 —In A. Choose £ such that 0<e<
farccos (1/Ae). Let 8> 0 be such that if |x| <1 and |y|<$, then |f"(z)—f"(x)|<e
for n=0,1,...n(a), where n(a)k> a. Let C be a rectangle with sides lying on the
lines y=86, y=m, x=*a.

By proposition 5.1 only finitely many of the z,’s can be found in C. Thus for
sufficiently large n there are three possibilities:

(a) z, is to the left of x=—a;

(b) z, is below y=28;

(c) z, is to the right of x=a.
In case (a), |z,,,| <1, so that for z,.,; we have case (b). In this case, the point moves
to the right for at least n(a) steps and, moreover, goes beyond x = a. Hence we
have case (c) for z,.,,(,). In this case, the imaginary part is multiplied by at least 4
at each step and the point moves to the right by k at least as long as z, is below
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A e” sin y = 7. Thus at some point the orbit is above A e” sin y = 7 but below y = =,
i.e. there exists i> 0 such that

w—arcsin(w/A) e " <Imz, <m.
Hence Re z,,, <0. We have
Xp+1= A €XP (X,,) COS Yp,.
It is easy to see that —1 <cos y, <—0.9, so
—A <A €OS Y, <—0.9A <—-09e”'<—-03
If x=10 then
e*>x’/6=(100/6)x > 16x.

Therefore x,, . < —0.3(16x,,) < —4x,, < —4a, so that x,_., is to the left of x = —a. This
completes the proof. O

The next proposition shows that points near the boundary of R(1) keep returning
to the unit circle at successively lower and lower points.

PROPOSITION 5.6. For each € >0 there exists § >0 such that, if |zo| <1, |xo|=1, and
0<y,< 8, then
(1) zo,2y,...,2,liebelowy=m/3; z,,, lies above y=2m/3, but below y =7 ; and
2) Imz,,s<elm z,;
B) Imz,,,<elmz,

Proof. (1) follows immediately from proposition 5.5, and (3) follows from (2) with,
perhaps, a different e. For (2), there exists j such that if m = j, then x,, = 10> In (7/A).
We may assume that 0 <y, <arcsin ((7w/A) e™™). If x=10, then

(m/A) e *<mee '°<10 e '°<0.001.
If 0<£<0.001, then t <arcsin t <1.1¢, so that
arcsin ((w/A) e *)<l.lmre™™

for x=10. Hence we have that, if n=m =}, then
A 0<yn.<lLl(m/A)e ™ and O0<wm—y,,, <l.l(m/X)e "

It is easy to see that 1.1(7/A) e *<0.01. If 0<t<0.01 then 1>cos t>1—(1?/2)>
0.9. This proves that —1 <cos y,., = —¢0s (7 — y,4,) < —0.9. Hence

(B) Vn+3=A €XP (Xn42) SN Y, 4z
<A exp (xn +2)yn +2

=AZexp (A exp (Xn+1) * €OS Yps1) €XP (Xp41) SIN Yy
<A%Ype1 €XP (Xna1 — 0.9 €XP (X0 41))-

Analogously, ¥+ <Ay, exp (x,.). Therefore

(©) ¥i> A7 exp (= %)Y
>A7? exp (—X; = Xj+1)Yj+2
> > AT Dy exp (=X =X = = X,).
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We also have
(D) Yo>y1A " exp (= x)
> y2A 2 exp (—Xo—x)
>. . .>yj)\—i exp (—Xo— X, — = X_,)
> yi(A - exp (—xo)).
In view of (A), (B), (C), in order to prove that y, ;< €y,, it suffices to show that

Va1 >(A 7 exp (—xg)) - AT PV exp (= xo— - —x,)
> y,,+,)\2 exp (X, —0.9A exp (X,41))-
Equivalently
09A exp (xus1)> X+ X+ - - +x, + X, F(n+3)In A +jx,—In ¢

Since x; > 10, x,,,+ = 2x,, for n = m =j, since x,,,, = exp (X,n) €0s ¥, = 0.9 exp (x,,) =
2x,,. Hence x; + - - +x,,, <2x,,,. Note that x, ., > 2""'7x; so that for n sufficiently
large (and & small), we have

(n+3)In A +jxo—Ine<x,,,.

This proves that
Xt tx,t(n+3)In A +jxo—In e <3x,,,

Now we need 0.9A e¢* > 3x, which is clear since lim,_,, x e = 0. This completes the
proof. O

It follows from proposition 5.6 that, if & is small, then (f")'(z,) turns vectors by only
a small angle. Indeed, (f")'(xo) = f'(x,) - ... * f(x0) and f'(x;) = f(x;). This shows that
there exists an ‘almost’ horizontal curve C,, C'—¢ close to the interval (—1, 1),
which is mapped into A e*siny =7, y<#/2 by f", so into y =7 by f"*'. There is
also a curve B, mapped into A e sin y =7 by f**', and these two curves are C' —¢
close. As f is applied to them several times, the vertical distance between them
grows quickly at a rate described in proposition 5.6. Since this distance is small to
begin with, it follows that the vertical distance d, from B, to C, divided by the
vertical distance D, from C,, to the x-axis goes to 0 as n -0, i.e. lim, . (d,/ D,)=0.

Consider the rectangular region S, bounded by C,, B,, and two arcs of the unit
circle. By proposition 5.6, if € <1/2, f"**(S,)n S, =@. One checks easily that the
image of S, is as depicted in figure 4.

Note that the horizontal boundaries of S, are mapped to the x-axis and the
vertical boundaries are mapped to near-semi-circles with small radius. Precise
estimates are given in proposition 5.6.

We remark that one may also see this by looking at the curvature of a parametrized
curve r(1), |r'(t)] # 0. Recall that the curvature may be written

K@ =|r|Im (" 7).
Hence the curve fe r has curvature
K (n=[e""| - (r|"" Im r' + K(1).
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n+3

Now f"*%(S,) intersects S,, for all sufficiently large m > n. (f"*°(S,) does not meet
S.). Hence f"**(S,)n S,, has two components whose pre-images in S, are thin,
almost horizontal strips. Continuing this process yields a Cantor set of horizontal
lines contained in the S,. This process is similar in spirit to the construction of the
Smale horseshoe map, but of course all of the horizontal curves are mapped
downward by f"**. One can back these curves up by applying f~' repeatedly. We
then get a Cantor set of curves winding down to p,, the fixed source in R(1). We
have proved:

THeoreM. There is a Cantor set of curves in R(1) consisting of points whose orbits
are entirely contained in R(1).

Remark. By Misiurewicz’s result [7], the set of all points whose orbits lie in R(1)
has empty interior. It is unclear what the Lebesgue measure of this set is. It is also
unclear what the topological structure of the set of all such points is.

Remark. A similar result obviously holds for itineraries of the form
So*++s, 1 11 1...andsy-"-s,—1 —1 —=1....

6. Bifurcations and A e’

Let A >0 and consider the map A e”. When A =1, the Julia set of A e” is C, as was
proved by Misiurewicz. We conjecture that, in fact J(A e)=C for A>1/e. The
arguments below indicate why this should be true.

We wish to show the rather spectacular bifurcation which occurs at A =1/e.

Consider first the dynamics of A e* on the real line. Figure 5 shows the three
possibilities. When A > 1/ e, all points tend to infinity under iteration of A e*. When
A =1/e there is a unique fixed point for A ¢* at x=1. For 0< A <1/e this point
separates into two fixed points: a sink p and a source g. Note that 0<p <gq.

Thus we have a saddle-node bifurcation as A decreases through 1/e. We claim that
the Julia set of A e” changes dramatically as A decreases through 1/e. Indeed, let
V be the vertical line through the source at q. Clearly, the image of V under f, is
a circle centred at 0 which also passes through ¢. Hence all points to the left of V
are mapped into the disk of radius q about 0. In fact, all such points tend asymptoti-
cally to the sink p. Therefore there are no points in the Julia set to the left of V;
indeed the Julia set has changed dramatically at this point.
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One can show that J(A e?) is a Cantor set of lines when A <'/e. We sketch the
argument. Consider the inverse images of V. These are an infinite collection of
parabolic curves opening right with vertices over the source q. See figure 6.
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One may do symbolic dynamics in these regions exactly as before. Let P(k) be
the parabolic region which contains the line y =2kwi for ke Z and x=g4. We no
longer need the special symbols 0" and 0~. One may check that the set of points
which visit the P(k) according to an allowable itinerary forms a curve lying in the
Julia set and that J is a Cantor set of such curves. We leave the details to the reader.
We have the following:

THeOREM. If 0<<A < 1/e, then J(f,) is a Cantor set of curves in C. There is a unique
sink for f, and the basin of attraction of this point is open, dense and connected in C.

Remark. When A <0, the following situation occurs. If 0> A > —e, there is a fixed
sink as above. When A = —e we have a period doubling bifurcation and, for A < —e,
there is a periodic sink of period 2. The basin of this sink is open and dense in C.
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Remark. Let { be a point on the unit circle. The equations

L(@D)=Ae" =z

fil)=Ae"={
define the set of parameters A for which A e has an indifferent fixed point. It is
clear that A = ¢ e™* defines a simple closed curve in the A-plane for which a fixed
point of A e’ is indifferent. We therefore have ‘tongues’ emanating from each point
on this curve for which { is a rational angle wherein f, has a periodic sink. This
suggests a bifurcation diagram for f, which looks locally like figure 7.

FIGURE 7. The bifurcation diagram in the A-plane.

7. Conclusion

The dynamics of the family of maps A exp (z) is clearly very complicated but very
interesting. We conclude with several problems that we cannot solve at the present
time.

Question 1. Is exp (z) ergodic?

Question 2. Given a non-repeating sequence, what can be said about the set of
points which share this itinerary? Is it a curve as in the repeating sequence case?
We have shown that the ‘tail’ is indeed a Lipschitz curve, but what happens nearer
the imaginary axis?
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Question 3. What is the topological nature of the set of points which share the
special itinerary 1,1, 1,.... We have shown that this set contains a Cantor set of
curves. Can one say more? Does this set have positive measure?

Question 4. Are the ‘strings’ associated to a given itinerary smooth? Are they analytic?

Finally, we propose that the study of entire functions seems to be a rich area for
further study. There are significant differences between entire functions and rational
maps. For example, entire functions may possess wandering domains and infinitely
many sinks, both of which cannot happen for rational maps. The family

f(z)=z+Asin(2)
is easily seen to have examples of both phenomena, for particular values of A.
Moreover, the essential singularity at o0 adds further complication to the dynamics.

In summary, the exponential map and other important transcendental functions
seem to be very interesting dynamically. They certainly warrant further study.

R. L. Devaney was partially supported by N.S.F. Grant MCS 81-01855.

REFERENCES

[1] Brolin. Invariant sets under iteration of rational functions. Arkiv. fiir Matematik. 6 (1965)
103-144.

[2] A. Douady & J. Hubbard. Iteration des polyndmes quadratiques complexes. C.R. Acad. Sci. Paris
294 18 Janvier, 1982.

{3] P. Fatou. Sur l'iteration des fonctions transcendantes entieres. Acta Math. 47 (1926), 337-370.

[4] G. Julia. Iteration des applications fonctionnelles. J. Math. Pures Appl. (1918), 47-245.

[5] B. Mandelbrot. The Fractal Geometry of Nature. Freeman, 1982.

[6] R. Mané, P. Sad & D. Sullivan. On the dynamics of rational maps. To appear.

[7] M. Misiurewicz. On iterates of e”. Ergod. Th. & Dynam. Sys. 1 (1981), 103-106.

[8] D. Sullivan. Conformal dynamical systems. To appear.

{9] D. Sullivan. Quasi-conformal homeomorphisms and dynamics II1. To appear.

https://doi.org/10.1017/5014338570000225X Published online by Cambridge University Press


https://doi.org/10.1017/S014338570000225X

