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Interaction of droplets with vortical structures is ubiquitous in nature, ranging from
raindrops to a gas turbine combustor. In this work, we elucidate the mechanism of
co-axial interaction of a droplet with a vortex ring of different circulation strengths (1" =
45-161 cm? s~1). We focus on both the droplet and the vortex dynamics, which evolve
in a spatio-temporal fashion during different stages of the interaction, as in a two-way
coupled system. Vortex rings of varying circulation strengths are generated by injecting
a slug of water into a quiescent water-filled chamber. Experimental techniques such as
high-speed particle image velocimetry, planner laser-induced fluorescence imaging and
high-speed shadowgraphy are used in this work. In the droplet dynamics, different regimes
of interaction are identified, including deformation (regime-I), stretching and engulfment
(regime-II) and breakup of the droplet (regime-III). Each interaction regime is explained
using existing theoretical models that closely match the experimental data. In the vortex
dynamics, we compare the interaction’s effect on different characteristics of the vortex
rings, such as pressure and the vorticity distribution, circulation strength, total energy and
enstrophy variation with time. It is found that the interaction leads to a reduction in these
parameters.

Key words: drops and bubbles

1. Introduction

A vortex ring, also known as a toroidal ring (three-dimensional case), is a torus-shaped
confined region of vorticity embedded in a fluid medium. Vortex rings are inherently
present in nature and play a predominant role in classical and modern fluid dynamics.
It is seen in various artificial (firing artillery, mushroom cloud after a nuclear explosion,
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laser-induced breakdown in the air, transport and mixing, etc.) and natural (human heart
during cardiac relaxation, bubble ring created by dolphins, microburst, quantised vortex
rings in super-fluid helium, etc.) phenomena. A vortex—droplet interaction study can
contribute to a better understanding of the physical phenomena associated with diverse
applications such as atomisation of liquid fuel injected in internal combustion (IC) engines
or gas turbines, or spray drying processes in food industries.

A vortex ring is a self-sustained and self-propelled coherent structure in which fluid
particles are in a state of continuous rotation (toroidal direction or poloidal direction, or
both). Once formed, vortex rings are difficult to destroy and can move long distances
before diffusing their strength into the surrounding fluid medium (Turner 1957). In recent
years, vortex rings have been extensively studied in three different fields, (i) generation of
sound, (ii) transport and mixing and (iii) vortex interactions with objects such as drops
or bubbles. The first two fields have been studied in detail, but unfortunately, vortex
interactions with objects have not been fully understood due to their complexities (Shariff
& Leonard 1992; Jha & Govardhan 2015; Rajamanickam & Basu 2017; Zednikova et al.
2019). The complexities in the vortex interaction with objects depend on the coupling
between the dispersed and continuous phase (i.e. one-way, two-way or four-way coupling)
(Balachandar & Eaton 2010). These complexities can arise from several reasons, such as
core deformation, cancellation/merging of vortices, topology change during interaction
with objects (walls, particles, drops or bubbles), stretching, dissipation, generation of
secondary vorticity, etc. and have hindered the proper understanding of the physics
involved. The fundamental characteristics of vortex ring are described in Lamb (1945),
Batchelor (1967), Saffman (1970), Maxworthy (1972), Didden (1979), Gharib, Rambod &
Shariff (1998), Linden & Turner (2001) and more recently in Tinaikar, Advaith & Basu
(2017). Didden (1979) reported rolling back of the vortex sheet when ejected from a tube
into a stagnant medium as a reason for vortex ring formation. Norbury (1973) discussed the
existence of a family of vortical structures, ranging from Hill’s spherical vortex to a thin
vortex ring. Different values of the non-dimensional core radius in the range 0 < € < /2
were used to define these vortex rings. Here, € = r./R, where r. and R are the core and
ring radii of the vortex ring, respectively (see figure 2).

In recent years, the interaction of a vortex ring with dispersions has gained significant
interest among researchers. The problem of a vortex ring interacting with a suspended
particle layer was investigated by Munro, Bethke & Dalziel (2009) and Bethke & Dalziel
(2012), while Rastello, Michallet & Marié (2020) studied a similar problem in a zero-mean
shear turbulent flow. The critical conditions for re-suspension and crater formation were
described in Munro et al. (2009), and the induced velocity of the particle surface layer
was investigated in Bethke & Dalziel (2012). Maxey & Riley (1983), Raju & Meiburg
(1997) and Volkov (2007) studied the interaction of a vortex ring with small solid particles.
In their study, the dynamics of such interactions was classified as one-way coupled or
two-way coupled based on the interaction between the dispersed and continuous phases.
The effect of particles dispersed in a turbulent flow was studied by Squires & Eaton (1990),
Kulick, Fessler & Eaton (1994) and Burton & Eaton (2005). Squires & Eaton (1990)
investigated the particle response in isotropic turbulence and showed that heavier and
lighter particles altered the flow field differently. The lighter particles were collected in the
regions of low vorticity and high strain rate, while the heavier particles were found to be
insensitive to the turbulent velocity fluctuations, and therefore no favoured concentration
was observed for them. A one-way coupled equation of motion for a small spherical
particle embedded in a non-uniform fluid flow was derived in Maxey & Riley (1983) by
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considering the effect of disturbed and undisturbed flows separately. A detailed overview
of the interaction of dispersed particles with vortices in turbulent flows is provided in
Balachandar & Eaton (2010).

In a vortex—bubble interaction study, Sridhar & Katz (1995) had investigated the drag
and lift forces experienced by a bubble during its engulfment into the vortex core. They
used experimental data to determine the buoyancy, inertia and pressure forces acting on
the bubble and used tangential and normal components of the resultant force to determine
the drag and lift forces on the bubble. An analytical model to estimate the trajectory of
small bubbles during their entrainment into the vortex core was also discussed. In a later
study, Sridhar & Katz (1999) investigated the effect of bubble entrainment on the vortex
ring structure. It was shown that even a small fraction of micron-sized bubbles could
significantly distort the vortex ring structure. Oweis et al. (2005) evaluated the capture
time for a bubble located at a radial location away from the line vortex. A significant
deformation of the bubble was noticed as it approached the vortex core. Revuelta (2010)
investigated the co-axial interaction of a bubble with a vortex ring of different sizes. They
showed that the fragments of the primary bubble were more numerous if the size of the
vortex ring was comparable to the bubble dimensions. Cihonski, Finn & Apte (2013) used
a two-way coupled model to determine the effect of fluid displacement caused by bubble
entrainment inside the vortex core. They found that the entrainment of the bubble into the
vortex core distorted the vortex ring structure, and the radial location of the entrained
bubble gets increased with increasing bubble size. Recently, Jha & Govardhan (2015)
investigated the side interaction of a single bubble with a vortex ring and revealed different
stages of bubble—vortex interaction, beginning from the bubble engulfment to the escape
of the bubble from the vortex core. They showed that a differential pressure in the direction
of the vortex tube (toroid direction) led to the stretching of the engulfed bubble. Further,
at lower Weber numbers, the interaction had a vital influence on the convection speed of
the vortex ring.

A droplet dispersed in an external flow field undergoes deformation due to the forces
acting on it. For an accelerating and uniform external flow, Sor & Garcia-Magarifio
(2015) compared their deformation model with the Taylor analogy breakup (TAB) model
(O’rourke & Amsden 1987), Clark’s model (Clark 1988) and the droplet deformation
and breakup (DDB) model (Ibrahim, Yang & Przekwas 1993). They showed that the
conventional models of droplet deformation were not suitable for predicting droplet
deformation in accelerating air flows and provided a modified form of these models.
Recently, in turbulent flows, droplet deformation due to its interaction with multi-scale
vortices was studied by various researchers numerically (Albernaz et al. 2017; Jiao et al.
2019) and experimentally (Eastwood, Armi & Lasheras 2004; Andersson & Andersson
2006; Nachtigall, Zedel & Kraume 2016). Eastwood et al. (2004) showed that the droplets
could deform up to the integral length scales of the turbulent fields. Andersson &
Andersson (2006) observed deformation up to an aspect ratio (ratio of major to the
minor axes of the deformed droplet) of 20. Jiao et al. (2019) showed that, in contrast to
uniform flow deformation, turbulent flow deformations are characterised by an unsteady
and unsymmetrical nature. A detailed overview of the deformation and breakup of
droplets/bubbles in turbulent flows was carried out by Elghobashi (2019). They showed
that the continuous action of external flow forces deformed the droplet from its initial
shape. Once these forces overcome the internal resistive forces that maintain the droplet
integrity, droplet breakup occurred. An experimental study by Rajamanickam & Basu
(2017) unfolded the different droplet breakup regimes during their interaction with a
vortex. They showed that the modes of droplet breakup depend on the local vortex
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strength. Kolmogorov (1949) and Hinze (1955) initially investigated the droplet break up
in a turbulent flow. Later, it was further studied by various researchers using theoretical
(Luo & Svendsen 1996; Wang, Wang & Jin 2003; Solsvik & Jakobsen 2016) and
experimental techniques (Konno et al. 1980; Eastwood et al. 2004; Andersson &
Andersson 2006). These studies were mainly directed at investigating breakup criteria,
breakup frequency and the size distribution of atomised droplets. Andersson & Andersson
(2006) pointed out that only a few studies in the literature had focussed on the experimental
investigation of a single droplet/bubble breakup in a turbulent flow. A detailed overview
of droplet breakup in turbulent flows was carried out by Lasheras ef al. (2002) and Liao &
Lucas (2009).

Interaction studies with deformable dispersed phases of larger diameter (bubble and
droplet) are less frequent in the existing literature (Higuera 2004; Revuelta 2010; Jha
& Govardhan 2015; Zednikova et al. 2019). Among these studies, Higuera (2004)
and Revuelta (2010) used numerical techniques to study the co-axial interaction of a
bubble with a vortex ring. Jha & Govardhan (2015) experimentally investigated the side
interaction of a bubble with a vortex ring, while the co-axial interaction was studied by
Zednikova et al. (2019). The above discussion shows that only a few studies have explored
deformable dispersion (bubbles or droplets) whose sizes are comparable to the vortex
ring size. Also, the previous studies were focused on vortex rings that interact mainly
with bubbles. Therefore, the present study tries to fill this literature gap (Martinez-Bazin
2015) by experimentally investigating vortex interaction with a droplet, for a size ratio
(R/Ry) of ~O(1), and predicting different regimes of interaction using existing theoretical
models. The novelty of the present work lies in the problem considered for analysis, i.e. the
investigation of co-axial interaction of a vortex ring with an oil droplet. As per the author’s
knowledge, no previous studies available in the literature have dealt with this configuration,
which is the focal point of the current study. We have identified three different regimes
of interaction that exist during the droplet lifetime, namely deformation (regime-I),
stretching and engulfment (regime-II) and breakup (regime-III) of the droplet. The effect
of interaction is investigated both in terms of the droplet dynamics and vortex dynamics.
Further, the results presented in this study are based on extensive experimentation using
multiple experimental techniques. Therefore, this work can serve as a benchmark for the
validation of future experimental and numerical studies.

This paper is organised as follows: § 2 presents the experimental methods and range
of parameters varied in this work, § 3 presents the global observation of the interaction
phenomenon and also provides a brief overview of different regimes in the vortex—droplet
interaction and § 4 presents the theoretical model for different interaction regimes. Section
5 presents the results of experimental observation and validation of the theoretical models.
The conclusion of this work is presented in § 6.

2. Experimental set-up
2.1. Flow set-up

The arrangement of the experimental set-up is shown schematically in figure 1. A
water-filled acrylic chamber of 0.25 m x 0.25 m x 0.25 m size has been used in the
experiments (figure la). A vortex ring (travelling vertically downwards) was generated
by using an 8 mm diameter pipe (Dp) and by actuating a solenoid valve-1, which was
connected to a pressurised chamber filled with water. The injection pipe edge was bevelled
at § ~ 10° to ensure a smooth roll-up of the shear layer. The injected fluid pressure
(Py) was varied between 5 and 40 psi, which resulted in different strengths of the
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Figure 1. Schematic of the experimentalset-up: (a)arrangement of different components, (b) representation of
the vortex—droplet interaction, (c¢) simultaneous planner laser-induced fluorescence imaging (LIF) and particle
image velocimetry (PIV) measurement, (d) simultaneous shadowgraphy and backlight imaging for side-view
and top-view imaging.

vortex ring (see table 2). The opening time of solenoid valve-1 was controlled using
a user-programmed Arduino board so that the value of L;/D), ratio was always less
than 4, which was necessary to generate a single vortex ring without any trailing edge
(Gharib et al. 1998). Here, L; is the stroke length of the injected fluid and was calculated
using the method described in Tinaikar er al. (2017). All the experiments in this study
were performed using the same pipe diameter. Oil droplet was generated by actuating
another solenoid valve-2, connected to a pressurised oil chamber. The oil chamber was
filled with olive oil, and a small amount of dye (Rhodamine 6G) was added into it for
preforming planer LIF. The viscosity (4, = 68.695 & 0.39 mPa-s) and surface tension
(0 =24.31 £ 1.42 mN m~!) of the olive oil were measured at ambient conditions using
a rheometer and pendent drop method, respectively. The fluid properties relevant to this
work are shown in table 1. Characterisation of the solenoid valve-2 opening time and the
oil chamber pressure was carried out, and a repeatable droplet diameter (Dy = 6.26 £ 0.1
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S No. Property Water Olive oil

1 Density (Kg m~3) 1000 906

2 Viscosity (Pas) 8.95x 107*  6.89 x 1072
3 Surface tension (N m~1) 0.024 0.024

4 Ambient temperature (°C) ~23-25 ~23-25

Table 1. Values of relevant fluid properties. S No., serial number.

mm) was obtained for all cases. The vortex ring generator and the droplet dispenser were
mounted on a heavy-duty X-Y-Z stage (accuracy of 0.1 mm) for co-axial alignment of the
vortex ring with the droplet (see figure 1b).

2.2. Backlight imaging set-up

A 22 000-lumen pulsed light source (Veritas, C-120E) along with a diffuser plate evenly
illuminated the region of interest in the experiments (figure 1d). The side view and top
view were captured simultaneously using a high-speed monochrome camera (Photron
SA-5 at 12000 f.p.s.) and a high-speed colour camera (IDT NR3S1 at 1500 f.p.s.),
respectively. The exposure time and spatial resolutions of the high-speed monochrome

camera were 1/12000 s and 640 pixels x 656 pixels with 62.2 wm pixel ~!, while those of
the colour camera were1/10 000 s and 384 pixels x 336 pixels with 76.16 pm pixel ~!.

2.3. PIV and LIF imaging

High-speed double-pulse PIV measurements were carried out to measure the spatial
displacement of neutrally buoyant borosilicate glass particles (density 1100 Kg-m™>
and mean diameter 9—13 pwm), which were uniformly dispersed in the injected fluid as
well as in the water tank. The volume loading of seeding particles was maintained at
~0.01 % by volume, and the particles were homogeneously dispersed in the base fluid.
This concentration was achieved by progressively increasing particle concentration until
a final concentration of ~5-8 particles per interrogation window was achieved. This
criterion was essential for reducing errors in the vector calculation (Raffel et al. 2007).
The final volume loading of particles was insignificant for changing fluid properties. A
high-speed Nd:YLF laser (make: Photonics Inc. with an emission wavelength of 527
nm, pulse duration of 9 ns, pulse energy of 30 mJ and a maximum repetition rate of 10
kHz) was used in a double-pulse mode for the PIV measurement. A cylindrical lens of
focal length (f) = —10 mm, providing a sheet thickness of ~1 mm was used for uniform
illumination of the interaction region. The light scattered by the oil droplet also entered
the camera sensor (see supplementary figure S1 available at https://doi.org/10.1017/jfm.
2021.363) and caused an error in the PIV measurements. Therefore, to avoid these errors,
a mask covering the droplet periphery during each time instant was used up to the droplet
deformation stage, as the scattering was more significant during this stage. Moreover, it
was difficult to apply a mask in later stages when the primary droplet had been engulfed
into the vortex core in the form of multiple cylindrical ligaments that further disintegrated
into tiny daughter droplets. To further avoid these issues in PIV and LIF measurements, a
small amount of dye was added to the oil fluid, which reduced the scattering of light.

A high-speed camera (Photron SA5) was used to capture double-frame images in
synchronisation with the laser pulses at a frame rate between 500 and 1000 Hz. Images
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Case P, r re € Re, We. U, Frame Atpry R/Ry
(psi) (em?s~!) (cm) (cms™") rate (PIV)  (us)
I 5 4579 023 0.39 5135.74  22.45 23.0 500 900  1.89
I 10 58.50 024 043 6560.96  32.77 28.2 500 700 179
111 15 68.33 021 037 7662.88  58.27 35.9 750 600 1.81
v 20 81.62 021 0.37 9153.69  81.49 41.9 1000 400 1.81
\Y 25 91.65 021 0.37  10277.83 100.62 475 1000 300 1.81
VI 30 13430 025 0.41 15061.58  157.97 49.8 1000 100 1.96
VII 35 146.38 025 040  16416.36  191.44 61.7 1000 100 2.00
VII 40 163.51 025 0398 18095.46 260.47 76.5 1000 100 2.04

Table 2. Range of different parameters and non-dimensional numbers covered in this work for different
experimental cases (I-VIII). Here, P, is vortex injection pressure; I" is circulation strength; r. is core radius;
€ = r¢/R is non-dimensional core radius; Re, is circulation based Reynolds number; We,. is circulation based
Weber number; U, is tangential velocity at vortex core (r = r.); Apyy is time interval between two laser pulses
for PIV; R/R is vortex—droplet size ratio.

were acquired with a region of interest of 52 mm x 52 mm (with a resolution of
51.1 wm pixel™!). A band-pass filter of 530 + 10 nm was mounted in front of the
camera lens, which only passes the scattered light from the particles onto the camera
sensor. A commercially available PIV software, LaVision Davis 8.4, was used for
capturing double-frame images with an optimal time interval Atp;y of 100-900 s
between two consecutive images (see table 2). The optimal time interval was obtained
when particles were displaced by 3-5 pixels within two consecutive frames of the PIV
camera (Keane & Adrian 1990). The captured images were post-processed in Davis 8.4
to retrieve the velocity and vorticity fields. The displacement vectors were calculated
using a cross-correlation technique with decreasing multi-pass interrogation window sizes.
The first interrogation window size was 96 pixels x 96 pixels, and the final size was
24 pixels x 24 pixels with 50 % overlap for all the experimental cases, which resulted
in 86 x 86 velocity vectors in the window with a resolution of 0.609 mm x 0.609 mm.

Another high-speed camera (Photron SAS, placed opposite to PIV camera (see
figure 1c)) was used as a slave to the PIV camera for LIF imaging. The imaging rate,
resolution and the field of view of this camera were also same as that of the PIV camera.
This camera captured the fluorescent signal emitted due to the excitation of the dye mixed
in the oil droplet. This arrangement helped us to observe the deformation, stretching,
engulfment and breakup of the droplet. A band-pass filter of wavelength 570 &= 10 nm
was mounted on the LIF camera lens to prevent the entry of scattered light from the glass
spheroids.

2.4. Experimental conditions

All measurements in this study (with and without vortex—droplet interaction) are
performed in sets of five experiments. The results are averaged for all five datasets,
and the error bars are included in the figures to show the variation between different
runs. The shadowgraphy and backlight imaging (side view and top view) are performed
simultaneously, while PIV and LIF (with/without dye in the vortex ring) are done together
in a separate experiment. The velocity field obtained from PIV data is used to calculate
the circulation strength, core radius and ring radius of the vortex ring. Figure 2 shows the
variation in vertical flow velocity along the line connecting the vortex core centres. The
ring radius is defined as half of the distance between the two core centres. The core radius
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Figure 2. Description of core radius (r.) and ring radius (R) of the vortex ring. Here, Vy represents the
vertical flow velocity measured along x,,, which represents the line joining two vortex cores.

is equal to half of the distance between the maximum and minimum velocities on either
side of the core (Leweke & Williamson 1998). Circulation based Reynolds number Re,
and Weber number We, are written as (Oweis et al. 2005)

r r\? o
Re. = —; We. =0.87p,, — . (2.1a,b)
v 27r, Dy

Here, p,, is the water density. The experimental data investigated in this work are
distributed among laminar, transitional and turbulent regimes (Glezer 1988). The laminar
vortex rings have a stable structure and show very little decay in their characteristics
(translational velocity, vorticity distribution, circulation strength, etc.); as will be shown
later in § 5, the converse is true for the turbulent rings. The circulation strength is evaluated
by taking the area integral of the vorticity field over the vortex core area, and its precision
ranges from +1 to £10 cm? s~! from laminar to turbulent vortex rings. The vortex
ring is thinner or thicker depending on a non-dimensional core radius (€), whose value
in this work is between 0.37 and 0.43. This non-dimensional core radius corresponds
to a thin vortex ring (Jha & Govardhan 2015). The range of different experimental
parameters covered in this study and the non-dimensional numbers corresponding to them
are summarised in table 2. The size ratio R/R; of ~2 is chosen in our experiments because
the smaller vortices do not have enough energy to disturb and break the droplet, and
the larger ones would transport it without breaking it (Martinez-Bazan 2015). Thus, it is
recommended to carry out additional experiments involving vortex rings with (R/Ry) ~
O(1). The probable outcome which can occur if we deviate either on the higher or lower
side of this size ratio is provided in Revuelta (2010). He showed that with smaller size
ratios (R/R; < 0.1) no bubble rupture was observed, while the larger vortices (R/R; ~ 5)
did not collide against bubbles; they pushed the fluid surrounding the bubble, which caused
the bubble deformation and led to its subsequent breakup. During theoretical modelling of
droplet engulfment and breakup, we have not assessed case-I and case-II results, and the
reason for this exclusion is provided later in § 5.2.

3. Global observations of vortex-droplet interaction

A brief overview of the co-axial interaction of a vortex ring with the droplet is
shown in figure 3. The top two rows of images (figure 3a—h) show the side view,
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Figure 3. Regimes of vortex—droplet interaction (case-VIII). Regime-I: droplet deformation (a,b) side view
and (i) top view. Regime-II: droplet stretching (c.d) side view and (k,/) top view. Regime-II: droplet
engulfment (e, f) side view and (m,n) top view. Regime-IlI: droplet break-up (g,k) side view and (o,p) top
view. The side-view and top-view images were captured simultaneously. For details see supplementary movie
2.

while the bottom two rows of images (figure 3i—p) show the top view of the interaction.
The entire phenomenon of vortex—droplet interaction is divided into three regimes.
Regime-I correspond to droplet deformation and is shown in figure 3(a,b,i,j). The droplet
deformation is governed by the interplay among pressure, surface tension and viscous
forces acting on the droplet. It begins when the magnitude of the pressure force is higher
than the surface tension force. The viscous forces tend to dampen shape changes in the
droplet. Regime-II corresponds to stretching and engulfment of the droplet into the vortex
core, as shown in figure 3(c—f,k—n). In this regime, the droplet comes into contact with
the vortex ring and experiences a shear force due to the rotating fluid flow, which causes
stretching of the flattened droplet. The stretched droplet continues to wrap around the
vortex ring (figure 3c,d,k,l), and deforms like a thin hollow bag, analogous to a deformed
bag obtained in a bag breakup of a droplet in external aerodynamic flow (Jalaal &
Mehravaran 2012; Kulkarni & Sojka 2014; Jain et al. 2015). The leading edge of the droplet
then begins to engulf into the core of the vortex ring, as shown in figure 3(d—f,l-m).
During the transition of the regime from droplet deformation to engulfment, the
thickness of the bag gradually decreased over time. As a result, holes are formed at some
locations on the bag surface. These holes begin to expand further in all directions leading
to fragmentation of the bag (figure 3g,h,0,p); we refer this as regime-III of interaction
(droplet breakup regime). The transition between the droplet deformation, stretching and
engulfment models (presented later in §5) is carried out based on the experimental
observations. The droplet deformation stage is considered from the first instance of droplet
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Figure 4. Schematic diagram of (a) deformation, (b) engulfment and (c¢) stretching during vortex—droplet
interaction.

shape change to the time of its contact with the incoming vortex ring. The stretching is
considered from the end of the deformation to the time when the leading edge of the
stretched droplet reaches vertically above the vortex core. We considered the engulfment
time to be from the end of the stretching stage to the time when the leading edge reaches
the vortex core centre. The breakup time is defined as the time instant from the beginning
of droplet deformation to the onset of nucleation holes on the stretched bag surface.

Existing mathematical models are used for predicting droplet behaviour in all three
regimes. The complete interaction dynamics for case-II and case-VIII is available as
supplementary movies 1 and 2, respectively. To determine the effect of a droplet interaction
on characteristics of the vortex ring, we show the variation of circulation strength,
convection speed, pressure distribution, vorticity distribution, total energy and total
enstrophy of the vortex ring. A detailed discussion of these regimes and the interaction
effect on the droplet and vortex dynamics are given in the following sections.

4. Theoretical model

This section provides a theoretical model for the deformation, stretching, engulfment
and breakup of the droplet. The deformation model predicts the time required for the
deformation of the droplet from its original spherical shape to a disc shape with an
elliptical cross-section. The stretching model gives the stretching time of the droplet
based on the scaling arguments. The droplet engulfment model is used for predicting the
temporal evolution of the droplet’s leading-edge location during the engulfment stage. In
the end, the lifetime of the droplet is calculated.

4.1. Regime-I: droplet deformation

As suggested by Clark (1988) in his two-dimensional model for droplet deformation, a drop
in an external flow field experiences a collective effect of the pressure force, viscous force,
surface tension force and inertia force. In his model, the droplet is assumed as an equivalent
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two-mass spring—damper system. These masses are considered to be concentrated at the
centroid of a half-droplet in the present case shown by (x, y) of figure 4(a). The origin of
the coordinate system is fixed at the centroid of the undeformed droplet, which is assumed
to deform from its initial circular cross-section to an elliptical cross-section. Here, a and b
are the lengths of the semi-major and semi-minor axes of the ellipse and were equal to the
radius of the droplet (R;) before the beginning of the droplet deformation. The original
Clark model was further modified and improved by Sor & Garcia-Magarifio (2015), where
itis solved in a quasi-equilibrium form and using the slip velocity (V) as a time-dependent
variable. Here, V; = V,, — y, and V,, is the flow velocity ahead of the forward-stagnation
point, which is determined from the PIV measurement in this study; x and y are the
velocities of the droplet centroid. Due to the symmetry of the flow on the droplet, the
location of the centroid along the x-axis is fixed during deformation. Thus, the centroid
velocity in the x-direction is negligible. The same modified Clark model as presented by
Sor & Garcia-Magarifio (2015) is used here for predicting experimental results. The final
governing equation for droplet deformation as presented by Sor & Garcia-Magarifio (2015)
is as follows:

(K+D[(1+B t,)z]d%/ + [ (K 4+ 1D(2By + Bt )(N + 1)(1 + Byt) o 1 da
A v " "4Re, | dt
on> 3
+ 4We,(“ - =36, 4.1)
where
R dV, R? d*V
_ s _8 87 4.2ab
YTy dr Tyl e (4-20.5)
VR
k="Le N=Ho  Re = PwsTd (4.3ac)
Pw Mw Mw
2 -
PwV“Rg , tV , a 3mtx
We, = -2 /=2 = — =" 4.3d-
“ o Ry “ Ry 4R, ( )

Here, p, and p,, are the density of the oil and water, respectively, and j,, is the dynamic
viscosity of water. Initial conditions for solving equation (4.1) are as follows:

dd’
at t, =0 a/ = a;xp and d_[ =0. (44)

Equation (4.1) is converted into two first-order ordinary differential equations (ODEs).
These equations are then solved simultaneously using a fourth-order Runge—Kutta method
with the initial condition shown in (4.3d—f). The results of this formulation are used for
estimating droplet deformation and deformation times (shown later in § 5.1).

4.2. Regime-II: droplet stretching and engulfment

The stretching time is the time taken by the droplet’s leading edge after the end of
deformation regime to reach at the top of the vortex core (figure 4c). By assuming the
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vortex ring as an ellipse, the length of the curve (L) is determined from the point i to j

; 2
L= /j ((1 n (d—x) )dy. (4.5)
i dy

To determine the stretching time, the maximum velocity of the vortex core (U., shown
later in (4.9¢)) is taken as the velocity scale. Therefore, it is written as
~ L 4.6
Istretching ™~ Uc. (4.6)
The obtained stretching time is used for determining the droplet’s lifetime, and the results
are shown in § 5.3.

The pressure difference between the far field and vortex core causes the engulfment
of leading edge of the droplet into the vortex core (see figure 4b). In this section, the
engulfment of the droplet is modelled to determine the spatio-temporal position of the
leading edge and subsequently the engulfment time (Zenguifinens» the time taken to complete
the engulfment stage). It is assumed that the forces that cause droplet engulfment act on
the leading edge of the engulfing ligament. As can be seen from supplementary figure
S2, the actual shape of the engulfing ligament resembles a bulging cylinder. The bulging
region (which corresponds to the leading edge) is approximated as a spherical shape
because of its resemblance to a spherical shape. Furthermore, the expressions required
to calculate the drag, lift and added mass coefficients for a spherical geometry are well
established in the literature. The leading edge of the droplet experiences the following
forces: inertia, pressure, buoyancy, added mass, lift, drag and Basset history force. Other
than the above-mentioned external forces, the leading edge of the droplet also experiences
surface tension and viscous forces. The effects of the surface tension and viscous forces
acting on the leading edge are assumed to be negligible because the Weber number (We, =
Do VgngDedge/cr ~ 0(10-100)) and Ohnesorge number (Oh = 1,/ /P00 Dedge ~ O(0.1))
(McKinley & Renardy 2011) magnitudes, which are evaluated based on the stretching
of the engulfing ligament. Here, Dgge and V., are the diameter and velocity of the
engulfing ligament. These values of We, and O#h indicate that the inertia force dominates
over the viscous and surface tension force and, therefore, the latter can be neglected. The
validity of this assumption is further verified by comparing the predicted results with the
experimental data (see figure 10). The free-body diagram showing all the forces acting on
the leading edge is shown in figure 4(b).

Maxey & Riley (1983) considered the forces acting on a rigid sphere in zero Reynolds
number flows by separately modelling disturbed and undisturbed flows. Several other
researchers have used a similar particle tracking model for moderate to large Reynolds
number (Raju & Meiburg 1997; Magnaudet & Eames 2000; Ni ef al. 2012; Chen et al.
2019) values. The inertia force at the leading edge is expressed in terms of the other forces
as

duy
Po Va— =F weight +F buoyancy +F pressure + Fodded mass + F drag +F lift + Fasser-

dt
4.7)

Here, V, is the volume of the spherical leading edge. The combined effect of the buoyancy
and weight terms is written as

Fy =Vi(po — pw)g. (4.8)
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Figure 5. Comparison of vertical velocity measured along core centreline of two superimposed Lamb—Oseen
vortices with the experimental data. The red dotted line corresponds to vertical velocity of Lamb—Oseen
vortex 1 (Vp—1), while the blue dotted line corresponds to Lamb—Oseen vortex 2 (Vzo—2), the solid green line
corresponds to superimposed velocity (V) of Vo1 and Vo> and the markings correspond to experimental
vertical velocity (Veyp) along the line joining the centre of the vortex ring.

Here, g is the acceleration due to gravity. In this model, the vortex ring is assumed
as equivalent to a sum of two Lamb—Oseen vortices (Gaussian vortex) whose centres
are kept separated at 2R distance (Leweke & Williamson 1998). The validity of this
assumption is verified by comparing the vertical flow velocity from experimental data
to the superimposition of two Lamb—Oseen vortices (along the line joining the centre of
the vortex cores). A good agreement is found between the experimental and superimposed
velocity profiles (see figure 5). Therefore, a Gaussian vortex model is used for modelling
in this study (Oweis et al. 2005)

r r : 772F0
up=— |1 —exp{—n|— , u=0, U,= , (4.9a—c)
27r - 27r,
2 2 2
u r
Vp = _Pwlty _ _Pw i L 1—exp|—m (i) , (4.9d)
r r | 2nr e

where r is the radial location of the leading edge from the core centre, 11 and 1, are
constants equal to 1.255 and 0.715, respectively, I, is the circulation value at r. and ug and
u, are the velocities in the tangential (¢) and radial (r) directions, respectively. Therefore,
the pressure force is written as

F,=—V,Vp. (4.10)

The force my(Du/Dt), which comes due to the undisturbed fluid flow in the Maxey &
Riley (1983) work, is written as a pressure gradient force (V;VP) (Raju & Meiburg 1997;
Oweis et al. 2005; Finn, Shams & Apte 2011) using an inviscid flow assumption. The
added mass term is evaluated as

1 Du duy
F,=-p,Vg| —— — ). 4.11
a zpw d(Dt dr ) ( a)

Here, u is the undisturbed flow velocity, u, is the leading-edge velocity and the added
mass coefficient is chosen as 1/2. In (4.11a), ‘D/Dt’ is a material derivative while ‘d/d#’
is a total derivative. Auton, Hunt & Prud’Homme (1988) has argued that, for a spherical
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particle in an inviscid weak shear flow, the correct definition for fluid acceleration is Du/D¢
instead of du/dr. He also showed the difference between the two representations (described
in figure 1 of Auton ef al. 1988). Drew & Lahey (1990) and Ruetsch & Meiburg (1992)
further verified this correct form in their work, and a similar form was also used by Raju
& Meiburg (1997), Maxey, Chang & Wang (1994), Oweis et al. (2005) and in several other
works. Using Euler’s equation (assuming an inviscid flow) and (4.9d), we get

1 pwug duy
Fo=SpwV. -—- 4.11b
a zpw d ( p Q& ( )
Now, the drag force is calculated using,
Fa= %pwnRgdgeCd(u —ug)lu — ugl. (4.12)

Here, R,qg. is the radius of the spherical leading edge. We have used the drag coefficient
(Cy) as given in Naumann & Schiller (1935),

1+ 0.15Re%%%7 D
Cy =24 x (—ed . Reg=2vTed . (4.13a,b)
Red w
Similarly, the lift force on the droplet is determined as
3 _
F) = g,owclvdw. (4.14a)

Here, we have used the lift coefficient (C;) correlation as given in Sridhar & Katz (1995),
where w is the local vorticity value and o = |@|R,qge/ (|t — uq|). For a Gaussian vortex

r
C=059xa®S, ©0=Vxu=1 |:exp (—m (1»] . (4.14b.¢)
,

7’ .
Using (4.14a—c), an expression for the lift force is obtained. As suggested by Zhang &
Ni (2013), the Basset history force is neglected in the present modelling, as it is second
order compared with the other forces. After substituting (4.8)—(4.14) in (4.7), and then
performing some algebraic manipulation, the governing equation is written as

P dug P 3Vp | 3Capw(u—ua)lu — ug|
= 1 g __+

1+ — —
Po Po 2 po poRedge

dr
RCipw(u — ug) X @

Po

Equation (4.14b,c) is a governing equation for the leading-edge motion under the influence
of various forces. The same equation is written in the vector form as

pw\ (duar.  uae s Pw\ A A 3pwg,
I+ — ~“r+r—0 | =|1-—— r+ge0) — = 7
( :00)( dr ' dr ) ( :00) 87+ 800) 2 por

(4.15)

%Cdpw\/uf,,r + (g — ttq,0)* (—tta,r? + (ttg — 11q,0)0)

poRedge

_+_

2C1pw(us — ug,0):F + ug,r.0)

Po

(4.16)
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For analysis purposes, the above equation is decomposed into the radial (r) and tangential
(0) directions. Thus, we will get two second-order differential equations in the r and
0-directions. Both differential equations are coupled and must be solved simultaneously.
Each second-order differential equation is converted into two first-order differential
equations. Therefore, we will have four first-order differential equations that must be
solved simultaneously using the fourth-order Runge—Kutta method. The initial conditions
required for the solution are as follows:

do dr

— = =r; d —=0. 4.17
" up r=r; an i 4.17)
The initial condition values are chosen based on experimental observations. After solving
these differential equations, we get values of

At 1=0, 6 =04

r = radial position of the leading edge

d
Ug,r = Sl radial component of leading-edge velocity
dr (4.18)
6 = angular position of leading edge

de
Ugp = ra = tangential component of leading-edge velocity.
This model of droplet engulfment is described as model-1 in figure 10 and the
corresponding discussion in § 5.3.

4.2.1. Simplified engulfment model

From the scaling arguments, model-1 of droplet engulfment can be further simplified.
Since the p,, ~ p, (see table 1), weight and buoyancy forces cancel out each other. The
Basset history force is neglected based on the same argument presented earlier during the
development of model-1. Therefore the remaining forces in (4.7) are written as

duy
Po Vd? = Fpressure + Fuddedmass + Fdrag + Flift (4-190)

Dt E 5 edgecd(u —ug)|u — uy|

(U —ug) X @

duy 1 Du duy I 5
pOVdE = —VdVP+ Evd/ow - + —71R

3
+ —pwCiVy (4.19D)

8

Considering p,, ~ p, (see table 1), and substituting the value for VP from (4.9d) and
the added mass force from (4.11¢), we get

dug Cd(u—ud)lu—udl( r ) Cllu—udl(u—ud)xw< r
B R R

— =1+
dr 4y 4ugp? | o)

) . (4.20)

edge edge

Here, r/Reqge ~ O(1), and C4 and Cj lie are O(1) and O(0.1), respectively. Since ué >
lu — ug|?, the last two terms corresponding to the drag and lift forces in (4.190) are
neglected. Therefore, the final expression is written as the balance between inertia, added
mass and pressure forces.

918 A37-15


https://doi.org/10.1017/jfm.2021.363

https://doi.org/10.1017/jfm.2021.363 Published online by Cambridge University Press

S. Sharma, A.P. Singh and S. Basu

Using this force balance, a proximate estimate of the engulfment time and leading-edge
radial position are obtained after neglecting other forces in model-1. Hence, a simplified
model that balances between inertia, added mass and the pressure force is written as

3 duy 3
—poVi— = —=V;V 4.21
2,00 d dr ) dvp ( a)
duy pwug
Vi— = -V,
PoVd ar d p

2r, (drde 0\ .  p.I? \\\ »
— ——+r—]0=———=|1- — — . 4.21
't (dt a Tan ) podnzA P <r) ’ (421c)
The above equation is called model-2 in the present study and can be solved similar to
(4.16) with the same initial conditions. The results obtained from model-1 and model-2 are

used to evaluate the location of the leading edge and the engulfment time of the droplet.
The comparison of these two models and experimental data is shown in § 5.2.

(4.21b)

4.3. Regime-III: droplet breakup

Since the mass of the droplet is conserved, the continuous engulfment of ligament towards
the vortex core reduces the thickness of the stretched bag. This stretched thin sheet is
susceptible to breakup due to the formation of instabilities and their amplification over
a period of time. It is observed from figure 3(e, f,m.n) that when the engulfed ligament
reaches near the inner surface of the stretching bag, it triggers the instability on the sheet
surface. The augmentation of these instabilities leads to the nucleation of holes on the
stretched bag (figure 12). The nucleation of holes on the bag surface occurs just after
the end of the droplet engulfment stage. Thus, the droplet breakup time is expressed as
the sum of the deformation, stretching and engulfment time of the droplet

tbreakup = tdeformation + tstretching + tengulfment~ (422)

The procedure used for identifying the deformation and engulfment stages was discussed
in § 3. To quantify the deformation time (4eformarion), We used the same data that are used
for the representation of figure 7. Each representation in figure 7 defines the complete
deformation stage and the last point on the time axis corresponds to the deformation
time for that case. Similarly, figure 11 shows the complete engulfment stage for different
experimental cases. Here too, the last point on the time axis signifies the engulfment time
(fenguifment) for that case. The stretching time for the leading edge is determined from
(4.6). The comparison of the droplet lifetime obtained from (4.22) to experimental data
is presented in § 5.3.

5. Results and discussion

In this section, we will present and compare the results obtained from experimental
observations with the prediction based on the theoretical models presented in § 4. First, we
will show the results of droplet dynamics, which include the three regimes of interaction.
Later, the effect of interaction on the vortex dynamics will be presented, where we
will discuss the variation of vorticity distribution, circulation strength, total energy and
enstrophy and translation speed of the vortex ring, and the results are compared with the
reference case of no interaction.
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5.1. Droplet dynamics regime-I: droplet deformation

The droplet dynamics of regime-I (for case-II) is shown in figure 6. The planer LIF,
shadowgraphy, backlight top-view and PIV processed images are shown in figure 6(a—d),
from top to bottom. The velocity vectors in the PIV image are shown to represent the flow
direction, and the vorticity fields are blended in the background. The non-dimensionalised
time (¢ = tV/Ry) is obtained after the product of the reference time () with the ratio of
the instantaneous slip velocity (V) to the undeformed droplet radius (R;). The reference
time (¢) is measured from the commencement of droplet deformation. After injection, the
droplet moves vertically upward due to buoyancy and attains a stable shape after travelling
a certain distance, as shown in figure 6 (' = 0). Once the droplet begins to deform due to
the induced flow of the vortex ring, we define this time instant as the beginning of droplet
deformation. The regime of droplet deformation is considered to last until the vortex ring
comes into contact with the droplet (£ = 0-1.2). At this point, the droplet has deformed
from a spherical shape to a disc with an elliptical cross-section, as shown in figure 6
( = 1.2). During interaction, the deformation is caused by the generation of high-pressure
regions near the forward (north pole) and backward (south pole) stagnation points. The
high-pressure region from both ends tries to deform the droplet while the surface tension
resists it. If the pressure force is greater than the surface tension force (which is present in
all cases of this study), droplet deformation occurs. The viscosity of the oil droplet resists
any change that occurs within the droplet. The results showing the theoretical prediction
of droplet deformation with the experimental data are shown in figure 7. The theoretical
model is in good agreement with the experimental data, and a maximum deviation of less
than 10 % is observed in the results.

5.2. Droplet dynamics regime-II: droplet stretching and engulfment

At the end of the droplet deformation regime, the vortex ring comes into contact with the
flattened droplet, as shown in figure 8 (+* = 2.66). We have taken the time reference to
be from the beginning of the droplet deformation. The non-dimensionalised time (¢*) is
obtained after the product of the reference time with the ratio of the maximum tangential
velocity (U.) of the vortex ring to the vortex core radius (r.). During the deformation,
a boundary layer is formed around the droplet due to the flow induced by the upcoming
vortex ring (figure 8(d) at r* = 0-2.51). The boundary layer is sheared away from the
droplet surface by the external flow (* = 2.51-2.66) when the vortex ring reaches in the
vicinity of the droplet. The separated shear layer rolls up and forms a secondary vortex
ring (r* = 2.66-4.25), which further wraps around the primary ring, and interacts with
it. The vorticity field range in figure 8(d) is confined from —300 to 300 s~! so that the
secondary vorticity ring can be displayed. A similar type of secondary ring was also
observed in the interaction of the vortex ring with a wall (Walker et al. 1987; Hu &
Peterson 2018) or its co-axial collision with a solid sphere (Allen, Joanne & Shashikanth
2007; de Sousa 2011; Yu, Huang & Lu 2014; Nguyen, Degawa & Uchiyama 2019).
In the above studies, the interaction of primary and secondary vortex rings has shown
significant influence on the primary vortex ring characteristics. The interaction has been
shown to increase enstrophy (additional vorticity formed due to secondary vortex ring)
and decrease the energy and circulation strength of the vortex ring. In the present study,
the vortex ring Reynolds number (Re, = 5135-18 095) is very high in comparison with
the above-mentioned studies, where Re. < 2000. Therefore, in our case, the formation of
the secondary vortex ring has a negligible influence on the characteristics of the primary

918 A37-17


https://doi.org/10.1017/jfm.2021.363

https://doi.org/10.1017/jfm.2021.363 Published online by Cambridge University Press

S. Sharma, A.P. Singh and S. Basu

(a) (¢'=0) ('=0.5) =1 (¢=12)

T E 3 .
=500 0 500
Vorticity (s1)

Figure 6. Regime-I: droplet deformation for case-II. (@) Planer LIF imaging (with dye in vortex ring). (b)
Side-view imaging. (¢) Top-view imaging. (d) PIV vector field with the vorticity field in the background.
The side-view and top-view images were captured simultaneously, while the planer LIF and PIV images were
captured simultaneously in a separate experiment. For details see supplementary movie S1.
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Figure 7. Non-dimensional droplet deformation ' = (a/R,) variation with non-dimensional deformation time
t' = (tVs/R) for different experimental cases. The continuous line corresponds to theoretical prediction (see
(4.1)) and red markers correspond to the experimental data.

vortex ring. As the vortex ring comes in contact with the droplet, it exerts a shear force
on the flattened droplet that leads to stretching of the droplet. The stretched droplet wraps
around the primary vortex ring, and the leading edge reaches at the top of the vortex core,
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Figure 8. Regime-II: droplet stretching for case-IV. (a) Planer LIF (with dye in vortex ring). (b) Side-view
imaging. (c¢) Top-view imaging. (d) PIV vector field with the vorticity field in the background. The side-view
and top-view images were captured simultaneously, while the planer LIF and PIV images were captured
simultaneously in a separate experiment.

as shown in figure 8 (* = 2.66-6.68). We have taken this time instant as the end of the
stretching stage.

The problem of vortex—droplet interaction is two-way coupled in nature, i.e. the
characteristics of both vortex ring and droplet are influenced due to the interaction, as can
be seen from the results of the current section (for the droplet dynamics) and subsequent
§5.4 (for the vortex dynamics). The droplet engulfment into the vortex core depends
on the force due to the pressure gradient (4.9d), which further depends on the vortex
ring circulation strength (4.9). Looking at the results of cases III-VIII in figure 18,
the maximum decrement in the circulation strength values due to interaction (during
the engulfment stage) is less than ~10 %, indicating that the effect of coupling on the
vortex side is less in comparison with that on the droplet side (for the engulfment stage).
Therefore, the engulfment model (§ 4.2) is solved using the one-way coupling assumption,
which significantly reduces the complexity of the problem.

As will be explained later in § 5.5, the pressure distribution decreases from the outer
region to the core of the vortex ring. This differential pressure exerts an inward pull at
the leading edge of the stretched droplet towards the vortex core. The stretched droplet
in the form of cylindrical ligaments entrains into the core of the vortex ring, as shown
in figure 9. Along with droplet engulfment, a toroidal rim is formed on the top, which
remains attached to the stretching bag during this stage. We have presented results for
cases III-VIII in figures 10-11 while the result of cases I-II could not be evaluated. Due
to the lower circulation strengths of case-I and case-II, the engulfment of the stretched
droplet into the vortex core is not uniform from all directions (unlike the other cases).
Therefore, only a single ligament in the form of a flattened sheet is observed to engulf into
the vortex core (see supplementary figure S3). The engulfment for case-I and case-II can
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Figure 9. Regime-II: droplet engulfment for case-VIIL. (a) Planer LIF imaging (without dye in the vortex ring).
(b) Side-view imaging. (c¢) Top-view imaging. (d) PIV vector field with the vorticity field in the background.
The side-view and top-view images were captured simultaneously, while the planer LIF and PIV images were
captured simultaneously in a separate experiment. For details see supplementary movie S2.

occur at any azimuthal location on the vortex ring, and it is unlikely for the engulfment
plane to be in line with the plane of illumination during LIF imaging (used to evaluate
the leading edge location). With five experimental runs, it is unlikely that the engulfment
of the ligament will occur in the plane of illumination, and the choice of geometry taken
for modelling engulfment of the ligament in § 4.2 is also inapplicable for these two cases.
Thus, we have avoided calculating droplet engulfment for these two cases.

The theoretical models (model-1 and model-2), which discuss the entrainment of the
leading edge into the vortex core, were presented in § 4.2. Figure 10 shows the variation
of the non-dimensional radial location of the leading edge with non-dimensional time.
In figure 10, the experimental data are shown with the markers, while the predictions
based on model-1 (see (4.16)) and model-2 (see (4.21)) are shown using dashed and solid
lines, respectively. In figure 10, the predictions of model-1 are in good agreement with the
experimental data. However, a slight under-prediction is observed with model-2 due to the
absence of other forces.

We define engulfment time (Zenguifinen:) for the droplet as the time taken by the leading
edge of the ligament to reach from the beginning of the engulfment (* = 1.5 for most
cases) to the centre of the vortex core (r* = 0). Figure 11(a) shows the trend of engulfment
time for various experimental cases. The engulfment time for all experimental cases is
between 1.3 and 2.5. Figure 11(b) shows a comparison of the engulfment times predicted
by model-1 and model-2. Model-1 agrees mostly well with the experimental data, while a
slight under-prediction is observed in model-2.
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Figure 10. Variation of the non-dimensional radial position (r* =r/r.) of the leading edge with
non-dimensional time (t* = tU./r.) for different experimental cases. The dotted line corresponds to the
complete model-1 and the simplified model-2 is shown with a solid line. The position of the marker defines the
experimental data.
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Figure 11. Engulfment time (?¢nguifinens = tU¢/7.) of droplet leading edge into the centre of the vortex core for
different experimental cases. (b) Comparison of theoretical engulfment models (model-1 and model-2) with
experimental data.

5.3. Droplet dynamics regime-II1: droplet breakup

The final regime of vortex—droplet interaction is the droplet breakup regime, in which a
primary droplet disintegrates into several secondary droplets. There are different modes
through which primary droplet atomises into smaller daughter droplets. One of these
modes is the rupture of the stretched bag and its detachment from the toroidal ring (see
figure 14c). As the mass of the droplet is conserved, the thickness of the bag continues
to decrease as the leading edge entrains into the vortex core (figure 12 at r* = 12.6).
This continuous reduction in bag thickness triggers nucleation of holes at a different
location on its surface (#* = 13.1-13.9). Next, the holes formed on the bag surface begin
to spread in all directions, leading to its rupture (* = 14.7-15.2). Cylindrical shaped
oil ligaments are formed after the rupture of the bag. These ligaments further undergo
secondary atomisation into smaller droplets.

The breakup of the bag observed in the present work is similar to a droplet exposed to
uniform fluid flow (Villermaux & Bossa 2009; Zhao et al. 2010; Kulkarni & Sojka 2014;
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Figure 12. Regime-III: droplet breakup for case-VIII. (a) Side-view. (b) Top-view. For details see
supplementary movie S2.
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Figure 13. Droplet breakup time for different Reynolds numbers. (¢) Dimensional form. (b) Non-dimensional
form. (¢) Comparison of theoretical predictions to experimental data.

Jain et al. 2015). However, we have limited ourselves to establishing any analytical
similarity between these two cases since the translation-based Weber number (We; =
PwVsDg/o) obtained in this work (We, & 100) is much higher than the regime of the bag
breakup (We; < 30) discussed in those studies (Zhao et al. 2010; Jain et al. 2015). We can
see the nucleation of holes on the droplet surface in figure 12 (r* = 12.6-15.2). However,
the surface instabilities, which trigger the formation of holes, could not be identified from
the images, even though the side-view images were taken at a 12000 f.p.s. frame rate.
These instabilities are difficult to perceive experimentally due to their small time scales.
Similar observations were made by Guildenbecher, Lopez-Rivera & Sojka (2009) in their
review on secondary atomisation.

The breakup time is defined from the beginning of droplet deformation to the first
appearance of a hole on the bag surface. The results of dimensional and non-dimensional
breakup times observed for different experimental cases are shown in figure 13(a,b). The
dimensional form of the breakup time is plotted in figure 13(a), which shows that the
breakup time decreases with increasing strength of the vortex ring. The time required for
droplet deformation, stretching and engulfment reduces as vortex strength increases. Since
the breakup time is equal to the sum of all these times (4.22), we get a decrease in the
droplet breakup time with increasing vortex strength. Figure 13(b) is a non-dimensional
representation for the breakup time, and shows that it ranges from ~8.5 to 12 for different
cases. A comparison between the experimental data and the theoretical model (discussed
in § 4.3) is shown in figure 13(c).
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(a) Breakup of engulfed ligaments

Figure 14. Different types of droplet breakup. (a) Breakup of engulfed ligaments. (b) Detachment of top rim
from the stretched bag. (¢) Breakup of the stretched bag.

In the present study, three types of breakup are observed during the primary droplet
atomisation (figure 14). In the first type, the ligaments entrained into the core of the vortex
ring undergo secondary atomisation, as shown in figure 14(a). In the second type, the
upper ring detaches from the bag, as shown in figure 14(b). The third type of breakup is
the bag type breakup (figure 14¢). The cylindrical ligaments that form after the rupture of
the bag undergo further atomisation. The cylindrical ligaments stretch continuously, which
results in the formation of instabilities in the form of capillary waves on their surface.
Among all unstable waves, the instabilities with the highest growth rate lead to the creation
of thinner and thicker diameter regions along the ligaments lengths (see figure 14). This
development of thin and thick regions causes different Laplacian pressures, which triggers
the liquid flow from smaller diameter regions to larger diameter regions. This results in
the pinching of ligaments near the smaller diameter region. This droplet breakup mode
is known as the Rayleigh—Plateau mode of breakup (Lin & Reitz 1998; Drazin & Reid
2004; Hagedorn, Martys & Douglas 2004). The criterion for a liquid ligament to undergo
this mode of breakup is that 4/d; > 7, where A is the wavelength of instability and d; is
the diameter of the ligament. This criterion was indeed satisfied for ligament breakup in
our experiments. We have not discussed the size distribution of atomised droplets because
complete disintegration happens beyond the field of view of the camera. The complete
regime map of the droplet dynamics based on experimental data is shown in figure 15. The
result shows that the non-dimensional deformation time, stretching time and engulfment
time are in the ranges 2—4, 6-10 and 9-15, respectively, for different experimental cases.

5.4. Vortex dynamics: effect on vorticity distribution and circulation strength

We will now shift our attention to understanding the influence of vortex—droplet interaction
on the characteristics of the vortex ring. We will first examine the effects of the interaction
on the vorticity distribution of the vortex ring. The vorticity distribution for a vortex ring
with and without interactions for case-I and case-VIII are shown in figures 16 and 17,
respectively. Here, the first column of images shows the shadowgraphy images depicting
different regimes of interaction at which the vorticity distribution for the no interaction

918 A37-23


https://doi.org/10.1017/jfm.2021.363

https://doi.org/10.1017/jfm.2021.363 Published online by Cambridge University Press

S. Sharma, A.P. Singh and S. Basu

17 - -
i |-.-z; -m-r -A-rr
15¢
A
%] S = .
N < | Regime Ill-breakup lA
1 gl
| By N
t* .\\Regime Il-engulfment, ,-‘\\ i 2
7L RS Sy o [/
- w -
r ™ #| Regime II-stretching i
- ‘,_-—-9
3t " e
ik Regime I-deformation |

1 1 1 | 1 1 1 1
5100 6500 7660 9150 10300 1510016400 18100
Re,

Figure 15. Regime map of droplet dynamics. Deformation stage corresponds to 1* = 2—4, stretching stage
corresponds to r* = 610, engulfment stage corresponds to * = 9-15 for different experimental cases. The
results are plotted based on the experimental data. Note that cases I-II have different breakup modes which can
be observed from the jump between the engulfment and breakup times.

(second column) and interaction cases (third column) is evaluated, and the last column
shows the variation of centreline vorticity (measured along with the line joining the centres
of two cores) normalised with the initial peak vorticity value. In figure 16, we show the
vorticity distribution of case-I, which has the lowest circulation strength in this study. The
vorticity range is capped between —150 and 150 s~! so that the shedding of vorticity
from the vortex ring could be recognised. The chronological sequence of images with
t*=2.8, 7.1, 12.4 and 16.7 is shown in figure 16(a—d), respectively. These time sequences
correspond to the deformation, stretching, engulfment and breakup of the droplet. For the
non-interacting case, a similar structure and vorticity peaks are obtained on both cores of
the vortex ring. A minimal amount of vorticity diffusion into the ambient fluid is observed
as we move t* = 2.8 to 16.7, and the vortex ring retains its initial undeformed state. This
can be further verified from the vorticity ratio plots. For an interacting case, a separation of
the boundary layer from the droplet surface and a decrease in the peak vorticity by ~10 %
are observed during droplet deformation at * = 2.8. For t* = 7.1 (droplet stretching),
a secondary vortex ring is formed, which wraps around the primary one. As a result,
the vortex ring structure begins to distort, accompanied by a small amount of vorticity
diffusion. Again, the peak vorticity is lower than the initial value. In case-I of this study,
no uniform engulfment of the droplet is observed. The vorticity distribution shown in
figure 16(d) corresponds to the interaction in which the engulfment of droplet occurs only
at the left vortex core (t* = 12.4). As a result, the vorticity ratio on the left side is less
than the reference case of no interaction. The vorticity on the right side is the same as that
of the reference case since no droplet engulfment occurs in the right core. The position
of the core centres gets shifted to the right due to the droplet engulfment; see figure 16.
Moreover, the vorticity diffusion into the surrounding fluid is also increased during this
time, and shedding of vortices continues from the sides of the vortex cores. At r* = 16.7
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Figure 16. The vorticity distribution for case-1. The first column shows the shadowgraphy image depicting
the location of the droplet relative to the vortex ring. The second and third columns show the images of the
non-interacting and interacting vortex ring cases, respectively. The fourth column compares the vorticity ratio
that is normalised with the initial peak vorticity measured along the horizontal line joining the two core centres
of the vortex ring. The rows of images (a—d) corresponds to r* = 2.8, 7.1, 12.4 and 16.7, respectively. The
dimensions in the second and third column are in mm.

(droplet breakup), the engulfed ligaments in the left core of the vortex ring perturb the
core structure and break it into two parts. Here too, the vortex ratio of the left core is lower
than in the reference case.

The vorticity distribution for case-VIII is shown in figure 17. The chronological image
sequence shown in figure 17(a—d) corresponds to the ¢* values of 3.1, 9.8, 12.6 and
15.2, respectively. These sequences correspond to the regime of deformation, stretching,
engulfment and the breakup of the droplet, in an ordered manner. The vorticity values are

capped between —300 and 300 s~! so that diffusion of vorticity can be perceived. For a
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Figure 17. The vorticity distribution for case-VIIIL. The first column shows the shadowgraphy image depicting
the location of the droplet relative to the vortex ring. The second and third columns show the images of the
non-interacting and interacting vortex ring case. The fourth column shows the comparison of the vorticity ratio
that is normalised with the initial peak vorticity measured along the horizontal line joining the two core centres
of the vortex ring. The rows of images a, b, ¢, and d corresponds to t* = 3.1, 9.8, 12.6 and 15.2, respectively.
The dimensions in the second and third column are in mm.

non-interacting case, a slight vorticity diffusion of the vortex ring into the surrounding
fluids is observed. However, the structure of the vortex ring remains unchanged for
different time instances. For the interacting vortex ring, at r* = 3.1 (droplet deformation),
the vortex structure is deformed due to the vortex interaction, and diffusion from the core
edges is observed. A decrease in the peak vorticity is observed for both the vortex cores. A
similar trend is also observed during droplet stretching (at t* = 9.8); however, the degree
of diffusion is more significant compared with droplet deformation. The diffused vortices
travel upward in the form of a wake behind the vortex ring. At higher vortex strength
(as in case-VIII), the stretched droplet is uniformly engulfed into the vortex core from
all sides (in contrast to the case-I, see figure S3). Therefore, a decrease in the vorticity
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ratio is observed on both sides of the vortex ring (#* = 12.6). The distortion in the vortex
ring structure is increased due to the interaction of the core with the engulfed ligaments.
The engulfed ligaments also increase vorticity diffusion and dissipation of the vortex ring
(t* = 15.2).

The important characteristics of a vortex ring are defined by its circulation strength,
energy and enstrophy. The above characteristics of the vortex ring are evaluated by taking
an area integral of the vorticity field over a circular area twice that of the vortex core. For
a vortex ring in an inviscid flow, the total circulation of the vortex ring is conserved over
time. However, in the case of viscous fluid, circulation strength continuously diffuses into
the surrounding fluid. Figure 18 shows the variation in the circulation of the interacting
vortex ring when compared to the reference case of no interaction. We have normalised
the circulation at all times with the initial circulation value. The initial circulation is
considered at a time instant when the complete vortex ring is formed (without any attached
trailing jet). In figures 18 and 20, for different experimental cases, the timeline is divided
into several sub-sections using vertical dashed lines representing deformation, stretching,
engulfment and breakup of the droplet on moving from left to right. These sub-sections
are not provided in cases I-II since the engulfment and breakup modes for these cases
are different. Most experimental cases of non-interacting vortex rings show a constant
circulation value over time, indicating negligible vorticity diffusion. In the case of the
interacting vortex rings, a decrease in the circulation value is observed in all experimental
cases, and the extent of decrement of the circulation is higher at low vortex strength
(cases I-1V). Maximum decrement of ~30 % is observed in cases-I and case-II, while
it is ~20 % for cases-III and case-IV. At higher vortex ring strength (case V—VIII), the
decrease in the circulation ratio of the interacting ring is very small. For cases-V and
case-VI, the maximum decrement is ~10 %, while for cases-VII and case-VIII, it is even
lower at ~5 %. As previously discussed, there is diffusion and dissipation of the vortex
ring due to the interaction, which causes loss of vorticity in the wake, resulting in a
decrement in the vorticity values, thereby resulting in a decrease in circulation values with
time. During droplet deformation, the circulation trend is the same for both interacting and
non-interacting vortex rings. This is because there is no contact between the vortex ring
and the droplet during this time. The decreasing trend of circulation ratio begins during
stretching and continues until the breakup.

5.5. Vortex dynamics: effect on pressure distribution, energy and enstrophy

The difference in pressure at a particular spatial location to the pressure at the far-field
location is normalised by the pressure difference between the core and far-field locations
obtained from a Gaussian vortex model (0.87p,,(I" /anc)z. The velocity field obtained
from PIV data is further processed to get the pressure distribution, as suggested by Dabiri
et al. (2013). The unsteady term, convective term and diffusive term of the Navier—Stokes
equation can be evaluated from the PIV data. These terms are further substituted into
the Navier—Stokes equation to obtain the pressure gradient distribution. The pressure
gradient field is integrated to get the pressure distribution. It should be noted that the
PIV data have some inherent uncertainties, and the pressure distribution obtained after
processing such data will also include these errors. To minimise such errors, a method
was suggested by Dabiri ef al. (2013). They used median polling of several integration
paths instead of using a single integration path for reducing measurement error. The same
code is used in this work for obtaining the pressure distribution, as shown in figure 19.
A decrease in pressure is observed from the outer region of the vortex ring to its core.
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Figure 18. Effect of droplet interaction on the circulation strength of the vortex ring for different experimental
cases. The circulation strength for an interacting and a non-interacting case is shown with a blue and a red
solid line, respectively. Different interaction regimes are represented by vertical dashed lines. In each case, the
regimes of deformation (R-1), stretching (R-1I(S)), engulfment (R-II(E)) and breakup (R-III) of the droplet are
shown in sequence from left to right.

This differential pressure exerts an inward force on the droplet and tries to engulf it into
the core region. In figure 19, the first column of images corresponds to the shadowgraphy
image showing the actual location of the droplet with respect to the vortex ring, the second
and third columns of images show the pressure distribution for a vortex ring without/with
interaction, respectively. For an interacting case, a decrease in the absolute value of
maximum pressure difference is observed. Using a Gaussian vortex model, the pressure
difference between the ambient fluid and the centre of the core is written as follows:

r, \?

P —Poo = —pw (2 ) f(r/re), (S.D
e

where f(r/r.) is a function of the radial location from the centre of the vortex core (Oweis

et al. 2005). When a vortex ring interacts, its circulation strength decreases (see § 5.4), and

thereby the pressure difference between the vortex core and far-field region also reduces

(see (5.1)).

An earlier study by Jha & Govardhan (2015) showed that the side interaction of a
single bubble interacting with a vortex ring develops pressure gradients in the azimuthal
direction along the centre of the vortex tube. In the present study, we have not observed
such pressure differences between the two cores of the vortex ring. The side interaction of
a vortex ring with a bubble or droplet is geometrically asymmetrical, which can trigger a
pressure difference within the vortex tube. However, a co-axial interaction is geometrically
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Figure 19. First column depicts the location of the droplet with respect to vortex ring. Normalised pressure
contours that were created after processing the PIV velocity field for the no-interaction case (second column)
and interaction case (third column). (a) Case-I at t* = 16.7. (b) Case-V at r* = 12.4. (¢) Case-VIIl at r* = 15.2.
All dimensions are in m.

symmetrical, and the engulfment of the droplet takes place from a different azimuthal
direction of the vortex ring. Therefore, the pressure distribution along the vortex tube is
similar in our case.

The total kinetic energy and enstrophy of the vortex ring are described as

1 1
Total kinetic energy () = - f / Euz v (5.2)

1 1
Total enstrophy (Es) = v / / sz dv. (5.3)

Figure 20(a) shows the temporal distribution of the normalised total energy of a
vortex ring. The total energy of a non-interacting vortex ring is almost constant over all

experimental cases. A steep initial decay in the total energy of the non-interacting vortex
ring is observed for cases VI-VIIIL. This decay in the total energy could be due to the
small-scale instabilities present in the turbulent vortex rings, which lead to significant
vortex shedding and show a rapid growth rate compared with laminar vortex rings
(Lim & Nickels 1995). This rapid growth rate leads to significant core—core interaction,
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viscous diffusion and loss of circulation due to vortex shedding into the wake of the vortex
ring. All these effects add up and lead to a rapid decay in the vortex ring energy.

For an interacting case, a significant reduction in the total energy of the vortex ring is
observed. The degree of decrement is higher at lower vortex ring strengths (cases I-1V),
where the total energy of interaction is reduced by ~50 %, compared with its reference
case. At higher vortex ring strengths (case V-VIII), the total energy for an interacting ring
is reduced by ~30 %. The vortex ring’s total energy gets utilised as work done on the
droplet, including the work done for deformation, stretching, engulfment and the breakup
of the droplet. Apart from this, there is a loss of total energy of the vortex ring due to the
viscous dissipation by the engulfed ligaments and diffusion to the surrounding fluid. All
of these effects lead to a reduction in the total energy of the interacting vortex ring.

During the droplet deformation regime, the total energy of the vortex ring, which
interacts, is similar to its reference case since the energy is lost only for droplet deformation
and viscous diffusion. A steep decrement in the value of energy is observed during the
droplet stretching, and a slightly lower decrement is observed during the engulfment
stage for all experimental cases. During droplet stretching, the vortex ring energy is lost
against the droplet surface energy, viscous diffusion and dissipation, vortex ambient fluid
interaction and the core—core interactions. All these energy losses sum up to show a
higher decay in vortex energy during the stretching stage. Additional energy other than
mentioned above is required to entrain the leading edge into the vortex core during the
engulfment stage. In cases-I and II, the energy of the vortex ring is mainly used for
deforming and stretching the droplets, as uniform engulfment is not noticed for these cases
(see supplementary figure 3). Therefore, significant decay is observed during the initial
stages of interaction. This decrement is steeper than the other cases (cases IV=VIII), as
the value of initial energy for cases I-II itself is lower than the other cases. Therefore, the
effect of loss of energy on deformation and stretching of the droplet is more prominent for
these rings. No further decrement in total energy is observed during droplet breakup.

The enstrophy calculation determines the extent of vorticity present in the flow. The
results of the variation of the enstrophy ratio of the vortex ring and its comparison with the
reference case (without interaction) at different times are shown in figure 20(b). We have
normalised total enstrophy at each time instant with the initial total enstrophy of the vortex
ring. The enstrophy of the reference vortex ring is constant over time, and only a slight
decrease in the enstrophy is observed, which is due to diffusion effects (figures 16—17).
The enstrophy ratio decreases significantly when a vortex ring interacts with a droplet. The
maximum reduction of ~40 % is observed in most of the experimental cases. The extent
of decrease in enstrophy is similar for all experimental cases regardless of the strength
of the vortex ring. As discussed earlier, the structure of the vortex ring is disturbed due
to interactions. As a consequence, it causes vorticity loss and, thereby, enstrophy loss.
The reduction in enstrophy has also been reported by other researchers (Lu, Ferndndez &
Tryggvason 2005; Ferrante & Elghobashi 2007; van Gils et al. 2013; Jha & Govardhan
2015). Lu et al. (2005) showed an approximately ~60 % decrease in enstrophy in their
investigation of bubbles in a turbulent channel flow.

5.6. Vortex dynamics: effect on vortex translation

A mathematical correlation for estimating the translational speed of the vortex ring in a
viscous fluid medium is given in Fukumoto & Moffatt (2008) as follows:

I, 4r, vt
Uconvection = m In \/E‘ —0.558 — 36716@ . (54)
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Figure 20. Effect of droplet interaction on the (a) total energy (b) total enstrophy of the vortex ring, for
different experimental cases. The total energy for an interacting and a non-interacting case is shown with a
blue and a red solid line, respectively. Different interaction regimes are represented by vertical dashed lines. In
each case, the regimes of deformation (R-I), stretching (R-1I(S)), engulfment (R-II(E)) and breakup (R-III) of
the droplet are shown in sequence from left to right.
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Figure 21. Influence of the droplet interaction on translational speed of the vortex ring. The temporal variation
of the centre of the vortex ring core is shown for different experimental cases. The theoretical prediction
is shown by the dotted black line, the reference case of no interaction is shown with a red marker and the
interaction case is shown with a blue marker.

The above equation is derived using an asymptotic solution of the Euler equations for
large Reynolds number and the assumption of a Gaussian vortex ring. This theoretical
model predicts the translation of the vortex ring with reasonable accuracy for most of the
cases (cases [-V), while a bit overprediction is observed for cases VI-VIII (see figure 21).
The Fukumoto & Moffatt (2008) model was developed for high Reynold number vortex
rings with the ratio of core radius to ring radius (r./R) < 1 (indicating that two cores
do not interact) and by considering the higher-order terms of € ~ O(3), but it does not
take into account the physical effects of core interactions leading to vorticity loss. These
diffusion effects are more prominent for turbulent vortex rings, leading to overprediction
of the experimental results by the model. For the interaction case, the translational speed
of the vortex ring decreases. Consequently, for a particular instant, the distance travelled by
the interacting vortex ring is less than the non-interacting vortex ring for all experimental
cases.

6. Summary and conclusions

The co-axial interaction of the vortex ring with a droplet was investigated experimentally,
and the results were theoretically validated using the existing theoretical models. We have
reported the effect of interaction on both droplet as well as the vortex dynamics. In the
droplet dynamics, three regimes of vortex—droplet interaction were identified. Regime-I
corresponds to droplet deformation, in which flow around the droplet surface was induced
due to the incoming vortex ring. This causes the generation of high-pressure regions near
the forward (north pole) and backward (south pole) stagnation points of the droplet. These
high-pressure regions exert a compressive force on the droplet surface that exceeds the
surface tension force and causes droplet deformation. In order to predict the deformation,
a spring—mass—damper system analogy was used, which shows a fair agreement with the
experimental data. Regime-I ends for different experimental cases at t* = 2—4.

Regime-II in the droplet dynamics corresponds to the stretching and engulfment of
the droplet. When a vortex ring comes in contact with the flattened droplet, it exerts a
shear force, which causes stretching of the droplet and its subsequent wrapping around
the vortex ring. The stretching of the droplet (regime-II) exists up to * = 6-10, for all
experimental cases. A decrease in pressure from the outer far-field area to the vortex
ring centre was shown by processing the PIV velocity field. This differential pressure
exerts a net inward force on the leading edge of the droplet and results in its engulfment.
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The droplet engulfment time was modelled using an existing theoretical model and showed
a reasonable match with the experimental data. The droplet engulfment for different
experimental cases ends at * = 9-15.

The last regime in the droplet dynamics is the breakup of the droplet (regime-III). Three
modes of droplet breakup were identified in this regime, including breakup of the engulfed
ligament, detachment of stretched bag from the upper rim and the rupture of the stretched
bag. The continuous reduction of droplet thickness leads to the nucleation of several holes
in the stretched droplet bag and its subsequent rupture. A theoretical model that predicts
the droplet breakup time shows an acceptable agreement with the experimental data.

In the vortex dynamics, we have investigated the effect of interaction on vorticity
distribution, circulation strength, pressure distribution, total energy and enstrophy and
the translational speed of the vortex ring. The circulation strength was decreased for all
experiments due to vortex ring interaction. The reduction in circulation was higher at lower
vortex ring strengths (case-I and case-II), where a maximum decrement of ~30 % was
found. Normalised pressure difference contours for the interacting vortex ring had lower
absolute values compared with its reference case (without interaction). It was found that
the total energy and enstrophy of the vortex ring drastically decreased during the period
from stretching to the breakup of the droplet. In the cases I-IV of this study, significant
decrements of ~50 % and ~40 % were observed in total energy and enstrophy of the vortex
ring, respectively.

Finally, this work on a droplet interacting with a single vortical structure can serve as
an idealised case for a single or multiple droplets/bubbles simultaneously interacting with
multiple vortices in isotropic turbulence. Therefore, further experimental and numerical
explorations in this direction are required. Studies can also be carried out to examine the
size distribution of the daughter droplets and their effect on the vortex dynamics. This
work encompassed a wide range of vortex rings (laminar to turbulent) and the studied
interaction phenomenon is complex and involved different spatial-temporal scales. An
extension to the present work can be carried out to provide universal insights into the
interaction phenomenon.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2021.363.

Funding. The support of research by IGSTC (Indo-German Science and Technology Center) through project
No. SP/IGSTC-18-0003 is gratefully acknowledged.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Shubham Sharma https://orcid.org/0000-0002-8704-887X;

Awanish Pratap Singh https://orcid.org/0000-0003- 1374-8176;
Saptarshi Basu https://orcid.org/0000-0002-9652-9966.

REFERENCES

ALBERNAZ, D.L., DO-QUANG, M., HERMANSON, J.C. & AMBERG, G. 2017 Droplet deformation and heat
transfer in isotropic turbulence. J. Fluid Mech. 820, 61-85.

ALLEN, J.J., JOANNE, Y. & SHASHIKANTH, B.N. 2007 Vortex interaction with a moving sphere. J. Fluid
Mech. 587, 337-346.

ANDERSSON, R. & ANDERSSON, B. 2006 On the breakup of fluid particles in turbulent flows. AIChE J.
52 (6), 2020-2030.

AUTON, T.R., HUNT, J.C.R. & PRUD’"HOMME, M. 1988 The force exerted on a body in inviscid unsteady
non-uniform rotational flow. J. Fluid Mech. 197, 241-257.

918 A37-33


https://doi.org/10.1017/jfm.2021.363
https://doi.org/10.1017/jfm.2021.363
https://orcid.org/0000-0002-8704-887X
https://orcid.org/0000-0002-8704-887X
https://orcid.org/0000-0003-1374-8176
https://orcid.org/0000-0003-1374-8176
https://orcid.org/0000-0002-9652-9966
https://orcid.org/0000-0002-9652-9966
https://doi.org/10.1017/jfm.2021.363

https://doi.org/10.1017/jfm.2021.363 Published online by Cambridge University Press

S. Sharma, A.P. Singh and S. Basu

BALACHANDAR, S. & EATON, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech.
42 (1), 111-133.

BATCHELOR, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press, vol. 543, p. 550.

BETHKE, N. & DALZIEL, S.B. 2012 Resuspension onset and crater erosion by a vortex ring interacting with
a particle layer. Phys. Fluids 24 (6), 063301.

BURTON, T.M. & EATON, J.K. 2005 Fully resolved simulations of particle-turbulence interaction. J. Fluid
Mech. 545, 67-111.

CHEN, L., ZHANG, L., PENG, X. & SHAO, X. 2019 Influence of water quality on the tip vortex cavitation
inception. Phys. Fluids 31 (2), 023303.

CIHONSKI, A.J., FINN, J.R. & APTE, S.V. 2013 Volume displacement effects during bubble entrainment in
a travelling vortex ring. J. Fluid Mech. 721, 225-267.

CLARK, M.M. 1988 Drop breakup in a turbulent flow—I. Conceptual and modeling considerations. Chem.
Engng Sci. 43 (3), 671-679.

DABIRI, J.O., BOSE, S., GEMMELL, B.J., COLIN, S.P. & COSTELLO, J.H. 2013 An algorithm to estimate
unsteady and quasi-steady pressure fields from velocity field measurements. J. Expl Biol. 217 (3), 331-336.

DIDDEN, N. 1979 On the formation of vortex rings: rolling-up and production of circulation. Z. Angew. Math.
Phys. 30 (1), 101-116.

DRAZIN, P.G. & REID, W.H. 2004 Hydrodynamic Stability, 2nd edn. Cambridge University Press.

DREW, D.A. & LAHEY, R.T. 1990 Some supplemental analysis concerning the virtual mass and lift force on
a sphere in a rotating and straining flow. Intl J. Multiphase Flow 16 (6), 1127-1130.

EAsTwooOD, C.D., ARMI, L. & LASHERAS, J.C. 2004 The breakup of immiscible fluids in turbulent flows.
J. Fluid Mech. 502, 309-333.

ELGHOBASHI, S. 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu.
Rev. Fluid Mech. 51, 217-244.

FERRANTE, A. & ELGHOBASHI, S.E. 2007 On the effects of microbubbles on Taylor—Green vortex flow.
J. Fluid Mech. 572, 145-177.

FINN, J., SHAMS, E. & APTE, S.V. 2011 Modeling and simulation of multiple bubble entrainment and
interactions with two dimensional vortical flows. Phys. Fluids 23 (2), 023301.

FukuMmoTo, Y. & MOFFATT, H.K. 2008 Kinematic variational principle for motion of vortex rings. Physica
D 237 (14), 2210-2217.

GHARIB, M., RAMBOD, E. & SHARIFF, K. 1998 A universal time scale for vortex ring formation. J. Fluid
Mech. 360, 121-140.

VAN GILS, D.P.M., GuzMAN, D.N., SUN, C. & LOHSE, D. 2013 The importance of bubble deformability
for strong drag reduction in bubbly turbulent Taylor—Couette flow. J. Fluid Mech. 722, 317-347.

GLEZER, A. 1988 The formation of vortex rings. Phys. Fluids 31 (12), 3532.

GUILDENBECHER, D.R., LOPEZ-RIVERA, C. & SOJKA, P.E. 2009 Secondary atomization. Exp. Fluids
46 (3), 371-402.

HAGEDORN, J.G., MARTYS, N.S. & DOUGLAS, J.F. 2004 Breakup of a fluid thread in a confined geometry:
droplet-plug transition, perturbation sensitivity, and kinetic stabilization with confinement. Phys. Rev. E
69 (5), 056312.

HIGUERA, F.J. 2004 Axisymmetric inviscid interaction of a bubble and a vortex ring. Phys. Fluids 16 (4),
1156-1159.

HINZE, J.O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE
J. 1(3),289-295.

Hu, J. & PETERSON, S.D. 2018 Vortex ring impingement on a wall with a coaxial aperture. Phys. Rev. Fluids
3 (8), 084701.

IBRAHIM, E.A., YANG, H.Q. & PRZEKWAS, A.J. 1993 Modeling of spray droplets deformation and breakup.
J. Propul. Power 9 (4), 651-654.

JAIN, M., PRAKASH, R.S., TOMAR, G. & RAVIKRISHNA, R.V. 2015 Secondary breakup of a drop at
moderate Weber numbers. Proc. R. Soc. Lond. A 471 (2177), 20140930.

JALAAL, M. & MEHRAVARAN, K. 2012 Fragmentation of falling liquid droplets in bag breakup mode. Intl J.
Multiphase Flow 47, 115-132.

JHA, N.K. & GOVARDHAN, R.N. 2015 Interaction of a vortex ring with a single bubble: bubble and vorticity
dynamics. J. Fluid Mech. 773, 460-497.

J1a0, D., J1AO, K., ZHANG, F. & DU, Q. 2019 Direct numerical simulation of droplet deformation in turbulent
flows with different velocity profiles. Fuel 247 (March), 302-314.

KEANE, R.D. & ADRIAN, R.J. 1990 Optimization of particle image velocimeters. I. Double pulsed systems.
Meas. Sci. Technol. 1 (11), 1202-1215.

KOLMOGOROV, A. 1949 On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk. SSSR 66, 825-828.

918 A37-34


https://doi.org/10.1017/jfm.2021.363

https://doi.org/10.1017/jfm.2021.363 Published online by Cambridge University Press

Co-axial interaction of vortex ring with droplet

KONNO, M., MATSUNAGA, Y., ARAI, K. & SAITO, S. 1980 Simulation model for breakup process in an
agitated tank. J. Chem. Engng Japan 13 (1), 67-73.

KULICK, J.D., FESSLER, J.R. & EATON, J.K. 1994 Particle response and turbulence modification in fully
developed channel flow. J. Fluid Mech. 277, 109-134.

KULKARNI, V. & S0JKA, P.E. 2014 Bag breakup of low viscosity drops in the presence of a continuous air
jet. Phys. Fluids 26 (7), 072103.

LAMB, H. 1945 Hydrodynamics, Dover Publications, vol. 275, pp. 473-639.

LASHERAS, J.C., EASTWOOD, C., MARTINEZ-BAZAN, C. & MONTAES, J.L. 2002 A review of statistical
models for the break-up an immiscible fluid immersed into a fully developed turbulent flow. Intl J.
Multiphase Flow 28 (2), 247-278.

LEWEKE, T. & WILLIAMSON, C.H.K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech.
360, 85-119.

L1Ao, Y. & Lucas, D. 2009 A literature review of theoretical models for drop and bubble breakup in turbulent
dispersions. Chem. Engng Sci. 64 (15), 3389-3406.

Lim, T.T. & NICKELS, T.B. 1995 Vortex Rings. Springer, pp. 95-153.

LIN, S.P. & REITZ, R.D. 1998 Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85-105.

LINDEN, P.F. & TURNER, J.S. 2001 The formation of ‘optimal’ vortex rings, and the efficiency of propulsion
devices. J. Fluid Mech. 427, 61-72.

Lu, J., FERNANDEZ, A. & TRYGGVASON, G. 2005 The effect of bubbles on the wall drag in a turbulent
channel flow. Phys. Fluids 17 (9), 095102.

Luo, H. & SVENDSEN, H.F. 1996 Theoretical model for drop and bubble breakup in turbulent dispersions.
AIChE J. 42 (5), 1225-1233.

MAGNAUDET, J. & EAMES, 1. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows.
Annu. Rev. Fluid Mech. 32 (1), 659-708.

MARTINEZ-BAZAN, C. 2015 About bubbles and vortex rings. J. Fluid Mech. 780, 1-4.

MAXEY, M.R., CHANG, E.J. & WANG, L.P. 1994 Simulation of interactions between microbubbles and
turbulent flows. Appl. Mech. Rev. 47 (6S), S7T0-S74.

MAXEY, M.R. & RILEY, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys.
Fluids 26 (4), 883.

MAXWORTHY, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51 (1), 15-32.

MCKINLEY, G.H. & RENARDY, M. 2011 Wolfgang von Ohnesorge. Phys. Fluids 23 (12), 127101.

MUNRO, R.J., BETHKE, N. & DALZIEL, S.B. 2009 Sediment resuspension and erosion by vortex rings. Phys.
Fluids 21 (4), 046601.

NACHTIGALL, S., ZEDEL, D. & KRAUME, M. 2016 Analysis of drop deformation dynamics in turbulent flow.
Chin. J. Chem. Engng 24 (2), 264-277.

NAUMANN, Z. & SCHILLER, L. 1935 A drag coefficient correlation. Z. Verein. Deutsch. Ing. 77 (318), e323.

NGUYEN, V.L., DEGAWA, T. & UCHIYAMA, T. 2019 Numerical simulation of the interaction between a
vortex ring and a bubble plume. Intl J. Numer. Meth. Heat Fluid Flow 29 (9), 3192-3224.

N1, B.-Y., ZHANG, A.-M., YAO, X.-L. & WANG, B. 2012 Numerical simulation of trajectory and deformation
of bubble in tip vortex. Z. Angew. Math. Mech. 33 (6), 701-716.

NORBURY, J. 1973 A family of steady vortex rings. J. Fluid Mech. 57 (3), 417-431.

O’ROURKE, P.J. & AMSDEN, A.A. 1987 The Tab method for numerical calculation of spray droplet breakup.
In International Fuels and Lubricants Meeting and Exposition, vol. November 2, pp. 1987-2089. Toronto,
Ontario: SAE Paper.

OWEIS, G.F., VAN DER HouUT, L.E., IYER, C., TRYGGVASON, G. & CEccIo, S.L. 2005 Capture and
inception of bubbles near line vortices. Phys. Fluids 17 (2), 022105.

RAFFEL, M., WILLERT, C.E., WERELEY, S.T. & KOMPENHANS, J. 2007 Particle Image Velocimetry.
Springer.

RAJAMANICKAM, K. & BASU, S. 2017 On the dynamics of vortex—droplet interactions, dispersion and
breakup in a coaxial swirling flow. J. Fluid Mech. 827, 572-613.

RAJU, N. & MEIBURG, E. 1997 Dynamics of small, spherical particles in vortical and stagnation point flow
fields. Phys. Fluids 9 (2), 299-314.

RASTELLO, M., MICHALLET, H. & MARIE, J.L. 2020 Sediment erosion in zero-mean-shear turbulence.
Phys. Fluids 32 (3), 036601.

REVUELTA, A. 2010 On the interaction of a bubble and a vortex ring at high reynolds numbers. Eur. J. Mech.
(B/Fluids) 29 (2), 119-126.

RUETSCH, G.R. & MEIBURG, E. 1992 On the motion of small spherical bubbles in two-dimensional vortical
flows. Phys. Fluids A 5 (10), 2326-2341.

SAFFMAN, P.G. 1970 The velocity of viscous vortex rings. Stud. Appl. Maths 49 (4), 371-380.

918 A37-35


https://doi.org/10.1017/jfm.2021.363

https://doi.org/10.1017/jfm.2021.363 Published online by Cambridge University Press

S. Sharma, A.P. Singh and S. Basu

SHARIFF, K. & LEONARD, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24 (1), 235-279.

SOLSVIK, J. & JAKOBSEN, H.A. 2016 Development of fluid particle breakup and coalescence closure models
for the complete energy spectrum of isotropic turbulence. Ind. Engng Chem. Res. 55 (5), 1449-1460.

SOR, S. & GARCIA-MAGARINO, A. 2015 Modeling of droplet deformation near the leading edge of an airfoil.
J. Aircraft 52 (6), 1838-1846.

DE SOUSA, P.J.A.S.F. 2011 Three-dimensional instability on the interaction between a vortex and a stationary
sphere. Theor. Comput. Fluid Dyn. 26 (1-4), 391-399.

SQUIRES, K.D. & EATON, J.K. 1990 Particle response and turbulence modification in isotropic turbulence.
Phys. Fluids A 2 (7), 1191-1203.

SRIDHAR, G. & KATZ, J. 1995 Drag and lift forces on microscopic bubbles entrained by a vortex. Phys. Fluids
7 (2), 389-399.

SRIDHAR, G. & KATzZ, J. 1999 Effect of entrained bubbles on the structure of vortex rings. J. Fluid Mech.
397, 171-202.

TINAIKAR, A., ADVAITH, S. & BASU, S. 2017 Understanding evolution of vortex rings in viscous fluids.
J. Fluid Mech. 836, 873-9009.

TURNER, J.S. 1957 Buoyant vortex rings. Proc. R. Soc. Lond. A 239 (1216), 61-75.

VILLERMAUX, E. & BossA, B. 2009 Single-drop fragmentation determines size distribution of raindrops.
Nat. Phys. 5 (9), 697-702.

VoLKov, K.N. 2007 Transfer of discrete inclusions by fluxes with concentrated vorticity. J. Engng Phys.
Thermophys. 80 (2), 249-258.

WALKER, J.D.A., SMITH, C.R., CERRA, A.W. & DOLIGALSKI, T.L. 1987 The impact of a vortex ring on a
wall. J. Fluid Mech. 181, 99-140.

WANG, T., WANG, J. & JIN, Y. 2003 A novel theoretical breakup kernel function for bubbles/droplets in a
turbulent flow. Chem. Engng Sci. 58 (20), 4629-4637.

Yu, C., HUANG, H. & Lu, X. 2014 Lattice Boltzmann study of a vortex ring impacting spheroidal particles.
Adv. Appl. Math. Mech. 6 (4), 461-477.

ZEDNIKOVA, M., STANOVSKY, P., TRAVNICKOVA, T., ORVALHO, S., HOLUB, L. & VEJRAZKA, J. 2019
Experiments on bubble breakup induced by collision with a vortex ring. Chem. Engng Technol. 42 (4),
843-850.

ZHANG, A.-M. & NI, B.-v. 2013 Influences of different forces on the bubble entrainment into a stationary
Gaussian vortex. Sci. China Phys. Mech. 56 (11), 2162-2169.

ZHAO, H., L1u, H.-F., L1, W.-F. & XU, J.-L. 2010 Morphological classification of low viscosity drop bag
breakup in a continuous air jet stream. Phys. Fluids 22 (11), 114103.

918 A37-36


https://doi.org/10.1017/jfm.2021.363

	1 Introduction
	2 Experimental set-up
	2.1 Flow set-up
	2.2 Backlight imaging set-up
	2.3 PIV and LIF imaging
	2.4 Experimental conditions

	3 Global observations of vortex--droplet interaction
	4 Theoretical model
	4.1 Regime-I: droplet deformation
	4.2 Regime-II: droplet stretching and engulfment
	4.2.1 Simplified engulfment model

	4.3 Regime-III: droplet breakup

	5 Results and discussion
	5.1 Droplet dynamics regime-I: droplet deformation
	5.2 Droplet dynamics regime-II: droplet stretching and engulfment
	5.3 Droplet dynamics regime-III: droplet breakup
	5.4 Vortex dynamics: effect on vorticity distribution and circulation strength
	5.5 Vortex dynamics: effect on pressure distribution, energy and enstrophy
	5.6 Vortex dynamics: effect on vortex translation

	6 Summary and conclusions
	References

