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Abstract

We develop the Scott model of the programming language PCF in univalent type theory. Moreover, we
work constructively and predicatively. To account for the non-termination in PCFE, we use the lifting
monad (also known as the partial map classifier monad) from topos theory, which has been extended to
univalent type theory by Escardé and Knapp. Our results show that lifting is a viable approach to partial-
ity in univalent type theory. Moreover, we show that the Scott model can be constructed in a predicative
and constructive setting. Other approaches to partiality either require some form of choice or quotient
inductive-inductive types. We show that one can do without these extensions.
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1. Introduction

We develop the Scott model of the programming language PCF in constructive predicative univa-
lent mathematics. In 1969, Scott (1993) proposed a logic (LCF) for computing with functionals. In
1977, Plotkin (1977) considered LCF as a programming language (PCF), introducing operational
semantics based on Scott’s logic and proving (and formulating) soundness and computational
adequacy. Later, the techniques of Scott and Plotkin were extended to many other programming
languages (Plotkin 1983). These developments all took place in (informal) set theory with classical
logic.

Our aim is to test these techniques in Voevodskys constructive univalent type the-
ory (The Univalent Foundations Program 2013). Our development differs from the classical
approach (Streicher 2006) in three key ways. First of all, we have situated our development
in the framework of univalent mathematics. Secondly, our work takes place in a constructive
meta-theory. Thirdly, we work predicatively (meaning we do not assume propositional resizing).

The essential difference (for our development) between univalent type theory on the one hand,
and set theory or systems like Coq on the other, is the treatment of truth values (propositions).
We will discuss manifestations of this difference in Section 1.1.3 and throughout the paper.

1.1 Technical preliminaries

In this section, we briefly explain the syntax of PCF and its computational behavior. Moreover,
we recall the notion of denotational semantics and the Scott model of PCF (in a classical setting)
in particular. We also mention two fundamental properties that a model of PCF should enjoy:
soundness and computational adequacy. Finally, we recall the lifting monad in the context of
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univalent type theory and sketch the construction of the Scott model in constructive univalent
type theory.

1.1.1 PCF
PCF (Plotkin 1977) is a typed programming language. A detailed description of PCF is given in
Section 5. We briefly discuss its most characteristic features here. PCF is a typed A-calculus with
additional constants. For example, we have numerals # of base type ¢ corresponding to natural
numbers and basic operations on them, such as a predecessor term pred and a term ifz that allows
us to perform case distinction on whether an input is zero or not. The most striking feature of PCF
is its fixed point combinator fix, for every PCF type o. The idea is that for a term ¢ of function
type 0 = o, the term fix, t of type o is a fixed point of ¢. The use of fix is that it gives us general
recursion.

The operational semantics of PCF is a reduction strategy that allows us to compute in PCF. We
write s>t for s reduces to t. We show a few examples below:

pred0>0; predn+1en; ifzstOss ifzstn+1et;  fixfo f(fixf).

We see that pred indeed acts as a predecessor function and that ifz performs case distinction on
whether its third argument is zero or not. The reduction rule for fix reflects that fix f is a fixed
point f and may be seen as an unfolding (of a recursive definition).

As an example of the use of fix, consider a function g on the natural numbers given by
the recursive definition: g(0) :=s and g(n+ 1) :=t(g(n)). We can define g in PCF as fixG
where G:=A(f : t = ¢).A(x : 1). ifzs (t( pred x)) x. Having general recursion also introduces non-
termination, as for example, the successor function on naturals has no fixed point.

Instead of the formulation by Plotkin (1977), which features variables and A-abstraction, we
revert in Section 5 to the original, combinatory, formulation of the terms of LCF by Scott (1993)
in order to simplify the technical development.

1.1.2 Models of PCF

We have seen that the operational semantics give meaning to the PCF terms by specifying com-
putational behavior. Another way to give meaning to the PCF terms is through denotational
semantics, that is, by giving a model of PCF. A model of PCF assigns to every PCF type o some
mathematical structure [o ] and to every PCF term ¢ of type o an element [t] of [o].

1.1.2.1 Soundness and computational adequacy. Soundness and computational adequacy are
important properties that a model of PCF should have.

Soundness states that if a PCF term s computes to ¢ (according to the operational semantics),
then their interpretations are equal in the model (symbolically, [s] = [¢]).

Computational adequacy is completeness at the base type ¢. It says that for every term ¢ of type
¢ and every natural number n, if [t] = [n], then ¢ computes to n.

1.1.2.2 The Scott model, classically. To model PCF and its non-termination, Scott (1993) intro-
duced the Scott model: a type is interpreted as a directed complete poset with a least element (or
dcpo with L, for short). Concretely, PCF types are interpreted as follows.

Interpreting the base type . One proves that adding a least element L to the set N of natural
numbers yields a dcpo with _L, known as the flat natural numbers. This is then the interpretation
of the base type t. This least element Ly serves as the interpretation of a term of type ¢ that does
not compute to a numeral, like fix succ where succ denotes the successor map on .
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Interpreting function types. Function types are interpreted by considering continuous maps (i.e.
monotone maps that preserve directed suprema) between two dcpos with L. Such maps can be
ordered pointwise to form another dcpo with L.

A striking feature, and the crux of the Scott model, is that every continuous map has a (least)
fixed point. Moreover, the assignment of a continuous map to its least fixed point is continuous.
This allows us to soundly interpret the characteristic fix term of PCF.

The Scott model was proved sound and computationally adequate by Plotkin (1977). A modern
presentation may be found in Streicher (2006).

1.1.2.3 Issues with constructivity. While the interpretation of function types goes through con-
structively, the above interpretation of the base type ¢ is problematic from a constructive
viewpoint. Indeed, the proof that the flat natural numbers form a dcpo relies on classical reason-
ing in its analysis of the directed subsets: excluded middle allows us to prove that every directed
subset of the flat natural numbers is exactly one of {_L}, {_L, n}, or {n} for some natural number .
In fact, we can show that this reliance is in some sense essential: in Section 3, we prove that if the
flat natural numbers form a dcpo, then the Limited Principle of Omniscience (LPO) holds. This
principle asserts that every binary sequence is either 0 everywhere or it attains the value 1 at some
point. LPO is not constructively acceptable (Bishop 1967, p. 9), it is even provably false in some
varieties of constructive mathematics (Bridges and Richman 1987, pp. 3-4), and it is independent
of Martin-Lof Type Theory (Escard6 2018).

1.1.3 Univalent type theory

As mentioned at the beginning of Section 1, an essential difference between univalent type theory
on the one hand and set theory or systems like Coq on the other is the treatment of truth values
(propositions). To illustrate this difference, consider the definition of a poset (cf. Definition 2).

Example 1. Insettheory, the mathematical structure is provided by a set X and a binary relation <
on X. Moreover, this relation is required to be reflexive, transitive, and antisymmetric. Reflexivity,
Viexx < x is a logical statement that is bivalent.

In type theory, if we define <:X — X — Type, with Type some type universe, then the
type encoding reflexivity, [ [,.y ¥ < x, may have more than one element. This is a fundamental
difference with set theory.

In Coq, we could instead define <:X — X — Prop, where Prop is Coq’s special sort of
propositions. This sort is defined such that (for instance) reflexivity, Vy.x x < x, is again in Prop.

The crucial difference between these approaches and the univalent approach is that in univa-
lent type theory, we prove that something is a proposition (truth value). Following Voevodsky,
we define a type to be a proposition (truth value, subsingleton) if it has at most one element with
respect to its identity type, that is, up to propositional equality. To define posets, we then ask for
a witness that the type x < y is a proposition for every x, y : X. This allows us, in the presence of
function extensionality (which is a consequence of the univalence axiom), to prove that reflexiv-
ity and transitivity are propositions. For example, for reflexivity, we wish to show that the type
[1,.x x < x is a proposition. So let f, g be two elements of this type. By function extensionality, it
suffices to show that f(x) = g(x) for every x : X. But the type of f(x) and g(x) is x < x, which is a
proposition by requirement, so f(x) and g(x) must be (propositionally) equal, as desired. Finally,
we require X to be a set: any two elements of X are equal in at most one way. This ensures, using
function extensionality again, that antisymmetry is a proposition.

Sometimes, we will want to make a type into a proposition, by identifying its elements. This is

achieved through the propositional truncation, a higher inductive type. For example, we will need
it to define directed families (Definition 5) but also to define the reflexive transitive closure of a
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proposition-valued relation (Definition 35). We will further explain these examples in the main
text. The universal property of the propositional truncation is described in Section 1.2. For more
on propositions, sets, and propositional truncation in univalent type theory, see The Univalent
Foundations Program (2013, Chapter 3).

1.2 Overview of results

We work in intensional Martin-Lof Type Theory with inductive types (including the empty 0,
unit 1, natural numbers N, and identity types), +-, X-, and I1-types. As usual, we simply write x =
y for the identity type Idx (x, y), use = for the judgmental equality, and write =~ for Voevodsky’s
notion of type equivalence.

We need (at least) two universes % and %) closed under +-, X-, and II-types, such that
% contains 0, 1, and N, while 2, contains 2. We work predicatively, that is, we do not
assume propositional resizing, so the type of propositions in %, denoted by €2, lives in the
universe %4.

We also assume two extensionality axioms. The first is function extensionality which asserts
that pointwise equal functions are equal. Given two (dependent) functions f,g:[],.4 B(a), we
write f ~ g for the type [],.4 f(a) = g(a), often called the type of homotopies between f and g.
Function extensionality makes the type f ~ g equivalent to the identity type f = g. The second is
propositional extensionality which says that logically equivalent propositions are equal, that is, if
P and Q are propositions, then P <> Q implies P = Q. In the presence of function extensionality,
this is equivalent to (P < Q) ~ (P = Q).

Although we do not need the univalence axiom at any point, we remark that both extensionality
axioms above follow from it. Moreover, we emphasize the importance of the idea of truncation
levels, which is fundamental to univalent type theory.

Finally, we assume the existence of a single higher inductive type, the propositional truncation:
given a type X in a universe %, we assume that we have a proposition ||X|| in % with a map
|—|: X — [IX|| such that if P is a proposition in any universe and f : X — P is a map, then f factors
through |—|. Diagrammatically,

X > P

[—I -

11Xl

\m\\

Observe that the factorization f is unique by function extensionality and the fact that P is a
proposition.
Our paper can be summarized as follows:

Section 2. We introduce the theory of dcpos with L (known as domain theory) in predicative
constructive univalent type theory. We take the carriers of the dcpos to be sets (in the sense of
univalent type theory) and the partial orders to be proposition-valued. Propositional truncation
plays an import part in defining directedness.

Section 3. We elaborate on the issue with the classical construction of the Scott model in a
constructive meta-theory (cf. the final paragraph of Section 1.1.2).

Section 4. To remedy this issue, we work instead with the lifting monad (also known as the
partial map classifier monad) from topos theory (Kock 1991), which has been extended to
constructive type theory by Reus and Streicher (1999) and recently to univalent type theory
by Escardé and Knapp (2017) and Knapp (2018). The lifting . (X) of a type X is defined as
L (X)=) pgo (P— X), where Q is the type of propositions in the first universe. We think
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of the elements (P, ) of .Z (X) as partial elements of X: in case P holds, we get an element
of X, but P may also fail to hold and then the partial element is thought of as undefined. In
our constructive model, we interpret the base type of PCF as the lifting .# (N) of the natural
numbers.

Section 5. We define a combinatory version of PCF and its (small-step) operational semantics.
We use the propositional truncation to obtain well-behaved relations in the small-step operational
semantics.

Section 6. We define our constructive Scott model of PCF using the lifting monad.

Section 7. We show how the usual proofs of soundness and computational adequacy adapt to our
constructive setting with propositional truncations.

Section 8. Recall that in our model the PCF type ¢ for natural numbers is interpreted as £ (N),
where N is the natural numbers type. Thus, if ¢ is a PCF term of type ¢, then we get an element
[t] : £ (N). Hence, for every such term ¢, we have a proposition pry ([¢]) : 2. We show that such
propositions are all semidecidable. This result should be contrasted with the fact that a restricted
version of the lifting monad where we take a X-type over only semidecidable propositions is not
adequate for our purposes, as we explain at the end of Section 8.

In proving our results, we take the opportunity to record some more general properties of
reflexive transitive closures (Section 8.1) and indexed W-types (Section 8.2).

Section 9. We discuss the universe levels involved in our development. This is important, because
we want our results to go through predicatively, that is, without propositional resizing.

Section 10. We summarize our main results and describe directions for future work.

1.3 Related work

Partiality in type theory has been the subject of recent study. We briefly discuss the different
approaches.

Firstly, there are the delay monad by Capretta (2005) and its quotient by weak bisimilarity, as
studied by Chapman et al. (2017). They used countable choice to prove that the quotient is again
a monad. Escardé and Knapp (Escardé and Knapp 2017; Knapp 2018) showed that a weak form
of countable choice is indeed necessary to prove this. However, Coquand et al. (2017, Corollary 2)
have shown that countable choice cannot be proved in dependent type theory with one univalent
universe and propositional truncation. Theorem 3.3 of (Coquand 2018) extends this to dependent
type theory with a hierarchy of univalent universes and (some) higher inductive types. Moreover,
Swan (2019a,b) recently showed that even the weak form of choice required is not provable in
univalent type theory.

Another approach is laid out by Altenkirch et al. (2017). They postulated the existence of a par-
ticular quotient inductive-inductive type (QIIT) and showed that it satisfies the universal property
of the free w-cpo with a least element (Altenkirch et al. 2017, Theorem 5). Moreover, Altenkirch
et al. showed that, assuming countable choice, their QITT coincides with the quotiented delay
monad.

We stress that our approach does not need countable choice or QIITs.

Finally, Benton et al. (2009) used Capretta’s delay monad to give a constructive approach to
domain theory. Their approach used setoids, so that every object comes with an equivalence rela-
tion that maps must preserve. One cannot quotient these objects, because quotienting Capretta’s
delay monad requires (a weak form of) countable choice, as explained above. In our develop-
ment, we instead use Martin-Lof’s identity types as our notion of equality. Moreover, we do not
make use of Coq’s impredicative Prop universe and our treatment incorporates directed complete
posets (dcpos) and not just w-cpos.
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1.4 Formalisation

All our results up to and including the proof of computational adequacy (and except for Section 3
and Remark 29) have been formalized in the proof assistant Coq using the UniMath library
(Voevodsky et al. 2019) and Coq’s Inductive types. The general results from Section 8 have
also been formalized, but their direct applications to PCF, for example, single-valuedness of the
operational semantics and PCF as an indexed W-type, have not. The code may be found at
https://github.com/tomdjong/UniMath/tree/paper. Instructions for use can be found in
the repository’s README . md file. Browsable documentation for the formalization may be found at
https://tomdjong.github.io/Scott-PCF-UniMath/toc.html. Definitions and proofs of
lemmas, propositions, and theorems are labeled with their corresponding identifiers in the Coq
name, for example as pcf, which also functions as a hyperlink to the appropriate definition in the
documentation.

At present, it is not possible to verify universe levels in UniMath. Therefore, to verify the cor-
rectness of our development and our claims in Section 9 about universe levels in particular, we
reformalized part of our development in Agda using Martin Escardé (2019) library. Our code is
now part of the library. An HTML rendering may be found at: https://www.cs.bham.ac.uk/
~mhe/agda-new/PCFModules.html.

2. Basic Domain Theory

We introduce basic domain theory in the setting of constructive predicative univalent mathemat-
ics. We adapt known definitions (cf. Abramsky and Jung 1994, Section 2.1 and Streicher 2006,
Chapter 4) to constructive univalent type theory, paying special attention to how our definitions
may involve propositional truncations.

2.1 Directed complete posets

Definition 2 (PartialOrder). A poset (X, <) is a set X together with a proposition-valued binary
relation <: X — X — Q satisfying:

(1) reflexivity: [[,.x x <x;
(2) antisymmetry: [[ .y x<y—>y<x—>x=y;
(3) transitivity: [[,, . xx<y—>y<z—>x==z

Remark 3. Notice that we require < to take values in 2, the type of propositions in %, cf.
Example 1. This allows us to prove (using function extensionality The Univalent Foundations
Program 2013, Example 3.6.2) that reflexivity and transitivity are propositions, that is, there is at
most one witness of reflexivity and transitivity. We also express this by saying that reflexivity and
transitivity are properties, rather than structures. Moreover, we restrict to X being a set to ensure
that antisymmetry is a property, rather than a structure.

Definition 4 (posetmorphism). Let X and Y be posets. A poset morphism from X to Y is a
function between the underlying sets that preserves the order. We also say that the function is
monotone.

Definition 5 (isdirected). Let (X, <) be a poset and I any type. Given a family u:I— X,

we often write u; for u(i). Such a family is called directed if I is inhabited (i.e. |I|| holds) and
[T | ks (i = w) x (uj < we) |-
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Remark 6. We use the propositional truncation in the definition above to ensure that being
directed is a property, rather than a structure (isaprop_isdirected).

Firstly, we express that the type I is inhabited by requiring an element of ||I||. This is different
from requiring an element of I. It is akin to the difference (in set theory) between a set X such that
Jx € X holds and a pair (X, x) of a set with a chosen element x € X.

Secondly, if we had used an untruncated ¥ in the second clause of the definition, then we would
have asked our poset to be equipped with an operation mapping pairs (x, y) of elements to some
specified element greater than both x and y.

Definition 7 (isupperbound, islub, isdirectedcomplete). An element x of a poset X is an
upper bound of a family u: I — X if u; C x for every i: L. It is a least upper bound of u if it is an
upper bound and x T y holds whenever y is an upper bound of u.

A poset X is called 7% -directed complete for a type universe % if every directed family in X
indexed by a type in % has a least upper bound in X, which we denote by | |;.; u;. Symbolically,
[T o x(wis directed — Y. x is a least upper bound of u).

We call such a poset a % -dcpo. We shall often simply write dcpo, omitting reference to the type
universe.

Remark 8. Contrary to Definition 5, directed completeness is not phrased with a truncated X.
This justifies having the least upper bound operator |_]. The reason for this definition of directed
completeness is that least upper bounds are unique when they exist (lubsareunique). Moreover,
the type expressing that an element is a least upper bound for a family can be shown to be a
proposition using function extensionality (isaprop_islub). Hence, for any family u, the type
of least upper bounds of u and its propositional truncation are equivalent. This observation
also tells us, using function extensionality again, that the type expressing that a poset is directed
complete is also a proposition (isaprop_isdirectedcomplete), that is, it is a property of the
poset.

Remark 9. In classical mathematics, a dcpo is usually defined as a poset such that every directed
subset has a least upper bound. We have formulated our version using families, because in our
type-theoretic framework functions are primitive, unlike in set theory where sets are primitive
and functions are encoded as particular sets. Another reason for preferring families is that we
work in the absence of propositional resizing, so that we must pay attention to size and therefore
only ask for least upper bounds of small directed subsets. This point is explained and worked out
in detail in de Jong and Escard6 (20215, Section 5) to which we refer the interested reader. Here,
we limit ourselves to saying that working with families is more direct, and that for the Scott model
we will only need to consider simple N-indexed directed families anyway.

2.2 Morphisms of dcpos

Definition 10 (isdcpomorphism). Let D and E be dcpos. A poset morphism from D to E is a dcpo
morphism (or continuous) if it preserves least upper bounds of directed families. That is, ifu: I — D
is a directed family, then f(|_|,.; u;) is the least upper bound of f o u: 1 — E.

Thus, by definition, a dcpo morphism is required to be a poset morphism, that is, it must be
monotone. However, as is well known in domain theory, requiring that the function is monotone

is actually redundant, as the following lemma shows.

Lemma 11. Let D and E be dcpos. If f is a function (on the underlying types) from D to E preserving
least upper bounds of directed families, then f is order-preserving.
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Proof (preservesdirectedlub_isdcpomorphism). Let f: D — E be a morphism of dcpos
and suppose x,y:D with x <y. Consider the family 1+ 1— D defined as inl(*)+> x and
inr (%) — y. This family is easily seen to be directed and its least upper bound is y. Now f preserves
this least upper bound, so f(x) < f(y). I

Lemma 12. Every morphism of dcpos preserves directed families. That is, if f : D — E is a morphism
of dcpos and u is a directed family in D, then f o u is a directed family in E.

Proof (dcpomorphism_preservesdirected). Using monotonicity of f. O

Theorem 13. Let D and E be dcpos. The morphisms from D to E form a dcpo with the pointwise
order.

Proof (dcpoofdcpomorphisms). The least upper bound of a directed family of dcpo mor-
phisms is also given pointwise. The proof only differs from the standard proof of Streicher
(2006, Theorem 4.2) in that it uses directed families, rather than subsets. One may consult the
formalization for the technical details. O

2.3 Dcpos with L
Definition 14 (dcpowithbottom). A dcpo with L is a depo D together with a least element in D.

Theorem 15. Let D be a dcpo and let E be a dcpo with L. Ordered pointwise, the morphisms from
D to E form a dcpo with 1, which we denote by EP.

Proof (dcpowithbottom_ofdcpomorphisms). Since the order is pointwise, the least morphism
from D to E is simply given by mapping every element in D to the least element in E. The rest is as
in Theorem 13. O

Dcpos with bottom elements are interesting because they admit least fixed points. Moreover,
these least fixed points are themselves given by a continuous function.

Theorem 16. Let D be a dcpo with L. There is a continuous function y : DP — D that sends each
continuous function to its least fixed point. In fact, u satisfies:

(1) f(u(f)) = u(f) for every continuous f : D — D;
(2) for every continuous f : D — D and each d: D, if f(d) < d, then u(f) <d.

Proof. (leastfixedpoint_isfixedpoint, leastfixedpoint_isleast). We have formal-
ized the proof of Abramsky and Jung (1994, Theorem 2.1.19). We sketch the main construction
here. For each natural number n, define iter(n) : D — D as

iter(n)(f) =f"(L) =f(f(...(f(L)...)).
——— —
n times
By induction on #, one may show that every iter(n) is continuous. Then, the assignment

n > iter(n) is a directed family in p@”). Finally, one defines u as the least upper bound of
this directed family. Recall that least upper bounds in the exponential are given pointwise, so that

H’(f) = Lln:an(J-)' O

https://doi.org/10.1017/5S0960129521000153 Published online by Cambridge University Press


https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Algebra.DCPO.html#preservesdirectedlub_isdcpomorphism
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Algebra.DCPO.html#dcpomorphism_preservesdirected
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Algebra.DCPO.html#dcpoofdcpomorphisms
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Algebra.DCPO.html#dcpowithbottom
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Algebra.DCPO.html#dcpowithbottom_ofdcpomorphisms
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Algebra.DCPO.html#leastfixedpoint_isfixedpoint
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Algebra.DCPO.html#leastfixedpoint_isleast
https://doi.org/10.1017/S0960129521000153

1278 T. de Jong

3. Constructive Issues with Partiality

In classical mathematics, a partial map from N to N can simply be seen as a total map from N to
NU {1}, where L is some fresh element not in N. The flat dcpo N is NU {_} ordered as in the

following Hasse diagram:
0 \ 2 / i
1

Using excluded middle, a directed subset of N is either {L}, {n} or {L,n} (with n a natural
number). The least upper bounds of which are easily computed as L, n and n, respectively. Thus,
with excluded middle, N is directed complete.

One could hope that the above translates directly into constructive univalent mathematics, that
is, that the poset N = (N + 1, <)) with < the flat order (i.e. inr (%) is the least element and
all other elements are incomparable) is (%-)directed complete (in the sense of Definition 7).
However, we can prove that this implies Bishop’s LPO, a constructive taboo (recall the final
paragraph of Section 1.1.2), as follows.

Write 2 for the type 1+ 1, and 0 and 1 for its inhabitants inl (%) and inr (x), respectively.
In type theory, LPO may be formulated! as the following type:

I1 (]_[ a(n) =0> + (Z a(k) = 1). (LPO)

a:N—2 \m:N k:N
Lemma 17. Directed completeness of N | implies LPO.

Proof. Suppose that N is (%-)directed complete. Let o : N — 2 be an arbitrary binary sequence.
Define the family 8 : N — N as

Bln) = inl(k) if kis the least integer < n such that a(k) = 1;
T linr(x) else.

Then B is directed, so by assumption, it has a supremum s in N . By the induction principle of
sum-types, we can decide whether s =inl (k) for some k: N or s=inr (). The former implies
Y kn (k) =1 and we claim that the latter implies [ [,y a(n) = 0. For suppose that s =inr ()
and let n:N. Since 2 has decidable equality, it suffices to show that «(n) # 1. Assume for a
contradiction that a(n) =1. Then B(n)=inl (k) for some natural number k < n. Using that s
is the supremum of 8 yields inl (k) = B(n) <, s=inr (). By definition of the order, we also
have the reverse inequality inr (x) <, inl (k). Hence, inr (x) =inl (k) by antisymmetry, which
is a contradiction, so a(#) 7~ 1 as desired. O

4. Partiality, Constructively

In this section, we present the lifting monad as a solution to the problem described in the previous
section. Using the lifting monad in univalent type theory to deal with partiality originates with the
work of Escardé and Knapp (2017), Knapp (2018) and aims to avoid countable choice.

We start by defining the lifting of a type and by characterizing its identity type. In Section 4.1,
we prove that the lifting carries a monad structure, while in Section 4.2 we show that the lifting
of a set is a dcpo with L. Most of the definitions and some of the results in this section can be
found in Knapp (2018) or in Escardé and Knapp (2017). Exceptions are Lemma 22, Theorems 25,
and 27. We note that our characterization of equality of the lifting, Lemma 22, is implicit in
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the fact that the order of Escardé and Knapp (2017) is antisymmetric. The order on the lift-
ing in this paper (see Theorem 26) is different from the order presented in Escardé and Knapp
(2017), Knapp (2018). The two orders are equivalent, however, as observed by in Escardé (2019,
LiftingUnivalentPrecategory). We found the order in this paper to be more convenient.

Definition 18 (1ift). Let X be any type. Define the lifting of X as:
LX) =) (P—>X).
P:Q

Strictly speaking, we should have written pry (P) — X, because elements of Q2 are pairs of types
and witnesses that these types are subsingletons. We will almost always suppress reference to these
witnesses in this paper.

Definition 19 (1iftorder_least). For any type X, the type £ (X) has a distinguished element:
Lx = (0, from-0x) : £ (X),

where from-0x is the unique function from 0 to X.

Definition 20 (1ift_embedding). There is a canonical map nx: X — £ (X) defined by:
nx(x) = (1, At.x).

Assuming LEM (i.e. [ . (P + —P)), we can prove that the only propositions are 0 and 1, for
if a proposition P holds, then it is equal (by propositional extensionality) to 1 and if it does not
hold, then it is equal to 0. Hence, if we assume LEM then the two definitions above capture all of
the lifting, since LEM implies:

LX) = (Z(P_’X)) ~((1—=>X)+(0—>X)~(X+1),

P:Q

as (1 - X) >~ X and there is a unique function from 0 to any type X. Constructively, things are
more interesting, of course.
We proceed by defining meaningful projections.

Definition 21 (isdefined, value). Wetakeisdefined : £ (X) — Q to be the first projection. The
function value : [, ¢ x isdefined (I) — X is given by: value (P, ¢)(p) = ¢(p).

Since equality of X-types often requires transport, it will be convenient to characterize the

equality of .Z (X).
Lemma 22. Let X be any type and let I, m : £ (X). The following are logically equivalent®

(1) I=m
(2) 3_cisdefined ()<>isdefined (m) Value (1) o pra (e) ~ value (m).

Proof. (lifteq_necc, lifteq_suff).
First of all, the characterization of the identity type of X-types (The Univalent Foundations
Program 2013, Theorem 2.7.2) yields

(I=m)~ Z transport (¢, value (1)) = value (m). (1)
¢':isdefined (I)=isdefined (m)
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Thus, we only have to show that the right-hand side of (f) is logically equivalent to (2)
in the lemma. Suppose first that we have ¢ :isdefined (I) = isdefined (m) and an equality
p : transport (¢, value (I)) = value (m). Then
e = eqtoiff(¢’) : isdefined () <> isdefined (m).

Using path induction on ¢/, we can prove that value (I) o pry () = transport (¢, value ().
Together with p, this equality implies value (I) o pr; (e) ~ value (m), as desired.

Conversely, suppose e: isdefined (I) <> isdefined (m) and v:value (I) o pry (e) ~ value (m).
By propositional extensionality, we obtain ¢ :isdefined (I) = isdefined (m) from e. From ¢/,

we can get an equivalence idtoeqv(e’) : isdefined (I) ~ isdefined (). Furthermore, using path
induction on ¢, one can prove that

transport (¢, value (1)) = value () o (idtoeqv(e’)) . (%)

Hence, it suffices to show that the right-hand side of (x) is equal to value (m). The homo-
topy v yields value (1) o pr; (e) = value (m) by function extensionality, so it suffices to prove that
(idtoeqv(e’))~! = pr; (e). But these are both functions with codomain isdefined (I), which is a
proposition, so they are equal by function extensionality. O

4.1 The lifting monad

In this section, we prove that the lifting carries a monad structure.
This monad structure is most easily described as a Kleisli triple. The unit is given by
Definition 20.

Definition 23 (Kleisli_extension). Given f:X— .2 (Y), the Kleisli extension
L (X) — L (Y) is defined by:

Fi(Pg) = (Z isdefined (f(¢(p))), w>,

p:P
where ¥ (p, d) .= value (f(¢(p)))(d).

Theorem 24 (Theorem 5.8 in Knapp 2018, Section 2.2 in Escard6 and Knapp 2017). The above
constructions yield a monad structure on £ (X), that is, the Kleisli laws hold (pointwise):

(1) (nx)* ~idy (x);
) ffonx~fforanyf:X— L (Y);
(3) g off ~(g*of) foranyf: X — L (Y)andg:Y — £ (2).

Proof. (eta_extension, fun_extension_after_eta, extension_comp). The proofs are
straightforward thanks to Lemma 22. Item (3) is essentially the associativity of %, that is,
equivalence between } ;.4 D 4.p5(q) C(a, b) and 3, 4.5  Bla) C(a, D). O

4.2 The lifting as a dcpo with L

The goal of this section is to endow .Z (X) with a partial order that makes it into a dcpo with L,
provided that X is a set. We also show that the Kleisli extension from the previous section is
continuous when regarded as a morphism between dcpos with L.

Theorem 25. If X is a set, then so is its lifting £ (X).
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Proof (liftofhset_isaset). Asin the proof of Lemma 22, we have

Il=m~ Z transport (e, value (1)) = value (m).
e:isdefined (l)=isdefined (m)

Since X is a set, the type transport (e, value (I)) = value (m) is a proposition. So, if we can prove
that isdefined (/) = isdefined (m) is a proposition, then the right-hand side is a proposition-
indexed sum of propositions, which is again a proposition.

So let us prove that if P and Q are propositions, then so is P = Q. At first glance, it might seem
like one needs univalence (for propositions) to prove this, but in fact propositional extensionality
suffices. By Kraus et al. (2017, Lemma 3.11) (applied to the type of propositions), it suffices to
give for every proposition R, a (weakly) constant (i.e. any two of its values are equal) endomap on
P = R. But the composition

(P=R)— (P < R) 2™ (p_p)

is weakly constant, because P <> R is a proposition, so this finishes the proof. O

Theorem 26 (cf. Theorem 5.14 in Knapp 2018 and Theorem 1 in Escardé and Knapp 2017). If X
is a set, then £ (X) is a dcpo with L with the following order:

IC m :=isdefined () > [ =m.

Proof (1iftdcpowithbottom). Firstof all, we should prove that .Z (X) is a poset with the spec-
ified order. In particular, E should be proposition-valued. If X is a set, then isdefined () - I =m
is a function type into a proposition and therefore a proposition itself.

Reflexivity and transitivity of E are easily verified. Moreover, C is seen to be antisymmetric
using Lemma 22.

The L element of .Z (X) is given by L x from Definition 19.

The construction of the least upper bound of a directed family is the most challenging part of
the proof. Let u : I — £ (X) be adirected family in . (X). Consider the diagram (of solid arrows):

@:(i,d)—>value (u;)(d)

> ;. isdefined (u;)

I T
|3, isdefined (u))||

We are going to construct the dashed map i that makes the diagram commute and define
the least upper bound of u as: (|| Y, isdefined ()|, ¥). Truncating the type is necessary, as
> ;7 isdefined (u;) may have more than one element if I is not a proposition. The difficulty lies in
the fact that the universal property of the truncation only tells us how to define maps into proposi-
tions. But X is a set. We solve this problem using Kraus et al. (2017, Theorem 5.4), which says that
every weakly constant function f : A — B to a set B factors through ||A||. That f is weakly constant
means that f(a) = f(a’) for every a,a’ : A. So, to construct ¥, we only need to prove that the top
map ¢ in the diagram is weakly constant. Let (i, d;), (j, d;) be two elements of the domain of ¢. We
are to prove that value (u;)(d;) = value (4;)(d;). As X is a set, this is a proposition. Therefore, using
that u is directed, we obtain k : I with u;, u; T uy. But d; : isdefined (u;) and d; : isdefined (u;), so
u; = uj = u;j by definition of the order. Hence, ¢(i, d;) = value (u;)(d;) = value (u;)(d;) = ¢(j, d;),
as we wished to show. O

Theorem 27. Let X and Y be sets and f: X — £ (Y) any function. The Kleisli extension
f*: L (X) > £ (Y) is a morphism of dcpos.
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Proof (Kleisli_extension_dcpo). Let v be the least upper bound of a directed family
u:l— £ (X)in £ (X). Proving that f* is monotone is quite easy. By monotonicity, f*(v) is an
upper bound for the family f* o u. We are left to prove that it is the least. Suppose that [ : . (Y)
is another upper bound for the family f* o u, that is, | J f*(u;) for every i : I. We must show that
f*(v) C L To this end, assume we have q : isdefined (f*(v)). We must prove that f*(v) = I.

From g, we obtain p : isdefined (v) by definition of f*. By our construction of suprema in .# (X)
and the fact that f*(v) =l is a proposition, we may in fact assume that we have an element i : I and
d; - isdefined (u;). But [ 3 f*(u;), so using d;, we get the equality [ = f*(u;). Since v is an upper
bound for u, the term d; also yields u; = v. In particular, [ = f*(u;) = f*(v), as desired. O

Remark 28 (liftfunctor_eq). Finally, one could define the functor .Z from the Kleisli exten-
sion and unit by putting .Z (f) := (ny o f)* for any f : X — Y. However, it is equivalent and easier
to directly define .Z (f) by post-composition: .Z (f)(P, ¢) == (P, f o ).

Remark 29. We remark that lifting may be regarded as a free construction, in more than one way
in fact. This result should be compared to Altenkirch et al. (2017, Theorem 5), where Altenkirch
et al. exhibit their QIIT as the free w-cpo with a least element (cf. Section 1.3).

By de Jong and Escard6 (2021a, Theorems 21 and 23), the lifting of a set X can be regarded both
as the free pointed dcpo on X and as the free subsingleton complete poset on X. In our predicative
setting, some care should be taken in formulating these statements. We do not go into the details
here and instead refer the interested reader to de Jong and Escard¢ (2021a).

5. PCF and its Operational Semantics

This section formally defines the types and terms of PCF as well as the small-step operational
semantics. It should be regarded as a formal counterpart to the informal introduction to PCF in
Section 1.1.1.

To avoid dealing with free and bound variables (in the formalization), we opt to work in the
combinatory version of PCE, as originally presented by Scott (1993). We note that it is possible to
represent every closed A-term in terms of combinators by a well-known technique (Hindley and
Seldin 2008, Section 2C).

We inductively define combinatory PCF as follows.

Definition 30 (type). The PCF types are inductively defined as:

(1) vis a type, the base type;
(2) for every two types o and t, there is a function type 0 = 7.

As usual, = will be right associative, so we write 0 = T = p foro = (t = p).

Definition 31 (term). The PCF terms of PCF type o are inductively generated by:

zero of type succ of type t =

pred of type =1 ifzoftyper=> 1= 1=

Ko,z Of typec =1 =0 Sorp Oftype(0 =>1=p)=>(0=>T)=0=>0p

https://doi.org/10.1017/5S0960129521000153 Published online by Cambridge University Press


https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Partiality.LiftMonad.html#Kleisli_extension_dcpo
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Partiality.LiftMonad.html#liftfunctor_eq
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Partiality.PCF.html#type
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Partiality.PCF.html#term
https://doi.org/10.1017/S0960129521000153

Mathematical Structures in Computer Science 1283

softypec =t toftypet
fix, of type (0 =>0) =0 (st) of type T

We will often drop the parentheses in the final clause, as well as the PCF type subscripts in Ky 1,
So,7,p> and fix,. Finally, we employ the convention that the parentheses associate to the left, that is,
we write rst for (rs)t.

Definition 32 (numeral). Forany n: N, let us write n for the nth PCF numeral, defined inductively

as:

0:=zero; n-+1:=succ n.
To define the small-step operational semantics of PCE, we first define the following inductive
type.
Definition 33 (smallstep’, smallstep). Define the small-step pre-relation & of type:

1_[ PCF terms of type o — PCF terms of type 0 — %
o :PCF types

as the inductive family generated by:

pred 050 predn+15n ifzst05's ifzstn+15¢
frg
kst 's sfgt & ft(gt) fix f 5 f(fix f) fts gt
sot s>t rs v
succ s succt pred st pred t ifzstrsifzstr

We have been unable to prove that sBt is a proposition for every suitable PCF terms s and t.
The difficulty is that one cannot perform induction on both s and t. However, conceptually, st t
should be a proposition, as (by inspection of the definition), there is at most one way by which we
obtained s t. Moreover, for technical reasons that will become apparent later, we really want & to
be propostion-valued.

We solve the problem by defining the small-step relation o as the propositional truncation of =,
that is, s>t = ||s5 t].

Remark 34. Benedikt Ahrens pointed out that in an impredicative framework, one could use
propositional resizing and an impredicative encoding, that is, by defining > as a I1-type of all suit-
able proposition-valued relations. This is similar to the situation in set theory, where one would
define > as an intersection. Specifically, say that a relation:

R: l_[ (PCF terms of type o — PCF terms of type o — Q”Z/o)
o :PCF types

is suitable if it closed under all the clauses of Definition 33, that is, R(L, pred 0, Q),
R(L, pred n + 1,Q), etc., are all inhabited. We could define s>impred t ‘= [ [ suitable R(7> 5 £). But
notice the increase in universe level:

>impred : 1_[ (PCF terms of type o — PCF terms of type o — Qag/l).
o :PCF types
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So because of this increase, >impred itself is not one of the suitable relations. Therefore, >impred does
not satisfy the appropriate universal property in being the least relation closed under the clauses
in Definition 33. With propositional resizing, we could resize >impred to a %-valued relation sat-
isfying the appropriate universal property. The advantage of using the propositional truncation
above is that it does satisfy the right universal property even without propositional resizing.

Let R: X — X — Q be a relation on a type X. We might try to define the reflexive transitive
closure R, of R as an inductive type, generated by three constructors:

extend: 1_[ XRy — xR,y
X%y X

refl : 1_[ XR..x;
x:X

trans 1_[ XRyy — YRz — xRyz.
x,y,2:.X

But R, is not necessarily proposition-valued, even though R is. This is because we might add a
pair (x, y) to R, in more than one way, for example, once by an instance of extend and once by an
instance of trans. Thus, we are led to the following definition.

Definition 35 (refl_trans_clos,refl_trans_clos_hrel). LetR: X — X — Q2 be a relation
on a type X. We define the reflexive transitive closure R* of R by xR*y = HxR* y{ , where R, is as
above.

It is not hard to show that R* is the least reflexive and transitive proposition-valued relation that
extends R, so R* satisfies the appropriate universal property (refl_trans_clos_univprop).
Some properties of > reflect onto >* as the following lemma shows.

Lemma 36. Let v, 1, s, and t be PCF terms of type . If v’ o* r, then

(1) succr' *succr;
(2) predr >* predr;
(3) ifzstr' v*ifzstr.

Moreover, if f and g are PCF terms of type o = t and f o* g, then ft »* gt for any PCF term t of
typeo.

Proof (succ_refltrans_smallstep, pred_refltrans_smallstep, ifz_refltrans_
smallstep, app_refltrans_smallstep). We only prove (1) the rest is similar. Suppose
' >* 1. Since succ v’ »* succ r is a proposition, we may assume that we actually have a term p of
type r’ >, r’. Now we can perform induction on p. The cases were p is formed using refl or trans
are easy. If p is formed by extend, then we get a term of type r> ' = ||r57||. Again, as we are
proving a proposition, we may suppose the existence of a term of type r5r'. By Definition 33, we
then get succ »'& succ r. This in turn yields, succ 7’ > succ r and finally we use extend to get the
desired succ v’ =* succ r. O

6. The Scott Model of PCF Using the Lifting Monad

Next, we wish to give a denotational semantics for PCE namely the Scott model, as explained in
Definition 1.1.2. We recall that the idea is to assign some mathematical structure to each PCF type.
The PCF terms are then interpreted as elements of the structure.

https://doi.org/10.1017/5S0960129521000153 Published online by Cambridge University Press


https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.MoreFoundations.ClosureOfHrel.html#refl_trans_clos
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.MoreFoundations.ClosureOfHrel.html#refl_trans_clos_hrel
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.MoreFoundations.ClosureOfHrel.html#refl_trans_clos_univprop
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Partiality.PCF.html#succ_refltrans_smallstep
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Partiality.PCF.html#pred_refltrans_smallstep
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Partiality.PCF.html#ifz_refltrans_
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Partiality.PCF.html#smallstep
https://tomdjong.github.io/Scott-PCF-UniMath/UniMath.Partiality.PCF.html#app_refltrans_smallstep
https://doi.org/10.1017/S0960129521000153

Mathematical Structures in Computer Science 1285

Definition 37 (denotational_semantics_type). Inductively assign to each PCF type o a dcpo
with L as follows:

(1) [ =2 (N);
) o = 7] =[]l

Recall that if D and E are dcpos with L, then EP is the dcpo with 1 of dcpo morphisms from D to E,
with pointwise ordering and pointwise least upper bounds.

Next, we interpret PCF terms as elements of these dcpos with _L, for which we will need that
Z is a monad (with unit ) and (in particular) a functor (recall Theorem 24 and Remark 28).

Definition 38 (denotational_semantics_terms). Define for each PCF term t of PCF type o a
term [t] of type [o], by the following inductive clauses:

(1) [zero] = n(0);
(2) [succ] :=.Z (s), wheres: N — N is the successor function;
(3) [pred] :=-Z (p), where p: N — N is the predecessor function;

(4) [ifz] : [t = ¢ = = (] is defined using the Kleisli extension as: )»x,y.(xx,y)#, where

x ifn=0;

Ty (1) 3= vy else

(5) [K] = Ax, y.x;
(6) [s] :=Af, g x.(f(x)(gx));
(7) [fix] :== w, where . is the least fixed point operator from Theorem 16.

Remark 39. Of course, there are some things to be proved here. Namely, [succ], [pred], . . ., [fix]
all need to be dcpo morphisms. In the case of [succ] and [pred], we simply appeal to Theorem 27
and Remark 28. For [fix], this is Theorem 16. The continuity of [k], [s], and [ifz] can be
verified directly, as done in the formalization (k_dcpo, s_dcpo, 1lifted_ifz). It is, however,
unenlightning and tedious, so we omit the details here.

As a first result about our denotational semantics, we show that the PCF numerals have a
canonical interpretation in the denotational semantics.

Proposition 40. For every natural number n, we have [n] = n(n).

Proof (denotational_semantics_numerals). We proceed by induction on n. The n =0 case
is by definition of [0]. Suppose [m] = n(m) for a natural number m. Then,

[m + 1] = [succ]([m])
=2 (s)(n(m)) (by induction hypothesis)
=n(m+1) (by definition of the lift functor),
as desired. O

7. Soundness and Computational Adequacy

In this section, we show that the denotational semantics and the operational semantics defined
above are “in sync,” as expressed by soundness and computational adequacy (cf. Section 1.1.2).
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Theorem 41 (Soundness). Let s and t be any PCF terms of PCF type o. If s>* t, then [s] = [t].

Proof (soundness). Since the carriers of dcpos are defined to be sets, the type [s] =[¢] is a
proposition. Therefore, we can use induction on the derivation of s >* t. We use the Kleisli monad
laws in proving some of the cases. For example, one step is to prove that

[ifzstn+1] =[1].

This may be proved by the following chain of equalities:

lifzstn+ 1] = [ifzs t]([n +1])
=[ifzst](n(n+1))  (by Proposition 40)
= (X))  ((n +1))  (by definition of [ifz])
= X[ (n+ 1 (by Theorem 24)
= [t- O

Ideally, we would like a converse to soundness. However, this is not possible, as for
example, [kzero] = [k (succ(predzero))], but neither kzerows*k (succ(predzero)) nor
k (succ ( pred zero)) =* k zero holds. We do, however, have the following.

Theorem 42 (Computational adequacy). Let t be a PCF term of PCF type t. Then,

[T o value (D).

pisdefined ([])

Equivalently, for every n : N, it holds that [t] = [n] implies t >* n.
We do not prove computational adequacy directly, as, unlike soundness, it does not allow for
a straightforward proof by induction. Instead, we use the standard technique of logical relations

(Streicher 2006, Chapter 7) and obtain the result as a direct corollary of Lemma 49.

Definition 43 (adequacy_relation). For every PCF type o, define a relation
R, : PCF terms of type 0 — o] — Q

by induction on o:

(1) tRd =[] piisdefined ) £ > Value (d)(p);
(2) SRfépf = Ht:PCF terms of type T nd:[[r]] (tRTd - StR,Of(d))'

We sometimes omit the type subscript o in Ry.

Lemma 44. Let s and t be PCF terms of type o and let d be an element of [o]. If s>* t and tR,d,
then sR,d.

Proof (adequacy_step). By induction on o, making use of the last part of Lemma 36. O
Lemma 45. For t equal to zero, succ, pred, ifz, k or s, we have tR[t].

Proof (adequacy_zero, adequacy_succ, adequacy_pred, adequacy_ifz, adequacy_k,
adequacy_s). By the previous lemma and Lemma 36. O
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Next, we wish to extend the previous lemma the case where t = fix, for any PCF type o. This
is slightly more complicated and we need two intermediate lemmas. Only the second requires a
nontrivial proof.

Lemma 46. Let o be a PCF type and let L be the least element of [o]. Then, tRy_L for any PCF
termt of type .

Proof (adequacy_bottom). By induction on o. For the base type, this holds vacuously. For
function types, it follows by induction hypothesis and the pointwise ordering. O

Lemma 47. The logical relation is closed under directed suprema. That is, for every PCF term t of
type o and every directed family d : 1 — [o], if tR,d; for everyi: I, then tRy |_|;.; d;.

Proof (adequacy_lubs). This proof is somewhat different from the classical proof, so we spell
out the details. We prove the lemma by induction on 0.

The case when o is a function type is easy, because least upper bounds are calculated pointwise
and so it reduces to an application of the induction hypothesis. We concentrate on the case when
o = instead.

Recall that | |;.; d; is given by (|| > ;. isdefined (d;)

, <p), where ¢ is the factorization of

> isdefined (d;) > £ (N), (i, ps) — value (d;)(p;)

il

through || > ;risdefined (d;) ||
We are tasked with proving that t* ¢(p) for every p : isdefined(|_|;.; ;). So assume that p:

H > ;risdefined (d;) ” . Since we are trying to prove a proposition (as >* is proposition-valued), we
may actually assume that we have (j, pj) : ) ,.; isdefined (d;). By definition of ¢, we have: p(p) =
value (d;)(p;) and by assumption we know that ¢ >* value (d;)(p;), so we are done. O

Lemma 48. For every PCF type o, we have fiXe R =0)=0 [fiXs].

Proof (adequacy_fixp). Let t be a PCF term of type 0 = o and let f : [0 = o] such that
Ry =0 f. We are to prove that fix Ry 1(f).

By definition of i and the previous lemma, it suffices to prove that fix tR, f"(L) where L is the
least element of [o] for every natural number n. We do so by induction on #.

The base case is an application of Lemma 46.

Now suppose that fix R, f™(L). Then, using tRy—f, we find: t(fix )R f(f™(L)). Hence, by
Lemma 44, we obtain the desired fix tR, f™+1(_L), completing our proof by induction. O

Lemma 49 (Fundamental Theorem). For every PCF term t of type o, we have tR [t].
Proof (adequacy_allterms). The proof is by induction on t. The base cases are taken care of
by Lemma 45 and the previous lemma. For the inductive step, suppose ¢ is a PCF term of type

o = 7. By induction hypothesis, tsR; [ts] for every PCF term s of type o, but [ts] = [¢][s], so we
are done. O

Computational adequacy is now a direct corollary of Lemma 49.

Proof of computational adequacy (adequacy, adequacy_alt, alt_adequacy). Take o to be the
base type ¢ in Lemma 49. O
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Using computational adequacy to compute. An interesting use of computational adequacy is that it
allows one to argue semantically to obtain results about termination (i.e. reduction to a numeral)
in PCF. Classically, every PCF program of type ¢ either terminates or it does not. From a construc-
tive point of view, we wait for a program to terminate, with no a priori knowledge of termination.
The waiting could be indefinite. Less naively, we could limit the number of computation steps to
avoid indefinite waiting, with an obvious shortcoming: how many steps are enough? Instead, one
could use computational adequacy to compute as follows.

Let o be a PCF type. A functional of type o is an element of [o']. By induction on PCF types, we
define when a functional is said to be total:

(1) afunctional i of type ¢ is total if i = [1n] for some natural number #;
(2) afunctional f of type o = T is total if it maps total functionals to total functionals, viz. f(d)
is a total functional of type 7 for every total functional d of type o.

Now, let s be a PCF term of type o1 = 02 = - - - = 0, = (. If we can prove that [s] is total,
then computational adequacy lets us conclude that for all total inputs [t1] : [o1], - - ., [t4] : [on],
the term s(¢1, . . . , t,) reduces to the numeral representing [s]([#1], . . . , [£x]))- Thus, the semantic
proof of totality plays the role of “enough steps.” Of course, this still requires us to prove that [s] is
total, which may be challenging. But the point is that we can use domain-theoretic arguments to
prove this about the denotation [s], whereas in a direct proof of termination we would only have
the operational semantics available for our argument.

8. Semidecidable Propositions and PCF Terms of Base Type

In this section, we characterize those propositions that arise from the PCF interpretation, in the
following sense. Every PCF term t of base type ¢ gives rise to a proposition via the Scott model,
namely isdefined ([t]). We wish to show that such propositions are semidecidable, which we
define now. For ease of notation, we write 3 for the propositional truncation of X.

Definition 50. A proposition Q is semidecidable if it is equivalent to 3.\ - - - I .NP(n1, . . .5 1)
where k is some natural number and P:NK— Q is a proposition-valued family such that
P(my, ..., my) is decidable for every (my, . .., my) NE,

We will prove our goal that isdefined ([t]) is semidecidable by showing that it is logically equiv-
alent to 3,.yJgn t =X 1 and by proving that t >k 1 is decidable. Here t X n says that t reduces to n
in at most k steps. A first step toward this is the following, which is a consequence of soundness
and computational adequacy.

Lemma 51. Let t be a PCF term of type 1. We have the following logical equivalences:

th*ﬂ

n:N

isdefined ([f]) «— Y to*n «—
n:N

Proof (char_pcf_propositions). We start by proving the first logical equivalence. The second
then follows from the fact that isdefined ([¢]) is a proposition. Suppose p is of type isdefined ([t]).
By computational adequacy, we find that ¢ >* value ([¢])(p), so we are done.

Conversely, suppose that we are given a natural number n such that ¢ >* n. Soundness and
Proposition 40 then yield [t] = n(n). Now «: isdefined (n(n)), so we may transport along the
equality to get an element of isdefined ([¢]). O
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In order to characterize the propositions arising from PCF terms of base type as semidecidable,
we wish to prove that ¢ >* n is semidecidable for every PCF term t of type ¢ and natural number #.
We do so by proving some more general results, which we present in Sections 8.1 and 8.2. Here,
we outline our general strategy and highlight the main theorems and their applications to the
problem at hand.

Given any (proposition-valued) relation R on a type X, we can define the k-step reflexive tran-
sitive closure R of R and prove that xR*y if and only if 35.yxR¥y. Thus, we obtain the following
(intermediate) result.

Lemma 52. For every PCF term t of type t, we have

isdefined([[tﬂ) < FunTint >F 1.

Proof (char_pcf_propositions’). This follows from Lemmas 51 and 57. O

Thus, to prove that s>* ¢ is semidecidable, it suffices to show that s >k ¢ is decidable for every
natural number k. To this end, we prove the following in Section 8.1.

Theorem (Theorem 61). Let R be relation on a type X. If

(1) X has decidable equality;
(2) R is single-valued;
(3) Zy:x xRy is decidable for every x : X;

then, the k-step reflexive transitive closure R* of R is decidable for every natural number k.

Thus, s>* ¢ is decidable if it satisfies the Assumptions (1)-(3). Assumptions (2) and (3) can be
verified by inspection of the small-step operational semantics once (1) has been proved.

Hence, we are to prove that the type of PCF terms has decidable equality. This can be done
fairly directly by induction (as pointed out by one of the anonymous referees). However, we take
it as an opportunity to study (in Section 8.2) a more general and powerful result on indexed W-
types (see Theorem 73), which is interesting in its own right. For now, we take it as proved that
the PCF terms have decidable equality and continue our study of propositions coming from PCF
terms at the base type.

Theorem 53. The propositions that arise from PCF terms t of type  are all semidecidable, as
witnessed by the following logical equivalence:

isdefined ([t]) «— J:nTkn t>Fn

and the decidability of t >* n.

Given this theorem, it is natural to ask whether we can construct the Scott model of PCF
using a restricted version of the lifting monad. Write Q244 for the type of propositions that are
semidecidable. Theorem 53 says that the map

PCF terms of type t — Q
t > isdefined([1])

factors through Q4. Thus, could we also have constructed the Scott model of PCF using the
restricted lifting %4 (X) =) POy (P— X)?
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Of course, .%q (X) is not a dcpo, because, recalling our construction of suprema in .Z (X),
given a directed family u : I — %4 (X), the proposition | }";.; isdefined(u;)|| need not be semide-
cidable. However, one might think that %4 (X) still has suprema of N-indexed directed families
(which would suffice for the Scott model), but proving this requires an instance of the axiom of
countable choice, cf. Knapp (2018, Theorem 5.34) and Escardé and Knapp (2017, Theorem 5).
Moreover, .%q is a monad if and if only a particular choice principle (which is implied by count-
able choice) holds, see Escard6 and Knapp (2017, Theorem 3) and Knapp (2018, Section 5.8). In
fact, this choice principle is the one discussed in Section 1.3; Knapp (2018, Theorem 5.28) proves
that if X is a set then %4 (X) is equivalent to the quotiented delay monad.

Again, as pointed out in Section 1.3, the problem is that this choice principle cannot be proved
in constructive univalent type theory.

8.1 Decidability of the k-step reflexive transitive closure of a relation

In this section, we provide sufficient conditions on a relation for its k-step reflexive transitive
closure to be decidable. The purpose of this section is to prove Theorem 61, whose use we have
explained above.

Definition 54 (hrel). A relation on X is a term of type X — X — Q.

Definition 55 (refltransclos_step, refltransclos_step_hrel). Let R be a relation on a
type X. We wish to define the k-step reflexive transitive closure of R. As in Definition 35, we want this
to be proposition-valued again. Therefore, we proceed as follows. For any natural number k, define
xRyy by induction on k:

(1) xRyy =x=1y;
(2) xRgy12 = Zy:X XRy X yRyz.

The k-step reflexive transitive closure R* of R is now defined as the relation on X given by
xRky = ||xRyy|l.

We wish to prove that xR*y if and only if ” Y kN kayH. The following lemma is the first step
toward that.

Lemma 56. Let R be a relation on X. Recall the untruncated reflexive transitive closure Ry from
Definition 35. We have a logical equivalence for every x, y in X:

XRyy <— Z XRyy.
k:N

Proof (stepleftequiv, left_regular_equiv). Define xR’y inductively by:

refl’: 1_[ xR x;
x:X

left : l_[ xRy — yR'z — xRz
xyz:X

It is not hard to verify that R’ is reflexive, transitive, and that it extends R. Using this, one shows
that xR'y and xR,y are logically equivalent for every x, y : X. Now one easily proves [ [;.y (xRky —
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xR'y) by induction on k. This yields (3_. XRky) — xR'y. The converse is also easily established.
Thus, xR’y and ) .\ xRy are logically equivalent, finishing the proof. O

The next lemma extends the previous one to the propositional truncations.

Lemma 57. Let R be a relation on X. For every x, y : X, we have a logical equivalence:

Z kay

kN

xRy «—

Proof (stepleftequiv_hrel, left_regular_equiv). Let x and y be in X. By the previous
lemma and functoriality of propositional truncation, we have

Z xRiy

k:N

xR*y = || xRyy|| «—

But the latter is equivalent to |} .\ [*Rey|]| = H D kN kayH by The Univalent Foundations

Program (2013, Theorem 7.3.9). This may also be proved directly, as done in the formaliza-
tion. O

Definition 58 (is_singlevalued). A relation R on X is said to be single-valued if for every x, y, z :
X with xRy and xRz we have y = z.

Definition 59 (isdecidable_hrel). A relation R on X is said to be decidable if the type xRy is
decidable for every x and y in X.

Lemma 60. Let X be a type. If X is decidable, then so is || X]||.

Proof (decidable_ishinh). Suppose that X is decidable. Then there are two cases to consider.
Either we have x : X or —X. If we have x : X, then obviously we have |x| : || X]|.

So suppose that =X. We claim that —||X||. Assuming || X]|, we must find a term of type 0. But
0 is a proposition, so we may actually assume that we have x : X. Using =X, we then obtain 0, as
desired. I

Theorem 61. Let R be relation on a type X. If

(1) X has decidable equality;
(2) R is single-valued;
(3) Zy:x xRy is decidable for every x : X;

then, the k-step reflexive transitive closure R* of R is decidable for every natural number k.

Proof (decidable_step). Suppose X and R satisfy conditions (1)-(3). By Lemma 60, it suffices
to prove that the untruncated version of R, that is Ry, is decidable by induction on k.

For the base case, let x and y be elements of X. We need to decide xRgy. By definition, this
means deciding x = y, which we can, since X is assumed to have decidable equality.

Now suppose x and z are elements of X and that aRyb is decidable for every a, b: X. We need
to show that xRy 1z is decidable. By definition this means that we must prove
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Z xRy X yRyz (%)
y:X

to be decidable. By (3), we can decide }_ . xRy. Obviously, if we have =3y xRy, then —(x).
So assume that we have y: X such that xRy. By induction hypothesis, yRyz is decidable. If we
have yRyz, then we get (x). So suppose that =yRyz. We claim that —(x). For suppose (x), then we
obtain ' : X with xRy’ and y'Riz. But R is single-valued, so y =y’ and hence, yRiz, contradicting
our assumption. O

8.2 Decidable equality and indexed W-types

We wish to prove that a certain class of indexed W-types has decidable equality. Indexed W-
types are a generalization of W-types that allows for many-sorted terms. One may consult (The
Univalent Foundations Program 2013, Section 5.3) for an explanation of regular W-types. The
PCF terms form a natural example of an indexed W-type, where the sorts will be the formal types
of PCF terms. We apply the general result for indexed W-types to see that the PCF terms have
decidable equality.

8.2.1 PCF terms as an indexed W-type
In this section, we explain what indexed W-types are and how PCF terms can encoded as such an
indexed W-type.

Definition 62 (indexedWtype). Let A and I be types and let B be a type family over A. Suppose we
havet:A — Iands: (3,4 B(a)) — I. Theindexed W-type Wy, specified by s and ¢ is the inductive
type family over I generated by the following constructor:

indexedsup : [ | (B(a) —> Ws(s(a, b)) — Wq(t(a)).
a:A

We have the following induction principle for indexed W-types. If E: ];.;(Ws(i) > %), then
to prove [ [Tww,, ) EG> w), it suffices to show that for any a:A and f :[]y.p.) Wss(s(a, b))
satisfying E(s(a, b), f(b)) for every b:B(a) (the induction hypothesis), we have a term of type
E(t(a), indexedsup(a, f)).

Just as with regular W-types, we can think of indexed W-types as encoding a particular class of
inductive types. In this interpretation, A encodes the constructors of the inductive type, whereas
B encodes the arity of each constructor. However, each constructor has a “sort” given by t(a) : I.
Given a constructor a : A and a label of an argument b : B(a), the sort of this argument is given by

s(a, b).

Example 63. In this example, we show that a fragment of the PCF terms can be encoded as an
indexed W-type. One could extend the encoding to capture all PCF terms, but we do not spell out
the tedious details here, as a fragment suffices to get the idea across.

The type family T is inductively defined as:

(1) zeroisaterm of type (;

(2) succisa term of type t = ¢;
(3) for every PCF type o and 7, we have a term app,, , of type (0 = 1) =0 = 7.
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We can encode T as an indexed W-type. Let us write 2 for 1+ 1 and 0, and 1, for its elements.
Take I to be the type of PCF types and put A :==2 + (I x I). Define B: A — % by

B(inl(02)) =B(inl(12)):=0 and B(inr(o, 1)) :=2.
Finally, define ¢ by
t(inl (02)) =« t(inl(12)):=t= and t(inr(o,7))=T1;
and s by
sCinr(o,1),00) =0 = 1; and s(inr(o,1),17) =0;

on the other elements s is defined as the unique function from 0.
One can check that given a PCF type o : I, there is a type equivalence T(o) >~ W (o).

8.2.2 Indexed W-types with decidable equality

We wish to isolate some conditions on the parameters of an indexed W-type that are sufficient to
conclude that an indexed W-type has decidable equality. We first need a few definitions before we
can state the theorem.

Definition 64 (WeaklyCompactTypes in Escarddé 2019, picompact). A type X is called
[T-compact when every type family Y over X satisfies: if Y(x) is decidable for every x : X, then so
is the dependent product [ [,. Y(x).

Example 65 (picompact_empty, picompact_unit). The empty type 0 is vacuously IT-compact.
The unit type 1 is also easily seen to be IT-compact. There are also interesting examples of infinite
types that are IT-compact, such as N, the one-point compactification of the natural numbers
(Escard6 2019, WeaklyCompactTypes).

We are now in position to state the general theorem about decidable equality on indexed W-
types.
Theorem 66. Let A and I be types and B a type family over A. Suppose t:A — I and
s: (X pu B(@)) = L If A has decidable equality, B(a) is I1-compact for every a: A and I is a set,
then W, (i) has decidable equality for everyi: I.

The proof of Theorem 66 is quite technical, so we postpone it until Section 8.2.4. Instead, we
next describe how to apply the theorem to prove that the PCF terms have decidable equality.

8.2.3 PCF terms have decidable equality
In this section, we show that the PCF terms have decidable equality by applying Theorem 66.
Before we proceed, we record some useful lemmas.

Lemma 67. Let X and Y be logically equivalent types. The type X is decidable if and only if Y is
decidable.

Proof (decidable_iff). Straightforward. O

Definition 68. A type X is called a retract of a type Y if there are maps s : X — Y (the section) and
r:Y — X (the retraction) such that [ ] . r(s(x)) = x.
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Lemma 69. Let X be a retract of Y. If Y has decidable equality, then so does X.

Proof (isdeceq_retract). Letr:Y — X and s: X — Y be respectively the retraction and sec-
tion establishing X as a retract of Y. Let a, b: X. Since Y has decidable equality, we can consider
two cases: r(a) = r(b) and r(a) # r(b). In the first case, we find a = s(r(a)) = s(r(b)) = b. In the
second case, we immediately see that a # b. This finishes the proof. O

Lemma 70. The I1-compact types are closed under binary coproducts.

Proof (picompact_coprod). Let X and Y be IT-compact types. Suppose F is a type family over
X + Y such that F(z) is decidable for every z : X 4+ Y. We must show that [ [ .y 1y F(z) is decidable.

Define Fx:X — % by Fx(x) =F(inl(x)) and Fy:Y — % as Fy(y) :=F(inr (y)). By our
assumption on F, the types Fx(x) and Fy(y) are decidable for every x: X and y : Y. Hence, since
X and Y are assumed to be IT-compact, the dependent products [],.y Fx(x) and ]_[y:Y Fy(y) are

decidable.
Finally, [ ],.x,y F(2) is logically equivalent to [],.x Fx(x) x ]_[y:Y Fy (). Since the product of
two decidable types is again decidable, an application of Lemma 67 now finishes the proof. O

Finally, let us see how to apply Theorem 66 to see that the PCF terms have decidable equality.
Theorem 71. The PCF terms have decidable equality.

Proof. As with Example 63, we only spell out the details for the fragment T. Recall that T may
be encoded as a W-type, indexed by the PCF types. Using Example 65 and Lemma 70, we see that
B(a) is I1-compact for every a: A. Note that A has decidable equality if I does. So it remains to
prove that I, the type of PCF types, has decidable equality.

This will be another application of Theorem 66. Define A’ :=2 and define B': A’ — % by
B'(inl(%)):=0 and B'(inr(x)):=2. Let ¢ and s’ be the unique functions to 1 from A’ and
Y ar B'(x), respectively. One quickly verifies that the type of PCF types is a retract of Wy (% ).
Observe that B'(x) is [T-compact for every x : A" because of Example 65 and Lemma 70. Finally,
1 and A’ =2 clearly have decidable equality, so by Theorem 66 the type Wy »( x ) has decidable
equality. Thus, by Lemma 69, so do the PCF types. O

8.2.4 Proof of Theorem 66
In this section, we prove Theorem 66 by deriving it as a corollary of another result, namely
Theorem 73 below. This result seems to have been first established by Jasper Hugunin, who
reported on it in a post on the Homotopy Type Theory mailing list (Hugunin 2017a). Our
proof of Theorem 73 is a simplified written-up account of Hugunin’s Coq code (Hugunin 20175,
FiberProperties.v).

Definition 72 (Definition 2.4.2 in The Univalent Foundations Program 2013, hfiber). Let
f:X — Y beamap. The fiber of f over a point y : Y is

fibr(y) =) (F(x) =y).

x:X
Theorem 73 Jasper Hugunin. Let A and I be types and B a type family over A. Suppose t : A — I

and s: (3,4 B(a)) — I. If B(a) is I1-compact for every a: A and the fiber of t over i has decidable
equality for every i: I, then W ;(i) also has decidable equality for everyi: I.

Let us see how to obtain Theorem 66 from Theorem 73.
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Proof of Theorem 66 (using Theorem 73) (indexedWtype_deceq’). Suppose that A has decidable
equality and I is a set. We are to show that the fiber of ¢ over i has decidable equality for every
i:1. Let i: I be arbitrary. Suppose we have (a, p) and (@/,p’) in the fiber of ¢ over i. Since A has
decidable equality, we can decide whether a and a’ are equal or not. If they are not, then certainly
(a,p) # (a',p). If they are, then we claim that the dependent pairs (a, p) and (', p’) are also equal.
Ife:a=d'is the supposed equality, then it suffices to show that transpo rtreAH)=i (e,p) =p', but
both these terms are paths in I and I is a set, so they must be equal. O

We now embark on a proof of Theorem 73. For the remainder of this section, let us fix types A
and I, a type family B over A and maps t: A — I and s: (}_,.4 B(a)) — L

We do not prove the theorem directly. The statement makes it impossible to assume two ele-
ments u, v: W;,(i) and proceed by induction on both u and v. Instead, we will state and prove
a more general result that is amenable to a proof by induction. But first, we need more general
lemmas and some definitions.

Lemma 74. Let X be a type and let Y be a type family over it. If X is a set, then the right pair function
is injective, in the following sense: if (x, y) = (x, y') as terms of Y .y Y(a), then y =/

Proof (dec_depeq). Suppose X is a set, x: X and y,7: Y(x) with e: (x, y) = (x, ). From e, we
obtain e; : x = x and e, : transport” (e1,y) =y'. Since X is a set, we must have that e; = refly, so
that from e, we obtain a term of type y = transport? (refl,, y) =, as desired. O

Definition 75 (subtrees). For eachi: I, define
subi:Woi(i) > > [ WeelsCpra (p), b))
p:fibs(i) b:B(pr1 (p))
by induction:
suby(g)(indexedsup(a, f)) = ((a, reflyq)), f).
For notational convenience, we will omit the subscript of sub.
Lemma76. Leta:Aandf,g:[[;.p) Wse(s(a, b)). If the fiber of t over i has decidable equality for
everyi:I, then indexedsup(a, f) = indexedsup(a, g) implies f = g.
Proof (subtrees_eq). Suppose indexesup(a, f) = indexedsup(a, g). Then
((a, reflya)), f) = sub(indexedsup(a, f)) = sub(indexedsup(a, )) = ((a, reflya) ), g).-
As fiby(i) is decidable, it is a set by Hedberg’s Theorem (The Univalent Foundations Program 2013,
Theorem 7.2.5). Therefore, f = g by Lemma 74. O
Definition 77 (getfib). For everyi: I, define a function getfib; : W, (i) — fib;(i) inductively by
getfib,, (indexedsup(a, f)) = (a, refly()).

In future use, we omit the subscript of getfib.

Lemma 78. Leti,j: I withapathp:i=jand w:Ws:(i). We have the following equality:
getfib( transportWS’f (p, w)) = (pr1 (getfib(w)), pra (getfib(w)) e p).

Proof (getfib_transport). By path induction on p. O

We are now in position to state and prove the lemma from which Theorem 73 follows.
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Lemma 79. Suppose that B(a) is TI-compact for every a: A and that the fiber of t over each i : I has
decidable equality. For any i: I, u:Ws(i), j: I, path p 1 i=j and v : W,(j), the type

transporth'f (p,u)y=v
is decidable.

Proof (indexedWtype_deceq_transport). Supposei:]and u:W,,(i). We proceed by induc-
tion on u and so we assume that u = indexedsup(a, f). The induction hypothesis reads

[TTI IT1 ] (transport™s: (o', f(b))="+')is decidable. ()

b:B(a) j':I p':s(a,b)=j v:Ws(j")

Suppose we have j: I with path p: t(a) =j and v: W,(j). By induction, we may assume that v=
indexedsup(d’, f'). We are tasked to show that

transport”st (p, indexedsup(a, f)) = indexedsup(a’, ') (1)

is decidable, where p : t(a) = t(a').

By assumption the fiber of t over f(a’) has decidable equality. Hence, we can decide if
(', reflyw)) and (a, p) are equal or not. Suppose first that the pairs are not equal. We claim that in
this case —(t). For suppose we had e: (1), then

apgetﬁb(e) : getfib( transportWS)f (p, indexedsup(a, f))) = getfib(indexedsup(a’, f)).

By definition, the right-hand side is (@', refl;,). By Lemma 78, the left-hand side is equal to
(a, refly,) @ p) which is in turn equal to (g, p), contradicting our assumption that (a/ , reflt(ar)) and
(a, p) were not equal.

Now suppose that (d/,reflyy)) =(a,p). From this, we obtain paths e;:a’=a and

th:A.t(x):t(a’) (

e; : transpor e1, reflya)) = p. By path induction, we may assume e; = refly, so that

from e, we obtain a path:

o :reflyyy =p.
Using this path, we see that the left-hand side of () is equal to indexedsup(d’, f), so we are left to
show that
indexedsup(d’, f) = indexedsup(d’, ")
is decidable.

By induction hypothesis (x) and the fact that a = a’, the type f(b) = f'(b) is decidable for every
b: B(a’). Since B(d') is [T-compact, this implies that ]_[b:B(a,)f(b) =f'(b) is decidable.

Suppose first that [, f(b) =f'(b). Function extensionality then yields f =f", so that
indexedsup(d’, f) = indexedsup(d’, f).

On the other hand, suppose = [ [},.5(y) f(b) = f'(b). We claim that then, indexedsup(a’, f) can-

not be equal to indexedsup(d/, f'). For suppose that indexedsup(a/, f) = indexedsup(d’, f'). Then
Lemma 76 yields f =f’, contradicting our assumption that =[]}, g, f(b) =f'(b), and finishing
the proof. O

Proof of Theorem 73 (indexedWtype_deceq). Leti:Iandu, v:W,(i). Takingj:=iandp :=refl;
in Lemma 79, we see that u = v is decidable, as desired. O

9. Size Matters

In this penultimate section, we explain some of the subtleties regarding dcpos and universe lev-
els. In particular, we revisit the dcpo of continuous functions while rigorously keeping track of
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universe levels. In the end, our analysis shows that, even in the absence of propositional resizing,
the interpretation function [—] of the Scott model is well defined (Theorem 80). (For more on
predicative domain theory, the reader may wish to consult our recent work de Jong and Escardd
2021a,b.)

As mentioned in the introduction, our results are formalized in Agda (Escardé 2019,
PCFModules).

To study universe levels, let us suppose that we have a tower of type universes % : 2% : . . .,
indexed by meta natural numbers. (In the end, it will turn out that having just two universes
U : 2 is sufficient for our purposes.) Let us fix some notation for (raising) universe levels. We
write ?/i"' for %11 and % U %; for Unax (ij)- The universes are assumed to be closed under +-,
¥-and M-typesand if X: % and Y : X — ¥, then ) . Y(x), [ [,.x Y(x) : Z U /. Finally, since
U U, wehave ) v YX): YT UV IY U —> V.

9.1 The lifting

In Section 1.2, we introduced 2 as the type of propositions in the universe %4. To see why we
made this particular choice of type universe and to appreciate the considerations involved, it is
helpful to consider a more general situation. Let us write Q2 & for the propositions in some type
universe .7 . Define the (generalized) lifting ¥ 7 (X) of atype Xisas £ 7 (X) =) p.. (P — X).

Now observe that if X is a type in a universe %/, then lifting (potentially) raises the universe
level, as .Z 7 (X) is a type in universe .7+ LI % . However, if X happens to be a type in .7, then
£ 7 (X) also lives in 7. Moreover, repeated applications of .# do not raise the universe level
any further, because if X is in .7 U %, then . & (X) is as well. Despite the fact that lifting raises
the universe level, one can write down the monad laws for . & and they typecheck.

Let X and I be types in universes % and ¥, respectively. Suppose that u: I - Z 7 (X). Note
that ) .., isdefined (1;) is in " L1.7. When considering .Z & (X) as a dcpo (cf. Theorem 26), we
want )., isdefined (u;) to be in .7 again. One way to ensure this, is to take 7" to be %. This
would make .Z 7 (X) a %-dcpo. Indeed, this is what we prove in the Agda formalization. In
particular, this means that . # (X) has N-indexed directed suprema, which suffices for the Scott
model of PCF.

9.2 The dcpo of continuous functions
In fact, we should be even more precise when it comes universe levels and dcpos than we have been
so far. Write #-(DCPO )4 4 for the type of % -directed complete posets with a least element
whose underlying type is in % and whose underlying order takes values in ¥'.

Then £, (N) = £ (N) is of type %-(DCPO_1 ), %, for example. (One easily checks that the
order C from Theorem 26 has values in %.)

Recall that [o = t] =[r] [ the dcpo with L of continuous functions from [o] to [z], so let
us investigate the universe levels surrounding the exponential. In general, we have

if2:#-(DCPO1)g v and & : #-(DCPO )1 4+,

, (1)
then &7 : W -(DCPO V) y+uyiywavaw, oy

We explain the universe levels involved as follows.

Let 2 be of type #'-(DCPO_ )4 4 and write D and <g for its underlying type and order,
respectively. Further, let & be of type #'-(DCPO_ )4 4+ and write E and < for its underlying
type and order, respectively.

The underlying type of the exponential & is the type of functions from D to E that are con-
tinuous. The underlying order is the pointwise order: if f and g are continuous functions from D
to E, then f <co gif [ [.p f(x) <g g(x).
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Because D is in % and <, takes values in ¥, we see that <2 takes valuesin 77 L 7.

Furthermore, the type of functions from D to E is in % U %’. But the type of continuous func-
tions also mentions <g and <, and all directed families indexed by a type in . In particular,
the latter means that the definition of the type of continuous functions contains [ [}.,,-. Therefore
the type of continuous functionsisin # T U Y U ¥ LU LU’ .

9.3 The Scott model of PCF
Given the increasing universe levels in (1), one might ask if there can be universes %, ¥, # such

that
[—] : PCF types — % -(DCPO 1)y
typechecks.
As we mentioned, .Z#, (N) = .2 (N) : %-(DCPO_ )4, . Since, [i] = £ (N), one would hope
that

[—] : PCF types — %-(DCPO 1), -
And indeed, this is the case.

Theorem 80. The interpretation function [—] from PCF types to dcpos with L can be typed as:
[—] : PCF types — %-(DCPO 1), -

Proof. 1If, in (1), we take # to be % and %, %', ¥, V" all to be 724, then (1) reads
(=) : %-(DCPO 1) g 2, — U-(DCPO L), 1, — W%-(DCPO L) 1
as desired. O

10. Conclusion and Future Work

Our development confirms that univalent type theory is well adapted to the constructive formal-
ization of domain-theoretic denotational semantics of programming languages like PCE, which
was the original goal of this investigation. Moreover, our development is predicative. In particular,
we have given a predicative version of directed complete posets. Our results show that partiality
in univalent type theory via lifting works well. We rely crucially on Voevodsky’s treatment of
subsingletons as truth values. In particular, the propositional truncation plays a fundamental and
interesting role in this work. Finally, we saw an interesting application of the abstract theory of
indexed W-types in characterizing the propositions that come from PCF terms of the base type.
Regarding the Scott model of PCEF, there are two questions for future research:

(1) Is there a natural extension of the map [] P Qto all PCF types? Can we characterize the
propositions at types other than ¢, for example, the propositions at type ¢ = (? Are they still
semidecidable?

(2) How can we better understand the fact that only semidecidable propositions occur for
the Scott model, but that restricting to such propositions somehow needs a weak form
of countable choice?

In de Jong and Escard¢6 (2021a), we develop domain theory further in predicative and constructive
univalent type theory, including continuous and algebraic dcpos, ideal completions and Scott’s
famous Do,. Complementing this work, the paper (de Jong and Escard6 2021b) explores some
aspects of domain theory that cannot be done predicatively.
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Notes

1 This formulation does not ensure that the type is a proposition, so one could also consider truncating the ¥ or asking
for the least k such that a(k) = 1. But this version is sufficient for our purposes, and logically equivalent to the one with the
truncated X.

2 In fact, there is a type equivalence. One can prove this using univalence and a generalized structure identity principle, cf.
Escard6 (2019, LiftingIdentityViaSIP).
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