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1. Introduction. A group is called metacydic in case both its commutator subgroup
and commutator quotient group are cyclic. Thus a metacyclic group is a cyclic extension
of a cyclic group, and metacyclic groups are among the best understood of the nonabelian
groups. Many interesting groups are metacyclic. For instance, the dihedral groups and the
"odd" dicyclic groups are metacyclic; see [4, pp. 9-11] for more examples. Here we shall
consider the actions of these groups on bordered Klein surfaces.

The real genus p(G) [9] is the minimum algebraic genus of any bordered Klein
surface on which G acts. This parameter is called the "real" genus because of the
correspondence between compact Klein surfaces and real algebraic curves [1]; the
bordered surfaces correspond to curves with real points. The real genus parameter was
introduced in [9], and numerous basic results about the parameter were obtained there.
In particular, the real genus of each dicyclic group was determined. In addition,
McCullough has calculated the real genus of each finite abelian group [12].

There are, of course, other genus parameters for the finite group G. The real genus is
most closely related to the symmetric genus [15]. The symmetric genus o(G) is the
minimum genus of any Riemann surface on which G acts (possibly reversing orientation).
Some basic relationships between the symmetric genus and the real genus are in [9, §5].
The symmetric genus o(M) of each /C-metacyclic group M was determined in [11].

; Here we investigate the problem of calculating the real genus p(M) for each finite
metacyclic group M. We first obtain a good general lower bound for p(M). We then
determine p{M) in the important case where M is /(-metacyclic. We also calculate p{M)
in case M is the direct product of a dihedral group and a cyclic group of odd order. In
addition, we determine the real genus of the nonabelian groups of order pq, where p and
q are distinct odd primes. Finally we calculate p(G) for each group G with order between
16 and 24.

2. Preliminaries. We shall assume that all surfaces are compact. Let A" be a
bordered surface; A' is characterized topologically by the orientability, the number k of
components of the boundary dX and the topological genus p. The surface X can carry a
dianalytic structure [1, p. 46] and be considered a Klein surface or a non-singular
algebraic curve over R. Thus the bordered surface X has an algebraic genus g, which is
given by the following relation:

[2p + k-l if X is orientable
= \

p + k-\ if A'is non-orientable

The algebraic genus appears naturally in bounds for the order of an automorphism group
of a Klein surface ([8] contains the first such example), and the real genus of a group is
defined in terms of the algebraic genus.
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There are general upper and lower bounds for the real genus of a finite group in
terms of its order [9, §§3,4]. A consequence of the lower bound is that for each p >2
there are only finitely many groups of real genus p. The upper bound will be quite helpful
here.

THEOREM A [9]. Let G be a finite group with generators z,,. . . , zr, where o{zt) = m,-.
Then

Group actions on Klein surfaces have often been studied using non-euclidean
crystallographic (NEC) groups; here see [2], an excellent general reference for the work
on Klein surfaces. Let 5£ denote the full group of automorphisms of the open upper
half-plane U. An NEC group is a discrete subgroup T of X (with the quotient space UIT
compact). Associated with the NEC group F is its signature, which has the form

(p ;± ; [A, , . . . ,A,];{(vn, . . . , v,,,),. . . , (v*,, . . . , vfaj}). (2.1)

The quotient space X = V IT is a surface with topological genus p and k holes. The
surface is orientable if the plus sign is used and non-orientable otherwise. The ordinary
periods A,,. . . , A, are the ramification indices of the natural quotient mapping from U to
X in fibers above interior points of X. The link periods v(1,. . . , v .̂ are the ramification
indices in fibers above points on the /th boundary component of X. Associated with the
signature (2.1) is a presentation for the NEC group F. For more information about
signatures, see [7], [14], and [2].

Let F be an NEC group with signature (2.1) and assume k ^ 1 so that the quotient
space U/T is a bordered surface. Then the non-euclidean area ju(F) of a fundamental
region for F can be calculated directly from its signature [14, p. 235]:

^ ) (2-2)

where y is the algebraic genus of the quotient space U/T.
An NEC group K is called a surface group if the quotient map from U to U/K is

unramified. If the quotient space UIK has a non-empty boundary, then K is called a
bordered surface group. Bordered surface groups contain reflections but no other
elements of finite order.

Let I be a bordered Klein surface of algebraic genus g ^ 2 . Then X can be
represented as U/K where A" is a bordered surface group with fi(K) = 2n{g - 1). Let G
be a group of dianalytic automorphisms of the Klein surface X. Then there exists an NEC
group F such that K is a normal subgroup of F and T/K = G.

If A is a subgroup of finite index in F, then [F:A] = ^(A)/JU(F). It follows that the
genus of the surface U/K on which G = T/K acts is given by

g = \ + o{G)-ix(Y)l2jz. (2.3)

Minimizing g is therefore equivalent to minimizing ju(F). The basic approach is to
consider the NEC groups F for which G is a quotient of F by a bordered surface group
and identify the one for which ju(F) is as small as possible.
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Here we shall be particularly interested in metacyclic groups. Each has a certain type
of presentation. Begin with a cyclic group H=(S\Sm = l) of order m, and suppose
gcd(m, r) = 1. Then H has an automorphism S-^Sr. Adjoin to H an element 7 of order n
that transforms H according to this automorphism. This produces a new group G of order
mn, with presentation

Sm = T" = l, T~lST = Sr. (2.4)

These relations will be consistent in case

r" = l(modm). (2.5)

If, in addition,

gcd(r- l , /n) = l, (2.6)

then both G' and GIG' are cyclic. We shall denote the group with presentation (2.4) and
conditions (2.5) and (2.6) by (m,n,r). Each of these groups is metacyclic, and,
conversely, every finite metacyclic group is isomorphic to one of these groups [16]. For
additional details, see [4, pp. 9-11], [6, pp. 146-148], or [5, pp. 166, 167].

3. A lower bound. Here we establish a useful lower bound for the real genus of a
cyclic extension of a cyclic group. The bound will apply, of course, to metacyclic groups.

THEOREM 1. Suppose the group G is an extension of Zn by Zk, &>3, and
p(G)>2. Then

+ n(k-4)/2 if k = 21, I odd
+ n(k-2)/2 otherwise ^ '

Proof. Let G act on a bordered surface X of algebraic genus p = p(G). Then
represent X as U/K where K is a bordered surface group. Obtain an NEC group F with
signature (2.1) and a homomorphism <j>: F—» G onto G such that kernel 4> = K. If z e F,
we write f = #(z). Let y denote the algebraic genus of the quotient space Y = U/F, and
simplify the canonical presentation for F as in [9, §2]. In this simplified presentation,
there must be at least one element with order larger than two, since F/K = G and G is not
generated by involutions. It follows (as in [9]) that

(where / is the number of ordinary periods). Now from (2.3)

which is given by (2.2). Write M = ju(F)/2^; we obtain a lower bound for M. If y > 2 ,
then obviously M ^ 1.

First suppose y = l. If r ^ l , then easily M>\. Assume t = 0. Since Af>0, the
quotient mapping U—> Y must be ramified above dY. In this case, there must be at least
two link periods equal to 2 [3, p. 264], and we have M > 2 • \ = 5.

Now assume y = 0 so that the quotient space Y = UlY is the disc D. Then t > 1 with
at least one ordinary period larger than two. If t > 3, then easily A / s - l + 5 + 2 -3 = 5.
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Suppose next that f = 2 and the quotient mapping U-^D is ramified above 3D. Again
there are at least two link periods equal to 2, and we have M s — 1 + 3 + 5 + 2 . 3 = 3.

Continue to assume y = 0 and t = 2, but now suppose there is no ramification above
3D. Then the group T has signature (0; +; [A,, A2]; {( )}), where we may take A, <A2.
From (2.2)

,-,-l-f
The group T has presentation

xk' = yk? = c2 = [c, e] = xye = 1.

But the only generating reflection c must be in the bordered surface group K, and e is
redundant. Thus the quotient group G = T/K is generated by x, y. Since G is an
extension of Zn by Zk, there is also a homomorphism a:G —> Zk of G onto Z*.

First suppose A, =2. Assume 4 divides A: or A: is odd. In either case, a(x) is a
nongenerator of Zk (possibly the identity) so that o(a(y)) = k and X2 = o(y)^k. Now
M>(k-2)/2k. Next suppose A: = 2/, with / odd. Then o(a(y))>l and A2 = o(y)>/.
Thus

Next suppose A, = 3. If also A2 = 3, then G and its quotient Zk are generated by
elements of order 3. Hence k = 3, and M = 3 > (A: - 2)/2A: = 1/6. If A2 = 4, then k must be
3, 4, 6, or 12. Here k < 12 so that

If A2 = 5, then A;<15 and in the same way (k-2)/2k<M. If A2>A,>4, then
M > 1 — 1 — x — 1

— *- 4 4 — 2-

Finally suppose y = 0 and t = 1. The group T has signature (0; +; [A]; {(C)}), and the
period cycle C is not empty. Thus

M a 1 + 1 + 2 . U _ .
The group T is generated by x, e and some reflections, and

Thus the quotient group G is generated by one element (x) plus some involutions; this
must also be true for Zk. Suppose A: is a multiple of 4. Then in Zk, each involution is a
nongenerator and so o{a{x)) = k and X = o{x)^k. Now Ms:(A: -2)/2k. If A; is odd,
there are no involutions in Zk so that o(a(x)) = k and again M>{k — 2)/2k. Finally
suppose k = 2l where / is odd. In this case o(a(x))>l and X = o(x)^l. Then
M>{k- 4)/2*.

A review of the calculations together with (2.3) provides the lower bound for p(G).
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4. K-metacyclic groups. The lower bound of Theorem 1 is attained for the
interesting family of K-metacyclic groups. A K-metacyclic group M is a metacyclic group
(p,p — 1, r ) , where p is an odd prime and the number r is a primitive root modulo p. In
other words, the powers of r represent every nonzero residue class of the prime p. It is
important to note that the isomorphism class of the K-metacyclic group M = (p,p-l,r)
is independent of the parameter r. Consequently, the formula for p(M) should not
involve r.

Now let the K-metacyclic group M = {p,p -l,r) have the presentation (2.4) with
conditions (2.5) and (2.6). Every element of the group M can be written in the canonical
form T'S' where 0 < i < p and 0<j<p — 1. The following basic results are quite useful in
calculations in K-metacyclic groups. They are not hard to establish and also appear in [5,
p. 167].

PROPOSITION 1. Let M be the K-metacyclic group (p,q,r), where q=p-\. If
j ^ 0 mod q, then the order of the element T'S' is q/gcd(j, q).

PROPOSITION 2. Let M be the K-metacyclic group (p,q,r), where q = p - 1, and let
{TUiSVi \i = 1 , . . . ,k} be a set of elements of M. These elements generate M if and only if
g c d ( « , , . . . , uk, q) = 1 and at least two of the elements do not commute.

The groups of low real genus have been classified [9, §6]. The K-metacyclic group
(3, 2, 2) is the dihedral group D3 and thus has real genus zero [9, Th. 3]. Here, then, we
only need to consider primes p > 5 . None of the groups of real genus one are
K-metacyclic [9, Th. 4].

THEOREM 2. Let M be the K-metacyclic group (p,p — 1, r), where the prime p ^ 5 .
Then

l+p(p-5)/2 if p-\

l+p(p-3)/2 if p =

Proof. Let M have the presentation (2.4) with conditions (2.5) and (2.6). Write
k=p-l and let A = TkaS. Then A and T clearly generate M, and o(A) = 2 by
Proposition 1. Using Theorem A we have p{M) < 1 +p(p - 3)/2 in any case.

Now suppose that p = 3 mod 4. Then p —1 = 2/, where / is odd. Again write
k =p - 1, and let A = Tkl2S = T'S, B = T2S. By Proposition 1, o(A) = 2 and o{B) = /. It
is easy to see that A and B do not commute. Then since (2, /) = 1, A and B generate M by
Proposition 2. Now applying Theorem A yields p(M) < 1 +p(p - 5)12.

In either case the /C-metacyclic group M is an extension of Zp by Zp_u and Theorem
1 provides the lower bound for p(M).

Not surprisingly, there is some similarity between the formula in Theorem 2 and the
corresponding formula for the symmetric genus [11]. The symmetric genus a(M) depends
on the value of the prime p modulo 8, however.

5. Other metacyclic groups. Here we consider some additional families of metacy-
clic groups, direct products of cyclic and dihedral groups and the nonabelian groups of
order pq. In each case either the lower bound (3.1) gives the real genus or we can modify
the proof of Theorem 1 to improve this bound.
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THEOREM 3. Let n and m be integers such that n ^ 3 , m 2 3 , and m is odd. Then

1 + n(m — 2) if n divides m
p{DnxZm)= , .

l l + n(m - 1) otherwise.
Proof. Let G = Dn x Zm. Then G is an extension of Zn by Z2m, and p(G) clearly

does not have genus 0 or 1 [9, §6]. First assume that n divides m. By Theorem 1,
p(G) 2 1 + n{m - 2). Let Dn have presentation

A2 = B" = (AB)2 = l, (5.1)

and let Wbea generator for Zm. Then {A, 1) and (B, W) form a generating set for G; the
generators have orders 2 and m (since n divides m). Applying Theorem A gives

Now assume that n does not divide m. We shall use the notation of Theorem 1; we
show that two cases in the proof can be eliminated. First suppose y = 0, / = 2, and F has
signature (0; +; [2, A2]; {( )})• Since Z2m is a quotient of G, w must divide A2. Assume
A2 = m. Then the generator y has odd order m. Let (/ be the projection of y into D,,. Then
£/ has odd order / in Dn, where / divides n and m, that is, / divides (n,m)<n. The
subgroup H = (U) is normal in Dn (from the structure of Dn), and y e H x Zm of course.
But now o(G/(H x Zm)) = Inmllm = 2n/l > 4. This is not possible since G/(H x Zm) is
generated by the image of the involution x. Hence k2i=tn, so that A2s2/n and
M >2--l/2m.

Next suppose y = 0, f = l and F has signature (0;+; [A]; {(C)}), where the period
cycle C has at least two link periods equal to 2. Again m must divide A. Suppose A = m
and there were exactly two link periods. Then F has presentation

2 = c2. (5.2)

The bordered surface group K contains reflections, and it follows that some generating
reflection c, e K [7, p. 1198]. Let V be the projection of x into Dn. Then V has odd order
in Dn, H = (V) is a normal subgroup of Dn, and x, e e H x Zm. As before, the quotient
group G/(H X Zm) has order at least 4. But from (5.2) it is easy to see that G/(H x Zm) is
generated by the image of an involution. Hence either A >2m or there are at least three
link periods. In either case M s: \ - l/2m.

Therefore, if n does not divide m, we have M^{- l/2m in all cases in the proof of
Theorem 1. In this case, then, by (2.3) p(G) > 1 + n(m - 1).

Again let Dn have presentation (5.1), and let W be a generator for Zm. Then (AB, 1)
and (A, W) form a generating set for G; the generators have orders 2 and 2m. Applying
Theorem A gives p(G)sl + n{m - 1).

The smallest member of this family, D3 x Z3, is one of the four groups of real genus 4
[10].

Now let p and q be odd primes such that q divides/? - 1. Then the unique nonabelian
group Gpq of order pq is the metacyclic group (p,q,r) [13, p. 92].

THEOREM 4. Let Gpq be the nonabelian group of order pq, where p and q are odd
primes such that q divides p — 1. Then

https://doi.org/10.1017/S0017089500030779 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030779


GROUPS ACTING ON BORDERED SURFACES 239

Proof. Again we use the notation of Theorem 1. Clearly p(Gpq)^2 [9, §6]. Each
element of Gpq has order at least q, and any generating set for Gpq must have at least two
elements. In the simplified presentation for the NEC group I\ there must be at least two
elements with order larger than two. Therefore y + t>2. Again let M = n(T)/2n. If
y > 2, then M > 1. Suppose y = 1. Then t > 1, and M>l-\lq = {q- \)lq. Finally let
y = 0. Then t>2, and M > - 1 + 2(1 - 1/q) = (q -2)1 q. Now from (2.3) we have
p(Gpq)>\+p(q-2).

Let Gpq = (p,q,r) have presentation (2.4). Then T and TS are two elements of
order q that generate Gpq, and Theorem A provides the upper bound.

6. Small groups and open problems. The real genus of each group with order less
than 16 was determined in [9]. Our results here now complete the calculation up to order
24, with the exception of order 16. The following table gives p(G) and also o(G) for each
group G with 16<o(G)<24 and p(G)>0. The notation is from [4], and the references
concern p(G).

GROUPS OF SMALL ORDER WITH POSITIVE REAL GENUS

Order

18
18
18
20
20
20
21

Group C

2,xD,
((3, 3, 3; 2))

Z, x 26
Z2xZw
<5,4,2)
(2 ,2 ,5 )

P(G)

4
4

10
1
6

11
8

<7(G)

1
1
1
0
1
1
1

References

Theorem 3, [10, §5]
[10, §5]

[12, Th. 2.7]
[9, Th. 4]

Theorem 2
[9, Th. 9]

Theorem 4

There are many unsolved problems about the real genus parameter. We mention
some of the more natural ones related to our work here. Some additional problems are in
[9, §8].

PROBLEM 1. For each p a 5 , classify the groups with real genus p.

Some comments about the groups of real genus 5 are in [10, §8].

PROBLEM 2. Determine p(Dn x Zm) for m even, m ̂  4.

There is a problem of this type, of course, for each family of finite groups. Some
interesting cyclic extensions of cyclic groups are Z2xGpq, Z2xAf where M is K-
metacyclic, and Z2x D where D is an "odd" dicyclic group.

PROBLEM 3. Find p{G) for each group G of order less than 32.

This remains an interesting problem due to the groups of orders 16 and 24. There are
9 non-abelian groups of order 16 and 12 of order 24. Theorem 3 and the results in [9] and
[10] handle some of these groups (and, we might add, all the non-abelian groups of orders
28 and 30). However, quite a bit remains to be done. It might be helpful to first develop
some general results about 2-groups acting on bordered surfaces before considering the
groups of order 16.
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