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Abstract
Bayesian hierarchical models offer a principled framework for adjusting for study-level bias in meta-analysis, but
their complexity and sensitivity to prior specifications necessitate a systematic framework for robust application.
This study demonstrates the application of a Bayesian workflow to this challenge, comparing a standard random-
effects model to a bias-adjustment model across a real-world dataset and a targeted simulation study. The workflow
revealed a high sensitivity of results to the prior on bias probability, showing that while the simpler random-effects
model had superior predictive accuracy as measured by the widely applicable information criterion, the bias-
adjustment model successfully propagated uncertainty by producing wider, more conservative credible intervals.
The simulation confirmed the model’s ability to recover true parameters when priors were well-specified. These
results establish the Bayesian workflow as a principled framework for diagnosing model sensitivities and ensuring
the transparent application of complex bias-adjustment models in evidence synthesis.

Highlights
What is already known?

• Bayesian models can adjust for bias in meta-analysis, but they are complex, sensitive to prior assumptions,
and difficult to apply robustly.

• Applying these models without a clear validation framework can produce misleading results and unwar-
ranted confidence in the findings.

What is new?

• We demonstrate a systematic Bayesian workflow to develop and validate a bias-adjustment model designed
to handle three common risk-of-bias levels (low, unclear, and high).

• Using both a real-world dataset and a simulation, we demonstrate a workflow that improves transparency
and confirms the model’s ability to accurately recover (true) parameters.

Potential impact for RSM readers

• The workflow provides a transparent framework for applying complex bias-adjustment models, helping
researchers test assumptions and improve the credibility of their findings.

• This approach helps produce more robust and defensible conclusions when bias is a concern, encouraging
wider adoption of these advanced methods in evidence synthesis.

This article was awarded Open Data and Open Materials badges for transparent practices. See the Data availability statement
for details.
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1. Introduction

Meta-analysis synthesizes quantitative findings from multiple studies to inform decision-making across
diverse fields, including education, clinical practice, and health policy. By increasing statistical power
and precision, it provides evidence summaries that extend beyond the limitations of individual trials.1
However, the validity and reliability of meta-analytic conclusions depend critically on addressing two
fundamental challenges that threaten evidence synthesis: between-study heterogeneity and systematic
bias. While heterogeneity is routinely handled through random-effects models, systematic bias remains
a more complex and methodologically demanding problem. When biased studies systematically
over- or under-estimate true treatment effects, meta-analytic conclusions can be distorted, producing
misleading evidence that may misinform decisions.2,3

Bias arises from multiple sources, including methodological flaws, such as inadequate randomiza-
tion, lack of blinding, selective outcome reporting, and attrition, as well as selective dissemination of
results and the inclusion of lower-quality studies.4,5 To support structured evaluation, tools, such as
the Cochrane Risk of Bias 2 (RoB2) for randomized trials6 and ROBINS-I for observational studies,7
classify studies into risk of bias categories (e.g., low, unclear/some concerns, and high) across multiple
domains. However, identifying and classifying the risk of bias is only a preliminary step; the critical
challenge is moving from this qualitative assessment to quantitative bias adjustment. This involves
incorporating bias evaluations directly into the meta-analytic model to adjust effect estimates and
properly account for uncertainty about the magnitude and prevalence of bias.8,9

Bayesian hierarchical modeling provides a principled framework for such adjustments. These
approaches explicitly represent the bias mechanism through mixture distributions that attempt to
separate true underlying treatment effects (𝜃𝑖) from systematic distortions introduced by bias (𝛽𝑖).
Observed effects in potentially biased studies (𝑦𝑖) can thus be expressed as 𝜃𝐵𝑖 = 𝜃𝑖 + 𝛽𝑖 , where 𝜃𝐵𝑖
denotes the biased latent effect.10–12 Bayesian methods are particularly advantageous because they
allow for the incorporation of external information via priors, enable the simultaneous estimation of
both bias-adjusted treatment effects and their associated uncertainty, and facilitate principled down-
weighting of studies according to bias risk rather than relying on arbitrary exclusion criteria.

Despite these advantages, implementing bias-adjusted meta-analysis models presents substantial
methodological challenges. A central difficulty lies in balancing the introduction of bias-related
parameters with the preservation of realistic uncertainty. Model specification requires careful attention
to bias mechanisms, prior distributions, and identifiability constraints, while limited data may cause
posterior distributions to be heavily driven by prior assumptions.13 These difficulties can lead to
misleading inferences.14–18 For example, poorly chosen priors may yield paradoxical results, such
as overly narrow credible intervals despite the inclusion of additional parameters, thereby creating
unwarranted confidence in biased evidence. Such risks underscore the importance of robust modeling
strategies that can diagnose, evaluate, and prevent misspecification.19,20

The Bayesian workflow can offer a structured, transparent framework for systematic model
development that addresses these challenges through iterative specification, diagnostic evaluation, and
refinement.21 Rather than treating model fitting as a one-step procedure, the workflow emphasizes
the full process of model building and interpretation. Prior predictive checks help determine whether
assumed distributions for bias and heterogeneity yield plausible data patterns before fitting the model.
Sensitivity analysis can highlight how strongly conclusions depend on assumptions about the likelihood
of bias. Posterior predictive checks then evaluate whether the fitted model adequately reproduces key
features of the observed data, thereby diagnosing potential misspecifications. Model comparison further
supports the selection of specifications that best balance empirical fit with theoretical plausibility.22–24

Taken together, these components enhance transparency in modeling decisions, strengthen the robust-
ness of bias adjustment, and improve the credibility of resulting inferences.

This study bridges the gap between advanced methodology and its practical application using both a
real-world meta-analysis and a (targeted) simulation data. While bias-adjustment models are available,
their use in practice is often incomplete, focusing on final estimates without the model validation needed
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to ensure reliable conclusions. Many demonstrations of the Bayesian workflow, conversely, use simpler
models, leaving a gap in how to apply these principles to complex meta-analytic problems. Specifically,
we show how an iterative workflow guides critical decisions in prior specification and model evaluation,
safeguarding against misspecification and enhancing the credibility of inferences. We apply this
systematic process to an extended existing bias-adjustment model by Verde11 that incorporates three
levels of risk-of-bias classification (“low,” “unclear,” and “high”), aligning it with widely used tools,
such as RoB2 and ROBINS-I. The results from both the applied example and the simulation illustrate
how embedding bias adjustment within this systematic process produces conclusions that are more
nuanced, resistant to distortion from flawed studies.

2. Bayesian bias-adjustment meta-analysis model

We introduce a Bayesian hierarchical model for meta-analysis that incorporates study-level risk of bias
assessments, extending the framework of Verde.11 Unlike approaches that rely on study design (e.g.,
randomized controlled trial vs. observational study) as a proxy for bias, our model directly integrates
risk-of-bias classifications (low, unclear, and high), acknowledging that bias can occur across all study
types.25–27

2.1. Model specification

Suppose a meta-analysis includes N studies. For study i, for 𝑖 = 1, 2, . . . , 𝑁 , let 𝑦𝑖 denote the observed
(reported) effect size (e.g., standardized mean difference and log odds ratio) with known (or well-
estimated) standard error SE𝑖 . We model

𝑦𝑖 | 𝜃𝐵𝑖 ∼ 𝑁 (𝜃𝐵𝑖 , SE2
𝑖 ), (2.1)

where 𝜃𝐵𝑖 is the potentially biased effect size for study i.
To account for bias, the core of this model is the decomposition of 𝜃𝐵𝑖 into an unbiased treatment

effect (𝜃𝑖) and an additive bias term (𝛽𝑖), modeled as a mixture

𝜃𝐵𝑖 = (1 − 𝐼𝑖)𝜃𝑖 + 𝐼𝑖 (𝜃𝑖 + 𝛽𝑖), (2.2)

where 𝐼𝑖 is a latent indicator of whether study i is biased. If 𝐼𝑖 = 0 (unbiased), the effect is simply the
true effect 𝜃𝑖; if 𝐼𝑖 = 1 (biased), it becomes the true effect plus a bias term, 𝜃𝑖 + 𝛽𝑖 .

2.2. Risk of bias level integration

The model framework extends to accommodate studies with an “unclear” risk-of-bias rating, which
are common in systematic reviews and introduce additional uncertainty. For these studies, the bias
indicator, 𝐼𝑖 , is not treated as a fixed value but rather as a random variable to formally model this
uncertainty as defined

𝐼𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if study 𝑖 is high risk of bias,
𝐵𝑖 , if study 𝑖 is unclear risk of bias,
0, if study 𝑖 is low risk of bias.

(2.3)

Specifically, for a study with an unclear risk-of-bias rating, its bias status is determined by a Bernoulli
process as

𝐼𝑖 = 𝐵𝑖 , where 𝐵𝑖 ∼ Bernoulli(𝑝), (2.4)
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where 𝐵𝑖 is a latent variable representing the study’s true (but unknown) bias status, and p is the
probability that a study rated as “unclear” is, in fact, biased. This probabilistic approach allows the
model to determine the bias status of unclear studies based on both the data and the prior information
supplied for p.28 A common choice is to set 𝑝 = 0.5, which reflects a state of maximum uncertainty
about the bias status of unclear studies. This default acknowledges that an “unclear” rating often implies
insufficient information to make a definitive judgment, making equal probabilities of the study being
biased or unbiased a starting point.

2.3. Hierarchical model for effects and bias

The true effect sizes 𝜃𝑖 and bias term 𝛽𝑖 are modeled hierarchically as

𝜃𝑖 ∼ 𝑁 (𝜇, 𝜏2), and 𝛽𝑖 ∼ 𝑁 (𝜇𝛽 , 𝜏2
𝛽), (2.5)

where 𝜇 is the overall mean effect, 𝜏2 is the between-study heterogeneity variance, 𝜇𝛽 is the biased
mean across only for biased studies, and 𝜏2

𝛽 is the between-study variance in bias. Identifiability is
ensured by assuming a common bias mean (𝜇𝛽𝑖 = 𝜇𝛽) and typically a positive bias direction (𝜇𝛽 > 0),
based on contextual evidence.

A parameter in the model is 𝜋bias (i.e., 𝑃(𝐼𝑖 = 1) = 𝜋bias), the overall probability that a study is
biased. A significant challenge in bias-adjustment models is the weak identifiability of this parameter,
as the available data often provide limited information to distinguish between variance arising from true
between-study heterogeneity (𝜏2) and variance attributable to bias (𝜏2

𝛽). Consequently, the posterior
distribution of 𝜋bias can be highly sensitive to its prior specification. To address this, we move
beyond default or uninformative priors and instead assign an informative Beta distribution, which is
mathematically suited for modeling probabilities on a (0, 1) scale as follows:

𝜋bias ∼ Beta(𝑎0, 𝑎1), (2.6)

where the hyperparameters (𝑎0, 𝑎1) of this distribution are not chosen arbitrarily but are calibrated
using empirical information derived directly from our risk-of-bias assessments. This is achieved by
anchoring the prior distribution at two quantiles, which allows us to transparently encode our beliefs
about the prevalence of bias.

The first anchor establishes a plausible upper bound for bias prevalence. We set the 90th percentile of
the prior distribution equal to the observed proportion of studies rated as having a high risk of bias 𝑁ROB

𝑁 .
The rationale for this is that the true proportion of biased studies in the meta-analysis is unlikely to be
substantially greater than the proportion of studies already identified with clear methodological flaws.
This constraint prevents the model from exploring unrealistically high values for 𝜋bias. The second
anchor sets the median, or the 50th percentile, of the prior distribution. This anchor incorporates a
crucial skepticism parameter, K, which allows us to express our degree of confidence in the risk-of-bias
ratings themselves as follows:

𝐹−1(0.9; 𝑎0, 𝑎1) =
𝑁ROB

𝑁
, and 𝐹−1 (0.5; 𝑎0, 𝑎1) =

𝑁ROB − 𝐾
𝑁

, (2.7)

where K explicitly acknowledges that a “high risk of bias” rating does not perfectly and invariably
translate to a biased effect size. In fact, empirical evidence suggests that the link between specific risk-
of-bias domains and the magnitude of effect sizes can be inconsistent. The value of K adjusts the prior
accordingly to reflect this uncertainty. For instance, a small K (e.g., 𝐾 = 1) reflects strong confidence
in the assessments, positioning the median very close to the upper bound and implying a strong prior
belief that nearly all studies rated as “high risk” are truly biased. Conversely, a larger K reflects greater
skepticism by shifting the median lower and creating a more diffuse prior, which gives more weight
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to the possibility that some studies flagged as “high risk” may have nonetheless produced unbiased
estimates.

2.4. Variance partitioning and mixture distribution

Following Verde,11 we introduce a rigorousness weight q to partition total variance into heterogeneity
and bias components as defined

𝑞 =
𝜏2

𝜏2 + 𝜏2
𝛽

, and 𝑞 ∼ Beta(𝜈, 1), (2.8)

where q represents the proportion of total variance that is attributable to between-study heterogeneity
(𝜏2) rather than bias (𝜏2

𝛽). It is important to note that the model also specifies a separate prior for the
heterogeneity, 𝜏. The bias variance, 𝜏𝛽 , is not assigned its own independent prior; instead, it is a derived
parameter determined jointly by the priors on q and 𝜏 through the relationship. In the prior for the q,
a smaller value for the shape parameter 𝜈 (e.g., 𝜈 = 0.5) more strongly discounts the contribution of
studies deemed less trustworthy by yielding a lower average weight.

Integrating over bias, the biased effect distribution is expressed as a mixture

𝜃𝐵𝑖 | 𝑞 ∼ (1 − 𝜋bias)𝑁 (𝜇, 𝜏2) + 𝜋bias𝑁

(
𝜇 + 𝜇𝛽 ,

𝜏2

𝑞

)
. (2.9)

This formulation captures both the variability among unbiased studies and the additional variation
due to bias. The resulting distribution features heavier tails, resembling a slash distribution,29 which
enhances robustness against outliers. By incorporating a slash distribution—characterized by heavier
tails than a normal distribution and symmetry around its mean, with location 𝜇, scale 𝜏2, and shape 𝜈
for 𝛽—the model accounts for uncertainty in the direction of bias.

3. Overview of Bayesian workflow

The Bayesian workflow provides a structured framework for statistical modeling that emphasizes an
iterative process of model specification, fitting, checking, and refinement.21 The workflow begins
with model specification, where a full probability model is defined. This involves selecting a
likelihood function, 𝑝(𝑦 | 𝜃), which describes the data-generating process for the observed data
𝑦 = (𝑦1, . . . , 𝑦𝑛) given the parameters 𝜃, and choosing a prior distribution, 𝑝(𝜃), which quantifies pre-
existing knowledge or assumptions about these parameters. In a bias-adjustment meta-analysis context,
𝜃 would encompass all relevant parameters, potentially including study-specific effects 𝜃𝐵𝑖 , an overall
effect 𝜇, heterogeneity 𝜏2, and bias-related parameters to 𝛽𝑖 .

Before fitting the model to the actual data, prior predictive checks are performed. These involve
simulating datasets 𝑦prior from the joint prior predictive distribution

∫
𝑝(𝑦 | 𝜃)𝑝(𝜃) 𝑑𝜃 to understand

the a priori implications of the model and priors. Comparing these simulations against domain expertise
helps identify unrealistic assumptions early on. Following the specification, the model is fitted to
the observed data to compute the posterior distribution, 𝑝(𝜃 | 𝑦) ∝ 𝑝(𝑦 | 𝜃)𝑝(𝜃), typically using
computational techniques (e.g., Markov chain Monte Carlo [MCMC]). Ensuring the reliability of
this computation is critical, requiring computational diagnostics, such as checking MCMC chain
convergence (e.g., verifying that the potential scale reduction factor 𝑅̂ is close to 1) and assessing
effective sample sizes.

Once posterior samples are obtained, posterior predictive checks are essential for evaluating
model adequacy. Replicated datasets 𝑦post are simulated from the posterior predictive distribution∫
𝑝(𝑦post | 𝜃)𝑝(𝜃 | 𝑦) 𝑑𝜃, and their properties are compared to the observed data y. Graphical

comparisons (e.g., density overlays) and comparisons of test statistics (e.g., means and standard
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deviation) help diagnose systematic misfits between the model and the data. In parallel, sensitivity
analysis investigates the robustness of conclusions by varying model assumptions, particularly the
prior distributions for monitored parameters, and observing the impact on posterior inferences.

Model comparison techniques are employed when evaluating or comparing different candidate
models. Information criteria provide a valuable tool by estimating pointwise out-of-sample prediction
accuracy, effectively balancing model fit against complexity. Widely applicable information criterion
(WAIC), a measure of predictive accuracy that balances model fit and complexity in Bayesian models,
is calculated from posterior simulations 𝜃 (𝑠) (𝑠 = 1, . . . , 𝑆) using the log pointwise predictive density
(LPPD), which quantifies model fit as the sum of the log predictive densities for each data point
averaged over posterior simulations, and an effective parameter count penalty (pWAIC), which adjusts
for model complexity by estimating the effective number of parameters based on the variance of the
log predictive densities, via

WAIC = −2

	





�
𝑛∑
𝑖=1

log

[
1
𝑆

𝑆∑
𝑠=1

𝑝(𝑦𝑖 | 𝜃 (𝑠) )
]

︸������������������������������︷︷������������������������������︸
LPPD

−
𝑛∑
𝑖=1

Var𝑆𝑠=1 [log 𝑝(𝑦𝑖 | 𝜃 (𝑠) )]︸������������������������������︷︷������������������������������︸
pWAIC

��������
, (3.1)

where lower WAIC values indicate stronger predictive performance. Conversely, higher WAIC values
suggest a poorer trade-off between model fit and complexity, indicating weaker predictive accuracy.30

4. Data source

Data for this study were obtained from an openly accessible repository at https://osf.io/fby7w/, from
the meta-analysis titled The Effects of Co-Teaching and Related Collaborative Models of Instruction
on Student Achievement.31 The original meta-analysis synthesized evidence on co-teaching and related
collaborative instructional models, evaluating their impact on student achievement. Co-teaching,
broadly defined, involves two or more educators jointly delivering instruction to a group of students,
often as part of inclusion practices for students with disabilities, though applications extend to diverse
educational settings. The interventions compared in the primary studies typically contrasted co-teaching
or collaborative models (e.g., team teaching, station teaching, and parallel teaching) with business-
as-usual instruction or other less collaborative instructional formats. The primary outcome across
studies was student academic achievement, measured through standardized test scores, curriculum-
based assessments, or teacher-constructed achievement tests. The populations represented in the meta-
analysis were predominantly K–12 students, across both general education and special education
contexts, reflecting the wide application of co-teaching practices in inclusive classrooms.

The full dataset includes 280 effect sizes from 76 unique studies. To avoid dependence between
multiple effect sizes from the same study, we extracted a subset of the dataset by selecting one effect size
per unique study, yielding 76 effect sizes for analysis. We used unadjusted Hedges’ g effect sizes with
standard errors (𝑆𝐸𝑖 =

√
𝑣𝑔,𝑖) as provided in the original dataset. Risk of bias assessments in the original

meta-analysis, conducted using the RoB2 and ROBINS-I tools, categorized studies into five levels
(“low,” “moderate,” “some concerns,” “serious,” and “high”). For our modeling, we recoded these into
three levels—“low,” “unclear,” and “high”—to align with our bias-adjustment framework. “Moderate”
and “some concerns” were merged into “unclear,” while “serious” and “high” were combined into
“high.” In our data subset, the proportions of these risk-of-bias levels were 2.63% “low,” 43.40%
“unclear,” and 53.90% “high.” These recoded ratings were then converted into a binary indicator, 𝐼𝑖 .
After recoding, 23.68% of the effect sizes were assigned 𝐼𝑖 = 0 (low or unclear), and 76.32% were
assigned 𝐼𝑖 = 1 (high or unclear). For studies with an “unclear” rating, the indicator 𝐼𝑖 was randomly
assigned using a Bernoulli distribution (𝑝 = 0.5) to reflect uncertainty about their true bias status.
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5. Statistical analysis

Our statistical analysis followed a Bayesian workflow to specify, fit, and evaluate two meta-analysis
models: a standard random-effects model and a bias-adjustment model. The workflow consisted of
four stages: prior predictive checks to assess the plausibility of prior assumptions, model fitting using
MCMC, posterior predictive checks to evaluate how well models captured observed data features, and
model comparison using predictive accuracy criteria.

5.1. Model specifications

Two Bayesian meta-analysis models are specified. In the random-effects model, the likelihood is given
by 𝑦𝑖 | 𝜃𝑖 ∼ 𝑁 (𝜃𝑖 , SE2

𝑖 ), where 𝑦𝑖 = 𝑔𝑖 represents the observed effect size for study 𝑖. The study-specific
true effects 𝜃𝑖 are assumed to be drawn from a common normal distribution: 𝜃𝑖 | 𝜇, 𝜏2 ∼ 𝑁 (𝜇, 𝜏2).
In the bias-adjustment model, the likelihood is given by 𝑦𝑖 | 𝜃𝐵𝑖 ∼ 𝑁 (𝜃𝐵𝑖 , SE2

𝑖 ). The study-specific
precision 1/𝜏2 depends on the bias status 𝐼𝑖 and a weight parameter 𝑞, which is applied only to biased
studies. If 𝐼𝑖 = 0, then the precision is 1/𝜏2; otherwise, if 𝐼𝑖 = 1, it becomes (1/𝜏2) · 𝑞. The overall
probability of bias, 𝜋bias ∼ Beta(𝑎0, 𝑎1), is subject to sensitivity analysis.

5.2. Prior predictive checks

Each simulation (𝑛sim = 10,000) replicated the study count (𝑁 = 76) and incorporated the observed
study-specific standard errors (SE𝑖) to reflect realistic measurement precision. For the random-effects
model, we specified priors of 𝜇 ∼ 𝑁 (0, 0.1) and 𝜏 ∼ Half-Cauchy(0.3). These weakly informative
priors encode the expectation, supported by prior educational research, that the overall effect is
likely small and that heterogeneity is moderate, while still allowing for substantial between-study
variation.32,33 For the bias-adjustment model, we used 𝜇 ∼ 𝑁 (0, 1) for the mean effect of unbiased
studies and assigned the bias magnitude a broad prior of 𝐵 ∼ Uniform(0, 10). This specification
acknowledges the possibility of both small and large upward distortions without imposing restrictive
constraints.

Under this setup, the expected prior predictive mean can be derived as 𝐸 [𝑦rep] = 𝐸 [𝜇] + 𝐸 [𝜋bias] ·
𝐸 [𝐵] = 0 + 0.5 × 5 = 2.5, where 𝜋bias ∼ Beta(1, 1) reflects maximum uncertainty about the prevalence
of bias, and 𝐸 [𝐵] = 5 follows from the midpoint of the uniform prior. This calculation highlights the
implications of the joint prior specification for expected effect sizes. The shared heterogeneity standard
deviation was assigned 𝜏 ∼ Half-Cauchy(0.5), reflecting a weakly informative belief that heterogeneity
in educational interventions is likely moderate, while permitting heavier-tailed uncertainty. For each
simulation, a bias indicator 𝐼𝑖 was drawn from 𝜋bias. If 𝐼𝑖 = 0, the effect was drawn from 𝑁 (𝜇, 𝜏2).
If 𝐼𝑖 = 1, the model introduced additional variability by first sampling a rigorousness weight
𝑞 ∼ Beta(0.5, 1), then drawing the biased effect from a slash distribution centered at 𝜇+𝐵 with variance
adjusted by 𝜏 and 𝑞. The slash distribution was chosen for its heavier tails compared to a normal
distribution, improving robustness to extreme distortions often found in biased studies. Final observed
values 𝑦rep

𝑖 were then generated by adding sampling error via 𝑁 (𝜃𝐵𝑖 , SE2
𝑖 ).

5.3. Model fitting

Both models were estimated using MCMC in JAGS34 via R35 with four parallel chains of 200,000
iterations, discarding the first 40,000 as burn-in and retaining every 10th draw, resulting in 64,000
posterior samples per parameter. Convergence was confirmed by 𝑅̂ < 1.05 for all monitored
parameters. For the bias-adjustment model, we conducted a sensitivity analysis on the prior for the
bias prevalence parameter, 𝜋bias, to reflect differing assumptions about the proportion of biased studies.
Priors were calibrated so that the prior median probability of bias was set at 0.55, 0.60, 0.65, or 0.70,
with the 90th percentile anchored at the observed proportion of high-risk studies.
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These targets yielded the following Beta parameterizations corresponding to tuning levels 𝐾 ∈
{16, 12, 9, 5}: (𝑎0 = 4.50, 𝑎1 = 3.70); (𝑎0 = 8.31, 𝑎1 = 5.54); (𝑎0 = 15.19, 𝑎1 = 8.52); and
(𝑎0 = 50.81, 𝑎1 = 22.24). Smaller K values imply a stronger belief that most high-risk studies are
truly biased, whereas larger K reflect greater skepticism about bias prevalence. The prior for the bias
magnitude was specified as 𝐵 ∼ Uniform(0, 10), providing a broad but reasonable range for potential
distortions. Priors for the overall mean effect and heterogeneity were consistent with those used in the
prior predictive checks, ensuring coherence between prior exploration and model fitting.

5.4. Model evaluation

For each fitted model, replicated datasets 𝑦rep were generated by drawing from the posterior predictive
distribution, 𝑝(𝑦rep | 𝑦). Each 𝑦rep represents a dataset of effect sizes that could plausibly have been
observed if the fitted model were the true data-generating process. These replicated datasets were then
compared to the observed dataset 𝑦 = {𝑦1, . . . , 𝑦𝑁 }. Two types of comparisons were conducted: 1)
density overlay plots were generated to visually compare the estimated density of the observed data
𝑝(𝑦) with the densities of numerous replicated datasets 𝑦rep and 2) specific summary statistics were
chosen as discrepancy measures to check if the model captures particular features of the data. Following
the analysis, the sample mean (𝑦̄) and the sample standard deviation (𝜎𝑦) of the effect sizes were used.
The observed values of these statistics (𝑦̄obs, 𝜎𝑦,obs) were compared to the distributions of the same
statistics calculated from the replicated datasets (𝑦̄rep, 𝜎

rep
𝑦 ).

5.5. Model comparison

The WAIC was calculated from the posterior results of each fitted model to aid in model evaluation
and comparison. For each model, WAIC was computed as −2 times the LPPD plus twice the effective
number of parameters, using an 𝑆 × 𝑛 log-likelihood matrix (S posterior draws and n data points).
Differences in WAIC values between models were estimated, and standard errors were calculated to
assess uncertainty in the comparisons. The model with the lowest WAIC was identified for subsequent
analyses, including parameter estimation and predictive inference.

6. Results

The primary results of the comparative model fitting are illustrated in the main text (Figures 1–4), which
show the prior predictive distributions used to evaluate assumptions, the posterior predictive fit of the
random-effects model, and forest plots summarizing the overall effect sizes for both the empirical and
simulated data. The Appendix provides additional figures showing the posterior predictive checks for
each of the bias-adjustment model sensitivity analyses (Figures A1–A4). A detailed forest plot is also
included in the Appendix, which displays the individual effect size estimates and 95% credible intervals
for every study across all fitted models (Figure A5). The R code35 used for the statistical analyses and
generation of all figures is available in the Supplementary Material, ensuring full reproducibility of the
findings.

6.1. Results of prior predictive checks

We used prior predictive simulation to evaluate whether the specified priors, together with the
likelihood, imply plausible meta-analytic effect sizes before seeing the data. For the random-effects
model with 𝜇 ∼ 𝑁 (0, 0.1) and 𝜏 ∼ Half-Cauchy(0, 0.3), the implied distribution of replicated effect
sizes 𝑦rep was symmetric and comparatively narrow, consistent with modest heterogeneity as shown in
Figure 1. For the bias-adjustment model, which introduces a mixture structure with bias magnitude B,
variance-partition weight q, and bias prevalence 𝜋bias, together with a slash distribution for the biased
component, the prior predictive distribution was broader with heavier tails. Intuitively, 𝜋bias controls
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Figure 1. Prior predictive distributions of simulated effect sizes for random-effect and bias-adjustment
models.

the mixing weight on the biased component, q inflates the variance of that component via 𝜏2/𝑞, and B
shifts its location; diffuse choices for any of these push probability mass into the extremes.

The empirical summaries of the observed effects, the observed mean effect size (𝑔̄ = 0.12)
with range [−0.91, 1.78] and standard deviation (0.41) lay well within both models’ prior predictive
envelopes, indicating that the baseline priors on 𝜇 and 𝜏 are compatible with the scale of the literature.
However, under diffuse bias priors, specifically 𝜋bias ∼ Beta(1, 1) and a wide bias-magnitude prior
𝐵 ∼ Uniform(0, 10), the implied mean shift for biased studies is 𝐸 [𝜋bias] ·𝐸 [𝐵] = 0.5×5 = 2.5, which
is implausibly large on the Hedges’ g scale for education interventions. This combination, together with
the heavy-tailed slash distribution, generated replicated datasets whose dispersion exceeded that of the
observed effects, reflected in a broad, low-peaked prior predictive density.

Guided by these diagnostics, and by the observed distribution of risk-of-bias ratings in the dataset,
we replaced the uninformative 𝜋bias prior with an informative Beta(𝑎0, 𝑎1) calibrated to the proportion
of studies rated high risk (anchoring the 90th percentile at 𝑁ROB/𝑁 and setting the prior median at
(𝑁ROB − 𝐾)/𝑁; see Equation (2.7)), and constrained B to a more conservative range in the prior-
checking stage. These adjustments retain the model’s capacity to represent substantial bias when
warranted, while aligning the implied 𝑦rep distribution with historically plausible effect sizes and the
study-level risk-of-bias information. The resulting prior predictive distributions remained centered near
zero, covered the empirical summaries, and exhibited tail behavior commensurate with the application
domain rather than dominated by extreme, a priori unlikely shifts.

6.2. Results of model fitting

The effect size in this analysis is Hedges’ g, representing the impact of co-teaching on student academic
achievement; positive values indicate a benefit over traditional single-teacher instruction. Both the
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Table 1. Posterior summaries for random-effect and bias-adjustment models.

Parameter Mean Standard deviation 95% Credible interval 𝑅̂

Random-effect model
𝜇̂ 0.12 0.04 [0.03, 0.20] 1.00
𝜏 0.31 0.04 [0.25, 0.39] 1.00

Bias-adjustment model (𝐾 = 16)
𝜇̂ 0.03 0.11 [−0.34, 0.16] 1.01
𝜇̂biased 0.25 0.17 [0.09, 0.64] 1.02
𝜏 0.16 0.06 [0.06, 0.29] 1.00
𝐵̂ 0.22 0.18 [0.01, 0.62] 1.00
𝜋̂bias 0.49 0.21 [0.13, 0.88] 1.00

Bias-adjustment model (𝐾 = 12)
𝜇̂ 0.01 0.14 [−0.40, 0.15] 1.02
𝜇̂biased 0.20 0.09 [0.08, 0.42] 1.00
𝜏 0.13 0.05 [0.06, 0.24] 1.00
𝐵̂ 0.20 0.15 [0.01, 0.56] 1.00
𝜋̂bias 0.59 0.16 [0.29, 0.87] 1.00

Bias-adjustment model (𝐾 = 9)
𝜇̂ 0.00 0.13 [−0.38, 0.15] 1.01
𝜇̂biased 0.19 0.07 [0.08, 0.34] 1.00
𝜏 0.12 0.04 [0.06, 0.20] 1.01
𝐵̂ 0.19 0.14 [0.01, 0.54] 1.00
𝜋̂bias 0.65 0.11 [0.43, 0.84] 1.00

Bias-adjustment model (𝐾 = 5)
𝜇̂ 0.00 0.10 [−0.26, 0.14] 1.01
𝜇̂biased 0.18 0.05 [0.08, 0.29] 1.00
𝜏 0.11 0.03 [0.06, 0.18] 1.00
𝐵̂ 0.17 0.12 [0.01, 0.45] 1.00
𝜋̂bias 0.70 0.06 [0.59, 0.80] 1.00

Note: 𝜇̂ = unbiased mean effect; 𝜇̂biased = biased mean effect; 𝐵̂ = (mean) bias magnitude; 𝜏̂ = heterogeneity standard deviation;
𝜋̂bias = (posterior) probability of bias; 𝑅̂ = potential scale reduction factor.

random-effects model and the bias-adjustment variants achieved satisfactory convergence (𝑅̂ ≤ 1.05
for all parameters). Table 1 summarizes the posterior estimates for parameters, including mean effects
for unbiased and biased studies (𝜇̂ and 𝜇̂biased), heterogeneity (𝜏), bias magnitude (𝐵̂), and the posterior
probability of bias (𝜋̂bias), revealing systematic patterns in how bias-adjustment affects parameter
estimates and uncertainty quantification. The random-effects model yielded an overall mean effect of
𝜇̂ = 0.12 (95% CrI: [0.03, 0.20]; SD = 0.04), suggesting a small positive effect of co-teaching. The
heterogeneity estimate was 𝜏 = 0.31 (95% CrI: [0.25, 0.39]; SD = 0.04), indicating moderate between-
study variability.

For the bias-adjustment models with prior specifications indexed by 𝐾 = 16, 12, 9, and 5, the results
revealed systematic differences in parameter estimates. Under 𝐾 = 16, the unbiased mean effect was
𝜇̂ = 0.03 (95% CrI: [−0.34, 0.16]; SD = 0.11), while the biased mean was 𝜇̂biased = 0.25 (95% CrI:
[0.09, 0.64]; SD = 0.17), producing an estimated bias magnitude of 𝐵̂ = 0.22 (95% CrI: [0.01, 0.62];
SD = 0.18). The posterior probability of bias was 𝜋̂bias = 0.49 (95% CrI: [0.13, 0.88]; SD = 0.21), with
heterogeneity reduced to 𝜏 = 0.16 (95% CrI: [0.06, 0.29]; SD = 0.06). When the prior became more
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informative at 𝐾 = 12, the unbiased mean decreased slightly to 𝜇̂ = 0.01 (95% CrI: [−0.40, 0.15];
SD = 0.14), the biased mean remained positive at 𝜇̂biased = 0.20 (95% CrI: [0.08, 0.42]; SD = 0.09),
and the bias magnitude narrowed to 𝐵̂ = 0.20 (95% CrI: [0.01, 0.56]; SD = 0.15). At the same time, the
probability of bias rose to 𝜋̂bias = 0.59 (95% CrI: [0.29, 0.87]; SD = 0.16), with heterogeneity further
reduced to 𝜏 = 0.13 (95% CrI: [0.06, 0.24]; SD = 0.05).

This pattern continued as K decreased. At 𝐾 = 9, the unbiased mean was essentially null (𝜇̂ = 0.00;
95% CrI: [−0.38, 0.15]; SD = 0.13), while the biased mean remained positive at 𝜇̂biased = 0.19 (95%
CrI: [0.08, 0.34]; SD = 0.07). The estimated bias magnitude was 𝐵̂ = 0.19 (95% CrI: [0.01, 0.54];
SD = 0.14), with the probability of bias increasing to 𝜋̂bias = 0.65 (95% CrI: [0.43, 0.84]; SD = 0.11)
and heterogeneity declining to 𝜏 = 0.12 (95% CrI: [0.06, 0.20]; SD = 0.04). Finally, under the most
informative prior at 𝐾 = 5, the unbiased mean remained near zero (𝜇̂ = 0.00; 95% CrI: [−0.26, 0.14];
SD = 0.10), while the biased mean was 𝜇̂biased = 0.18 (95% CrI: [0.08, 0.29]; SD = 0.05). The bias
magnitude estimate narrowed to 𝐵̂ = 0.17 (95% CrI: [0.01, 0.45]; SD = 0.12), the probability of bias
rose to 𝜋̂bias = 0.70 (95% CrI: [0.59, 0.80]; SD = 0.06), and residual heterogeneity decreased further to
𝜏 = 0.11 (95% CrI: [0.06, 0.18]; SD = 0.03).

The sensitivity analysis revealed that as the prior for the probability of bias became more informative
(from 𝐾 = 16 to 𝐾 = 5), the model systematically re-attributed variance from random heterogeneity
to systematic bias. This re-partitioning had two main consequences. First, the unbiased effect estimate
(𝜇̂) was adjusted progressively toward zero, while the biased effect estimate remained positive. Second,
this process correctly propagated uncertainty, resulting in wider, more conservative credible intervals
for the unbiased effect compared to the standard random-effects model, as the heterogeneity estimate
(𝜏) decreased from 0.16 to 0.11. A finding was the model’s high sensitivity to the bias probability
prior (𝜋bias). Its posterior estimate was heavily influenced by the prior choice, with the 95% credible
interval shrinking dramatically as the prior became more informative (from a width of 0.75 at 𝐾 = 16 to
0.21 at 𝐾 = 5). This demonstrates that stronger priors can dominate the data, underscoring the critical
importance of carefully justified prior specification in bias-adjustment models.

6.3. Results of model evaluation

Posterior predictive checks were conducted to evaluate how well the fitted models captured the
features of the observed data. This was done by comparing the distribution of the observed data (y)
to distributions of replicated data (𝑦rep) drawn from each model’s posterior predictive distribution.
We used both graphical density overlays and comparisons of summary statistics (mean and standard
deviation). For the random-effects model, shown in Figure 2, the replicated data closely mirrored the
observed data’s density, indicating a good overall fit. The observed mean (𝑇 (𝑦) = 0.12) and standard
deviation (𝑇 (𝑦) = 0.41) fell squarely within the center of their respective replicated distributions,
confirming that the model effectively captures both the central tendency and the variability of the data.

The bias-adjustment models (𝐾 = 16, 12, 9, 5; Figures A1–A4) similarly reproduced the observed
data distributions. Across all priors, the observed mean (𝑇 (𝑦) = 0.12) consistently fell near the center
of the replicated mean distributions, showing that adjustment for bias did not compromise the models’
ability to capture central tendency. The replicated standard deviations also encompassed the observed
value (𝑇 (𝑦) = 0.41). The predictive distributions of the standard deviation were somewhat wider than
under the random-effects model, especially for larger K. This pattern reflects the additional variability
introduced by explicitly modeling bias and is consistent with the model’s design to partition total
variability into heterogeneity and bias components.

Overall, the posterior predictive checks confirm that both modeling approaches adequately represent
the data. The random-effects model provides a tighter predictive fit, while the bias-adjustment models
introduce greater flexibility to account for uncertainty in risk-of-bias status. This trade-off, seen in
slightly wider predictive distributions, ensures that inferences remain robust to potential systematic
biases across studies. These evaluation results provide important context for the subsequent model
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Figure 2. Posterior predictive density overlay and test statistics for random-effect model.

comparison using WAIC. Whereas posterior predictive checks assess whether models can reproduce
the observed data, WAIC formally balances model fit against complexity to determine predictive
performance. Together, these complementary approaches allow us to distinguish between models that
merely fit the data well and those that provide the most reliable generalization beyond the observed
studies.

6.4. Results of model comparison

Model comparison using WAIC revealed clear differences in predictive performance between the
random-effects and bias-adjustment models as presented in Table 2. The random-effects model
achieved the lowest WAIC (2.38), indicating superior overall predictive accuracy relative to the bias-
adjustment models, whose WAIC values ranged from 8.64 (𝐾 = 5) to 9.25 (𝐾 = 9). This advantage
reflects the balance between model fit and complexity: although the bias-adjustment models exhibited
slightly higher log pointwise predictive densities (LPPD = 33.52–33.68) than the random-effects model
(LPPD = 33.42), they incurred larger effective parameter penalties (pWAIC = 37.84–38.15 vs. 34.61).
Thus, the additional flexibility of modeling bias improved fit only marginally, while substantially
increasing complexity, leading to worse predictive performance under WAIC.

Within the bias-adjustment models, the 𝐾 = 5 specification provided the most favorable trade-off,
achieving the lowest WAIC among bias-adjusted variants (8.64). This configuration balanced relatively
modest complexity (pWAIC = 37.84) with fit comparable to other specifications, suggesting that more
extreme prior informativeness did not yield practical gains in predictive accuracy. By contrast, the
𝐾 = 9 model performed worst (WAIC = 9.25), primarily due to its higher complexity (pWAIC =
38.15). Although the WAIC differences among bias-adjustment models were small (≤ 0.61), they
consistently indicate that stronger priors on bias prevalence improved efficiency without altering model
fit substantially.
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Table 2. Model comparison using WAIC criteria between random-
effects and bias-adjustment models.

Model WAIC LPPD pWAIC

Random effects 2.38 33.42 34.61
Bias adjustment (𝐾 = 16) 8.73 33.68 38.05
Bias adjustment (𝐾 = 12) 8.92 33.55 38.01
Bias adjustment (𝐾 = 9) 9.25 33.53 38.15
Bias adjustment (𝐾 = 5) 8.64 33.52 37.84

Note: WAIC = Watanabe–Akaike information criterion; LPPD = log pointwise predictive
density; pWAIC = effective number of parameters.

Figure 3. Overall effect size forest plot for random-effect and bias-adjustment models.

Figure 3 presents the overall effect size estimates and 95% credible intervals. The random-effects
model produced an estimated mean effect of approximately 0.12 with a relatively narrow credible
interval, consistent with its tighter posterior predictive performance. The bias-adjustment models, in
contrast, displayed systematically smaller overall effect sizes, with stronger shrinkage toward zero as K
decreased from 16 to 5. This pattern reflects the increasing weight assigned to potential bias, leading to
more conservative estimates when stronger prior information is imposed. Importantly, all bias-adjusted
estimates exhibited wider credible intervals than the random-effects estimate, particularly for larger K,
highlighting the trade-off between accounting for bias and inflating uncertainty.

Within the bias-adjustment framework, the decomposition into biased and unbiased effect size
estimates further illustrates this trade-off. Across all K values, unbiased estimates consistently shifted
downward relative to biased ones, indicating that the adjustment primarily operated by correcting for
a positive bias component. However, these unbiased intervals were also wider than those for biased
effects, underscoring the additional uncertainty introduced by the bias-adjustment process. These find-
ings present a potential conflict between statistical model selection criteria and the substantive goals of
the analysis. While a simpler random-effects model may demonstrate superior predictive performance
according to metrics (WAIC), a bias-adjustment model is arguably more theoretically defensible when
an evidence base is characterized by a high risk of bias. In such contexts, the primary analytical
objective is not necessarily to maximize predictive accuracy, but rather to derive an effect estimate that
has been corrected for known methodological flaws, even at the cost of reduced precision. Therefore,
while theoretical grounds can warrant selecting a bias-adjustment model over a random-effects model,
criteria should then be used to identify the optimal specification among the set of candidate bias-
adjustment models.

https://doi.org/10.1017/rsm.2025.10050 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.10050


14 Juyoung Jung and Ariel M. Aloe

Table 3. Posterior summaries for bias-adjustment model across sensitivity
analyses in simulation data.

Parameter Mean SD 95% CrI 𝑅̂ Discrepancy

Bias-adjustment model (𝐾 = 20)
𝜇̂ 0.01 0.11 [−0.22, 0.17] 1.02 0.01
𝜇̂biased 0.26 0.11 [0.08, 0.52] 1.00 0.06
𝜏 0.26 0.06 [0.16, 0.38] 1.00 −0.04
𝐵̂ 0.24 0.16 [0.01, 0.58] 1.00 0.04
𝜋̂bias 0.61 0.13 [0.35, 0.86] 1.00 −0.12

Bias-adjustment model (𝐾 = 15)
𝜇̂ 0.01 0.10 [−0.20, 0.17] 1.00 0.01
𝜇̂biased 0.25 0.10 [0.08, 0.49] 1.00 0.05
𝜏 0.25 0.05 [0.16, 0.36] 1.00 −0.05
𝐵̂ 0.24 0.15 [0.01, 0.55] 1.00 0.04
𝜋̂bias 0.62 0.11 [0.40, 0.83] 1.00 −0.11

Bias-adjustment model (𝐾 = 10)
𝜇̂ 0.01 0.09 [−0.20, 0.17] 1.00 0.01
𝜇̂biased 0.24 0.09 [0.08, 0.44] 1.00 0.04
𝜏 0.24 0.05 [0.16, 0.34] 1.00 −0.06
𝐵̂ 0.23 0.14 [0.01, 0.53] 1.00 0.03
𝜋̂bias 0.65 0.08 [0.49, 0.80] 1.00 −0.08

Bias-adjustment model (𝐾 = 5)
𝜇̂ −0.01 0.10 [−0.21, 0.16] 1.00 −0.01
𝜇̂biased 0.22 0.08 [0.08, 0.39] 1.00 0.02
𝜏 0.23 0.04 [0.15, 0.32] 1.00 −0.07
𝐵̂ 0.23 0.14 [0.01, 0.52] 1.00 0.03
𝜋̂bias 0.70 0.04 [0.62, 0.78] 1.00 −0.03

Note: 𝜇̂ = unbiased mean effect; 𝜇̂biased = biased mean effect; 𝜏̂ = heterogeneity standard deviation; 𝐵̂ = bias
magnitude; 𝜋̂bias = (posterior) probability of bias; 𝑅̂ = potential scale reduction factor; SD = standard deviation;
CrI = credible interval; Discrepancy = difference between the posterior mean estimate and the true value (𝜇 = 0,
𝜇biased = 0.2, 𝜏 = 0.3, 𝐵 = 0.2, 𝜋bias = 0.73).

6.5. Results of simulation data

To evaluate the bias-adjustment model’s performance under known conditions, we conducted a
simulation study using 100 studies with effect size and risk-of-bias characteristics patterned after
the empirical dataset (approximately 3% low, 43% unclear, and 54% high risk). The data-generating
process specified true parameter values of 𝜇 = 0 for the unbiased effect, 𝜇biased = 0.2 for the biased
effect, 𝜏 = 0.3 for heterogeneity, 𝐵 = 0.2 for bias magnitude, and 𝜋bias = 0.73 for the bias prevalence.
Bias-adjustment models were then fitted using four prior specifications for 𝜋bias, corresponding to
𝐾 = 20, 15, 10, 5 and derived from targeted median values. These priors reflected progressively stronger
information about bias prevalence: (𝑎0 = 5.03, 𝑎1 = 4.18) for 𝐾 = 20, (𝑎0 = 9.32, 𝑎1 = 6.32)
for 𝐾 = 15, (𝑎0 = 21.77, 𝑎1 = 11.88) for 𝐾 = 10, and (𝑎0 = 90.03, 𝑎1 = 38.77) for 𝐾 = 5.
Posterior estimates, convergence diagnostics (𝑅̂), and discrepancies from the true parameter values are
summarized in Table 3, with forest plots shown in Figure 4.

Across all prior settings, the models accurately recovered the true overall effect size. Discrepancies
for 𝜇̂ were negligible (≤ 0.01), and all 95% credible intervals included the true value of 0. The biased
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Figure 4. Overall effect size forest plot for bias-adjustment models with simulation data.

effect size 𝜇̂biased also closely approximated the true value of 0.2, with discrepancies declining as
prior informativeness increased (from 0.06 at 𝐾 = 20 to 0.02 at 𝐾 = 5). This pattern reflects the
model’s improved ability to isolate the bias component when stronger prior information is provided.
Heterogeneity estimates were consistently underestimated, with 𝜏 discrepancies ranging from −0.04
(𝐾 = 20) to −0.07 (𝐾 = 5), although all credible intervals encompassed the true 𝜏 = 0.3. The reduction
in 𝜏 with decreasing K mirrors trends observed in the empirical analysis, suggesting that bias adjustment
partially reallocates variability from heterogeneity to systematic bias.

Bias magnitude estimates 𝐵̂ were stable across conditions, with discrepancies of 0.03–0.04 and
credible intervals consistently covering the true value of 0.2. Estimates of bias prevalence 𝜋̂bias were
more sensitive to prior specification: higher K values yielded underestimation (e.g., −0.12 at 𝐾 = 20),
while only the 𝐾 = 5 model produced a credible interval containing the true 𝜋bias = 0.73. Among
the four specifications, 𝐾 = 5 yielded the smallest discrepancies across all parameters, with credible
intervals consistently covering the true values while appropriately reflecting posterior uncertainty. This
suggests that more informative priors for bias prevalence enhance estimation accuracy without over-
constraining the model. Figure 4 illustrates these trends: 𝜇̂ estimates cluster tightly around zero across
all K, while 𝜇̂biased converges toward 0.2 as prior informativeness increases. The consistency between
these simulation results and the empirical findings strengthens confidence in the bias-adjustment
model’s validity and the robustness of the Bayesian workflow applied in this study. By demonstrating
accurate recovery of known parameters under realistic conditions, the simulation provides critical
evidence that the workflow and modeling choices support reliable inference in applied evidence
synthesis contexts.

7. Implications and conclusions

This study contributes to the advancement of meta-analytic methodology by demonstrating how
a Bayesian workflow can strengthen bias adjustment in evidence synthesis. A key aspect of this
contribution is the extended bias-adjustment model employed within our workflow, which, unlike
existing Bayesian models, is designed to directly incorporate the three levels (low, unclear, and high)
common in risk-of-bias assessments. Its primary advantage is the ability to statistically account for the
influence of studies with an “unclear” risk of bias, the magnitude of which can be flexibly controlled by
a specific model parameter. By integrating prior predictive checks, sensitivity analysis, model fitting,
posterior predictive checks, model comparison, and simulation-based validation, we show how the
workflow provides a systematic approach to evaluating the robustness of bias-adjusted estimates.

The findings highlight several insights. Prior predictive checks revealed that incorporating bias
adjustment widened the range of plausible effect sizes relative to the random-effects model, reflecting
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the additional uncertainty that arises when study rigorousness is explicitly modeled. Posterior predictive
checks confirmed that both random-effects and bias-adjustment models reproduced the observed
distributional features of the data, while the bias-adjustment models produced broader replicated
distributions, consistent with the expectation that modeling bias increases variability. Sensitivity
analysis further demonstrated that the unbiased mean effect estimates were responsive to different prior
specifications on bias prevalence, with stronger priors shifting estimates closer to the null and reducing
residual heterogeneity.

This highlights both the influence of prior assumptions and the importance of systematically
testing their impact within the workflow. Model comparison using WAIC indicated that the simpler
random-effects model provided better predictive accuracy overall; however, within the bias-adjustment
framework, models with stronger prior information on bias prevalence performed more stably and
achieved a more favorable balance between fit and complexity. Importantly, the overall effect size
estimates demonstrated that bias adjustment systematically reduced estimated effects while widening
credible intervals, providing evidence that the models appropriately accounted for potential upward
bias in the primary studies. The simulation study further validated these findings by demonstrating that
the bias-adjustment models were capable of recovering true parameter values under conditions that
mimicked the empirical dataset.

Despite these strengths, several limitations warrant consideration. Estimates of heterogeneity were
consistently attenuated in both real and simulated analyses, suggesting that some variability was
absorbed into the bias parameters and highlighting potential challenges in disentangling sources of
variance. Moreover, the sensitivity of results to the prior specification for bias prevalence illustrates
the weak identifiability of this parameter and emphasizes the importance of grounding prior choices
in domain knowledge or empirical calibration.13 The generalizability of our findings is also limited
by reliance on a single dataset with a relatively high proportion of studies at elevated risk of bias;
applications to more heterogeneous evidence bases are needed to fully evaluate the model’s utility.

The challenge of specifying these priors is a central issue in the Bayesian meta-analysis, and
expert elicitation offers an approach to formally translate domain knowledge into quantitative prior
distributions. Foundational work in this area demonstrated how elicited opinions could be used to
construct study-specific priors that formally down-weight less rigorous or relevant evidence; such
adjustments not only shift the combined estimate but also substantially increase its variance, a finding
consistent with our own results.8 More recently, methods have been developed to blend expert judgment
with empirical data, anchoring these priors more robustly. This hybrid approach combines expert
opinion on specific trials with empirical bias distributions derived from large collections of existing
meta-analyses, thereby leveraging both context-specific and broad evidence to develop the informative
priors our simulation study found most effective.9

In summary, the Bayesian workflow provides a principled framework for conducting a credible bias-
adjusted meta-analysis. This systematic approach ensures that researchers to be transparent about their
assumptions, test them rigorously, and present a more complete picture of the uncertainty surrounding
an effect size estimate. By demonstrating how this process enhances the reliability and interpretability
of bias-adjusted models, we aim to promote the broader adoption of these powerful techniques in
contexts where bias threatens the validity of evidence synthesis.
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Appendix: Figures

This appendix presents a concise overview of the sensitivity analyses for the bias-adjustment model. We
explored how posterior estimates for the unbiased mean (𝜇̂), biased mean (𝜇̂biased), heterogeneity (𝜏),
bias magnitude (𝐵̂), and the probability of bias (𝜋̂bias) change as the prior becomes more informative
by decreasing the parameter K.

Figure A1. Posterior predictive density overlay and test statistics for bias-adjustment model (𝐾 = 16).
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Figure A2. Posterior predictive density overlay and test statistics for bias-adjustment model (𝐾 = 12).

Figure A3. Posterior predictive density overlay and test statistics for bias-adjustment model (𝐾 = 9).
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Figure A4. Posterior predictive density overlay and test statistics for bias-adjustment model (𝐾 = 5).
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Figure A5. Study-specific effect size forest plot for random-effect and bias-adjustment models.
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