Bull. Austral. Math. Soc.
Vol. 48 (1993) [321-323]

COMMUTATIVITY OF (2×2) SELFADJOINT MATRICES

W.J. Ricker

An elementary proof is given of the fact that an n-tuple $A=\left(A_{1}, \ldots, A_{n}\right)$ of selfadjoint matrices in a 2 -dimensional Hilbert space consists of mutually commuting matrices $A_{j}, 1 \leqslant j \leqslant n$, if and only if $\gamma(A)$ is non-empty. Here $\gamma(A) \subseteq \mathbb{R}^{n}$ is the joint spectrum of A (in the sense of McIntosh and Pryde) consisting of those points $\beta \in \mathbb{R}^{n}$ for which the matrix $\sum_{j=1}^{n}\left(A_{j}-\beta_{j}\right)^{2}$ is not invertible.

Let $A=\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of bounded linear operators in a Banach space. A notion of joint spectrum $\gamma(A)$ was introduced in [2, 3], namely

$$
\begin{equation*}
\gamma(A)=\left\{\beta \in \mathbb{R}^{n} ; 0 \in \sigma\left(\sum_{j=1}^{n}\left(A_{j}-\beta_{j} I\right)^{2}\right)\right\} \tag{1}
\end{equation*}
$$

where I is the identity operator and $\sigma(B)$ denotes the usual spectrum of an operator B. For pairwise commuting operators $A_{j}, j=1, \ldots, n$, it turns out (for $n \geqslant 2$) that $\gamma(A)$ is always a non-empty, compact subset of $\mathbb{R}^{\boldsymbol{n}},[2,6]$. In some recent work of Pryde $[4, \cdot 5]$ the spectral set $\gamma(A)$ has proved to be useful in the consideration of certain classes of non-commuting n-tuples A. In [1] a detailed study is made of the sets $\gamma(A)$ for non-commuting, selfadjoint operators $A_{j}, j=1, \ldots, n$, in Hilbert spaces. An application of the general results developed there (especially the notion of the maximal joint abelian subspace of A) is the following commutativity criterion; see [1, Proposition 7].

PROPOSITION. Let $A=\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of selfadjoint operators in a 2-dimensional Hilbert space. Then $\gamma(A) \neq \emptyset$ if and only if the operators A_{j}, $j=1, \ldots, n$, pairwise commute.

The aim of this short note is to give an elementary proof of this result independent of the more abstract techniques developed in [1]. The proof proceeds in two simple stages. Firstly, the result is established for two operators by a direct calculation based only on some very elementary properties of the sets $\gamma(A)$. The second step consists of reducing the case of n operataors to that of a pair of operators.

Received 3 November 1992
The support of an Alexander von Humboldt Fellowship is gratefully acknowledged.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

Step 1. Let $A=\left(A_{1}, A_{2}\right)$ be a pair of selfadjoint operators in a 2-dimensional Hilbert space H such that $A_{1} A_{2} \neq A_{2} A_{1}$. Then $\gamma(A)=\emptyset$.

Proof: It is a direct consequence of the definition of joint spectral set given in (1) that
(i) $\gamma(t A)=t \gamma(A)$ for any real number $t>0$, and
(ii) $\gamma\left(U A U^{-1}\right)=\gamma(A)$ whenever $U: H \rightarrow H$ is a linear isomorphism.

In fact, properties (i) and (ii) are valid for any n-tuple of bounded linear operators A in an arbitrary Banach space.

So, in (ii) choose for U an orthogonal transformation such that the matrix of $U A_{1} U^{-1}$, with respect to the basis of H consisting of the orthonormal eigenvectors of A_{1}, is diagonal, say $\left[\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right]$. Then the matrix of $U A_{2} U^{-1}$ with respect to this basis is of the form $\left[\begin{array}{ll}b_{1} & w \\ \bar{w} & b_{2}\end{array}\right]$ for some $w \in \mathbb{C}$ and $b_{1}, b_{2} \in \mathbb{R}$. Since $A_{1} A_{2} \neq A_{2} A_{1}$ we have $a_{1} \neq a_{2}$ (with $a_{1}, a_{2} \in \mathbb{R}$) and $w \neq 0$. Choosing $t=|w|^{-1}$ in (i) allows us to reduce the proof to a consideration of the special case when $A_{1}=\left[\begin{array}{cc}a_{1} & 0 \\ 0 & a_{2}\end{array}\right]$ with $a_{1} \neq a_{2}$ real numbers and $A_{2}=\left[\begin{array}{cc}b_{1} & w \\ \bar{w} & b_{2}\end{array}\right]$ with $b_{1}, b_{2} \in \mathbb{R}$ and w a unimodular complex number. But then, for any $\beta \in \mathbb{R}^{2}$, a direct calculation (using $|w|=1$) shows that $\operatorname{det}\left[\left(A_{1}-\beta_{1} I\right)^{2}+\left(A_{2}-\beta_{2} I\right)^{2}\right]$ is equal to

$$
\begin{gathered}
\left(\beta_{1}-a_{1}\right)^{2}\left[\left(\beta_{1}-a_{2}\right)^{2}+\left(\beta_{2}-b_{2}\right)^{2}\right]+\left(\beta_{2}-b_{1}\right)^{2}\left(\beta_{1}-a_{2}\right)^{2} \\
+\left[1-\left(\beta_{2}-b_{1}\right)\left(\beta_{2}-b_{2}\right)\right]^{2}+\sum_{j=1}^{2}\left(\beta_{1}-a_{j}\right)^{2}
\end{gathered}
$$

It is easy to check that this expression cannot equal zero, and hence it must be strictly positive. Since $\beta \in \mathbb{R}^{2}$ was arbitrary it follows that $\gamma(A)=\emptyset$.

STEP 2. Suppose there exist indices $j<k$ in $\{1,2, \ldots, n\}$ such that $A_{j} A_{k} \neq$ $A_{k} A_{j}$. Then $\gamma(A)=\emptyset$.

Proof: Let $\beta \in \mathbb{R}^{n}$ be arbitrary. Since $\gamma\left(\left(A_{j}, A_{k}\right)\right)=\emptyset$ (by Step 1) the operator $T=\left(A_{j}-\beta_{j} I\right)^{2}+\left(A_{k}-\beta_{k} I\right)^{2}$ is invertible. Of course, T is also selfadjoint and positive (in the usual sense, that is, $\langle T h, h\rangle \geqslant 0$ for each $h \in H$). Moreover,

$$
S=\sum_{r \neq j, k}\left(A_{r}-\beta_{r} I\right)^{2}
$$

is also positive and selfadjoint. But, whenever V is any invertible, positive, selfadjoint operator in any Hilbert space H (in which case $\sigma(V) \subseteq(0, \infty)$) and W is any positive, selfadjoint operator in H, then $V+W$ is necessarily invertible. Accordingly,
$\sum_{r=1}^{n}\left(A_{r}-\beta_{r} I\right)^{2}=S+T$ is invertible. Since $\beta \in \mathbb{R}^{n}$ was arbitrary we conclude that $\gamma(A)=\emptyset$.

Proof of Proposition: If the operators $A_{j}, 1 \leqslant j \leqslant n$, pairwise commute, then we have already noted that $\gamma(A) \neq \emptyset$; see $[2,6]$. Conversely, if the operators A_{j}, $1 \leqslant j \leqslant n$, do not pairwise commute, then Step 2 shows that $\gamma(A)=\emptyset$.

Remark. The above Proposition is particular to 2-dimensional Hilbert spaces. For, let B_{1}, B_{2} be selfadjoint matrices in \mathbb{C}^{2} such that $B_{1} B_{2} \neq B_{2} B_{1}$. Let $u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$, with both u_{1} and u_{2} non-zero, and define selfadjoint operators in $\mathbb{C}^{3}=\mathbb{C}^{2} \oplus \mathbb{C}$ by $A_{j}=B_{j} \oplus u_{j} I, j \in\{1,2\}$. Then $A_{1} A_{2} \neq A_{2} A_{1}$. However, since the non-zero vector $h=(0,0,1)$ satisfies $A_{j} h=u_{j} h$ for $j \in\{1,2\}$, it follows that $u \in \gamma(A)$.

References

[1] G. Greiner and W.J. Ricker, 'Joint spectral sets and commutativity of systems of (2×2) selfadjoint matrices', Linear and Multilinear Algebra (to appear).
[2] A. McIntosh and A.J. Pryde, 'A functional calculus for several commuting operators', Indiana Univ. Math. J. 36 (1987), 421-439.
[3] A. McIntosh and A.J. Pryde, 'The solution of systems of operator equations using Clifford algebras', Proc. Centre Math. Anal. Austral. Nat. Univ. 9 (1985), 212-222.
[4] A.J. Pryde, 'A non-commutative joint spectral theory', Proc. Centre Math. Anal. Austral. Nat. Univ. 20 (1988), 153-161.
[5] A.J. Pryde, 'Inequalities for exponentials in Banach algebras', Studia Math. 100 (1991), 87-94.
[6] W.J. Ricker and A.R. Schep, 'The non-emptiness of joint spectral subsets of Euclidean n-space', J. Austral. Math. Soc. Ser. A, 47 (1989), 300-306.

School of Mathematics
The University of NSW
PO Box 1
Kensington NSW 2033
Australia

