Estimates of Hausdorff Dimension for the Non-Wandering Set of an Open Planar Billiard

Robert Kenny

Abstract

The billiard flow in the plane has a simple geometric definition; the movement along straight lines of points except where elastic reflections are made with the boundary of the billiard domain. We consider a class of open billiards, where the billiard domain is unbounded, and the boundary is that of a finite number of strictly convex obstacles. We estimate the Hausdorff dimension of the nonwandering set M_{0} of the discrete time billiard ball map, which is known to be a Cantor set and the largest invariant set. Under certain conditions on the obstacles, we use a well-known coding of M_{0} [Mor91] and estimates using convex fronts related to the derivative of the billiard ball map [Sto03] to estimate the Hausdorff dimension of local unstable sets. Consideration of the local product structure then yields the desired estimates, which provide asymptotic bounds on the Hausdorff dimension's convergence to zero as the obstacles are separated.

1 Introduction

Billiards are the dynamical systems associated with the constant (unit) velocity movement of a point particle in a given domain, with reflections according to the law of geometric optics: 'the angle of incidence is equal to the angle of reflection' when it strikes the boundary. When the billiard domain is the exterior of pairwise disjoint strictly convex compact bodies $K_{1}, \ldots, K_{u} \subseteq \mathbb{R}^{2}(u \geq 3)$ with C^{3} boundaries and which do not eclipse each other (condition (H) in Section 2), the maximal invariant set M_{0} of the billiard ball map B (from one reflection to the next) has a hyperbolic structure (e.g. [Sin70]). It is in fact known that M_{0} can be coded by bi-infinite sequences of numbers indexing the bodies at the reflection points, and every point $x \in M_{0}$ is non-wandering in the sense that every neighbourhood eventually visits itself after enough reflections. The coding shows M_{0} is a topological Cantor set, so is of Lebesgue measure zero, and other means must be used to compare such sets. There is a formula for one such yardstick, the Hausdorff dimension of $M_{0}\left(\operatorname{dim}_{H} M_{0}\right)$, appearing in [MM83], though this is not well-suited to computation. Lopes and Markarian [LM96] have constructed measures with support contained in M_{0} and good ergodic properties; in particular these imply a formula relating metric entropy, Lyapunov exponent and Hausdorff dimension of a certain measure, but (see [LM96, p. 670], also [MM83] for the usual two-dimensional case) Hausdorff dimensions of such measures are not nicely related to $\operatorname{dim}_{\mathrm{H}} M_{0}$. We use estimates involving convex curves (local unstable manifolds) to estimate $\operatorname{dim}_{H} M_{0}$ from above and below; letting $K=\bigcup_{i} K_{i}$, our main result is the following theorem.

[^0]
Theorem 1.1

$$
\begin{equation*}
\frac{-2 \ln (u-1)}{\ln \lambda} \leq \operatorname{dim}_{H} M_{0} \leq \frac{-2 \ln (u-1)}{\ln \mu} \tag{1.1}
\end{equation*}
$$

where $\lambda^{-1}=1+d_{\max }\left(\frac{2 \kappa_{\text {max }}}{\cos \phi_{0}}+\frac{1}{d_{\text {min }}}\right)$ and $\mu^{-1}=1+2 d_{\min } \kappa_{\text {min }}$.
Here $d_{\min }=\min _{i \neq j} d\left(K_{i}, K_{j}\right)$ and $d_{\max } \leq \operatorname{diam} K$, while $\kappa_{\min }>0$ and $\kappa_{\max }$ are respectively the minimum and maximum curvatures of the boundary ∂K, and $\phi_{0} \in[0, \pi)$ is an angle bounding above the angle between the reflected ray and the outwards normal at reflections on certain trajectories. The proof of Theorem 1.1 is completed in Section 4; more precise bounds are considered in 4.1.

In particular, it follows from the above result that $\operatorname{dim}_{H} M_{0}$ is non-zero (as follows from [PT93, Chapter 4] and possibly can be derived in our case from [MM83]), and may be made arbitrarily small by moving the convex bodies apart-more precisely via the following result.

Theorem 1.2 Fix $A_{i} \in K_{i}(i=1, \ldots, u)$ and replace every K_{i} by $K_{i}(r):=K_{i}+$ $(r-1) A_{i}$ and M_{0} by the corresponding $M_{0}(r)(r>0)$. Then

$$
\operatorname{dim}_{H} M_{0}(r)=\frac{2 \ln (u-1)}{\ln r}+\mathcal{O}\left(\frac{1}{(\ln r)^{2}}\right) \quad \text { as } r \rightarrow \infty .
$$

A precise statement of error bounds for this decrease is also considered in Section 4 . Section 2 concerns the symbolic spaces used for the calculation of the Hausdorff dimension, while Section 3 shows how bi-Lipschitz homeomorphisms with the local unstable manifold image X_{0} are obtained from estimates of the evolution of the convex curves. Details of these estimates are given in an appendix; they use repeated applications of affine approximations to the billiard ball map (as does e.g. [BSC90]).

Acknowledgements The current paper arose out of the material of my Honours dissertation at the University of Western Australia. I thank L. Stoyanov for many helpful suggestions, and also W. E. Longstaff and T. Pakes, who commented on an earlier version of the paper.

We denote by $S_{t}(t \in \mathbb{R})$ the usual billiard flow (see [Bun89]) in the exterior $Q=\overline{\mathbb{R}^{2} \backslash K}$ of the obstacle $K=\bigcup_{i} K_{i} ;(p, w)=S_{t}(q, v)$ gives the position and velocity of a point mass at time t given initial position q and velocity v, and by convention $S_{\tau}(q, v)$ is defined as $\lim _{t \downarrow \tau} S_{t}(q, v)$ at points of discontinuity (reflections). Also denote by S^{1} the unit circle in \mathbb{R}^{2}, by n the 'outwards' unit normal field of ∂K, by $\hat{Q}=\left\{(q, v) \in Q \times S^{1} \mid q \in \operatorname{int} Q\right.$ or $\left.\left\langle n_{K}(q), v\right\rangle \geq 0\right\}$ the phase space of S_{t}, by π the canonical projection of \hat{Q} onto Q, and by $M=\left\{(q, v) \in \partial K \times S^{1} \mid\left\langle n_{K}(q), v\right\rangle \geq 0\right\}$ the boundary of \hat{Q}, a 2-dimensional compact manifold with u connected components. Let $t_{j}(x) \in[-\infty, \infty](j \in \mathbb{Z})$ denote the time of the j-th reflection of $x \in \hat{Q}$, let $\hat{Q}^{\prime}=t_{1}^{-1}(0, \infty)$, let $M^{\prime}=M \cap \hat{Q}^{\prime}$ (again compact), and denote the billiard ball map by $B: M^{\prime} \rightarrow M, x \rightarrow S_{t_{1}(x)}(x)$. Then B is invertible and smooth (which shall mean C^{3}) except where the image intersects the tangent bundle of K, and its restriction to $M_{0}=\left\{x \in M| | t_{j}(x) \mid<\infty\right.$ for all $\left.j \in \mathbb{Z}\right\}$ is a bijection.

Finally let $d_{\max } \leq \operatorname{diam} K$ be the maximum value of $\left.t_{1}\right|_{M^{\prime}}\left(\right.$ note $d_{\min }=$ $\min _{i \neq j} d\left(K_{i}, K_{j}\right)$ is the minimum). The unstable set of $x \in M_{0}$ in M under B is

$$
Z=\left\{y \in M| | t_{j}(y) \mid<\infty \text { for all } j \leq 0 \text { and } d\left(B^{j}(y), B^{j}(x)\right) \rightarrow 0 \text { as } j \rightarrow-\infty\right\},
$$

however we write the unstable set of x (in M_{0}) to mean $W^{(\mathrm{u})}(x)=Z \cap M_{0}$, while keeping the ϵ-local unstable manifold (see below; as shown in Section 2, M_{0} is a Cantor set, so cannot contain any manifolds) as $W_{\epsilon}^{(\mathrm{u})}(x)=\left\{y \in Z \mid d\left(B^{j}(y), B^{j}(x)\right)<\epsilon\right.$ for all $j \leq 0\}$.

Let $X: q(s), s \in(0,1)$ be a smooth strictly convex curve in int Q, with "outer" unit normal field n_{X} parametrized by $n(s)=n_{X}(q(s))$, and let \hat{X} be the corresponding curve in \hat{Q} parametrized by $(q(s), n(s))$. We assume no point of \hat{X} has a forward trajectory anywhere tangent to K. Also let $k_{0}(s)$ be the curvature of X at $q(s)$, let $\hat{X}_{t}=S_{t}(\hat{X})$, let $X_{t}=\pi \hat{X}_{t}(t \in \mathbb{R})$, let $t_{j}(s)=t_{j}(q(s), n(s))$, and, where they are defined, let $q_{j}(s)=\pi B^{j}(q(s), n(s))$ be the j-th reflection point of $(q(s), n(s)), \phi_{j}(s)$ be the (acute) angle which the reflected ray makes with the outer normal to K at the j-th reflection, and let $d_{j}(s)=t_{j}(s)-t_{j-1}(s)$ be the distance between the $(j-1)$-th and j-th reflection points $(j \in \mathbb{Z})$. Finally let $\hat{X}_{0}=\left\{(q(s), n(s)) \mid t_{j}(s)<\infty\right.$ for all $j \geq 0\}$ and $X_{0}=\pi \hat{X}_{0}$, analagous to M_{0}. It is shown in [Sin70] that if $0<t<$ $t_{1}(s)$ for all s then the parametrization $\hat{X}_{t}:(p(s), w(s))$ induced by $\hat{X}:(q(s), n(s))$ is smooth, and X_{t} is strictly convex, with outer unit normal field parametrized by $w(s)$ and curvature parametrized by $\varkappa_{t}(s)=\frac{k_{0}(s)}{1+t k_{0}(s)}$. If $j \in \mathbb{Z}$ and $t_{j}(s)$ is finite, then we can define $k_{j}(s)=\lim _{t t_{j}(s)} \varkappa_{t}(s)$ so that for $t_{j}(s)<T<t_{j+1}(s)$ (between reflections), the following identity applies, and also (due to [Sin70], see also [Sin79]) a recurrence relation over multiple reflections.

$$
\begin{gather*}
\varkappa_{T}(s)=\frac{k_{j}(s)}{1+\left(T-t_{j}(s)\right) k_{j}(s)} \tag{1.2}\\
k_{j+1}(s)=\frac{k_{j}(s)}{1+d_{j}(s) k_{j}(s)}+2 \frac{\kappa_{K}\left(q_{j+1}(s)\right)}{\cos \phi_{j+1}(s)} . \tag{1.3}
\end{gather*}
$$

This curvature is achieved on the piecewise smooth curve $X_{t_{j}(s)}$; one of two components (X, K convex) is the strictly convex curve

$$
Y=\left\{p(w) \in X_{t_{j}(s)} \mid w \in(0,1), t_{j}(w) \leq t_{j}(s)\right\}
$$

which has a (one-sided limiting) curvature of $k_{j}(s)$ at the endpoint $p(s)=q_{j}(s)$.
Since the situation locally near $x \in M_{0}$ is the same as for Sinai billiards, the existence of local stable and unstable manifolds follows from [Sin70] (see also [LM96]). Namely, a local unstable set $W_{\epsilon}^{(\mathrm{u})}(x)$ of a point $x \in M_{0}$ is a 'strictly convex' onedimensional submanifold of M^{\prime} in the sense that for any sufficiently small $\eta>0, \hat{X}=$ $S_{\eta}\left(W_{\epsilon}^{(\mathrm{u})}(x)\right)$ consists of a strictly convex curve (X) and its associated outer unit normal field, and if $\pi x \in K_{i}(1 \leq i \leq u)$, then $\pi W_{\epsilon}^{(\mathrm{u})}(x) \subseteq \partial K_{i}$. Local stable manifolds relate to strictly concave curves in an analogous way.

2 Coding of M_{0} and X_{0}

In this section we consider a symbolic coding of M_{0} and calculate some quantities for the symbolic spaces which will later be transferred to estimate $\operatorname{dim}_{\mathrm{H}}\left(M_{0}\right)$. Fixing $K=\bigcup_{i=1}^{u} K_{i}$ with $u \geq 2$, for each $x \in M_{0}$ we have a bi-infinite sequence of indices $\alpha=\left(\alpha_{i}\right)_{i=-\infty}^{\infty} \subseteq\{1, \ldots, u\}$; each α_{i} corresponding to the boundary $\partial K_{\alpha_{i}}$ on which the i-th reflection point $\pi B^{i}(x)$ lies. By convexity arguments $\alpha_{i} \neq \alpha_{i+1}$ for all i, so define the symbol space Σ as follows.

$$
\Sigma=\left\{\left(\alpha_{i}\right)_{i=-\infty}^{\infty} \in \prod_{j=-\infty}^{\infty}\{1, \ldots, u\} \mid \alpha_{i} \neq \alpha_{i+1} \text { for all } i \in \mathbb{Z}\right\}
$$

Also let $f: M_{0} \rightarrow \Sigma, x \mapsto \alpha$ denote the representation map. The (two-sided) subshift $\sigma: \Sigma \rightarrow \Sigma,\left(\alpha_{i}\right)_{i \in \mathbb{Z}} \mapsto\left(\alpha_{i+1}\right)_{i \in \mathbb{Z}}$ (of finite type) is continuous under each metric d_{θ} $(\theta \in(0,1))$ on Σ,

$$
d_{\theta}\left(\left(\alpha_{i}\right)_{i \in \mathbb{Z}},\left(\beta_{i}\right)_{i \in \mathbb{Z}}\right)= \begin{cases}0, & \text { if } \alpha_{i}=\beta_{i} \text { for all } i \in \mathbb{Z} \\ \theta^{n}, & \text { if } n=\max \left\{j \geq 0 \mid \alpha_{i}=\beta_{i} \text { for all }|i|<j\right\},\end{cases}
$$

as each d_{θ} induces the topology of Σ as a subspace of $\prod_{j=-\infty}^{\infty}\{1, \ldots, u\}$ with the product topology.

For the remainder of the current paper, we assume the following condition of Ikawa [Ika88] on K, with which q_{1}, q_{2}, q_{3} are non-collinear whenever $i_{1} \neq i_{2} \neq i_{3}$ and $q_{j} \in K_{i_{j}}$ for $j=1,2,3$.
(H) For $1 \leq i, j, k \leq u, i \neq k \neq j$ implies the convex hull of $K_{i} \cup K_{j}$ is disjoint from K_{k}.

As is well known, $\left(M_{0}, B\right)$ is then conjugate to the subshift (Σ, σ); see [Mor91] and also related results in [BSC90]. In particular this may be derived from the following two lemmas, the first of which is clearly not in general true (as regards trajectories) without (H).

Lemma 2.1 If K satisfies condition (H), then for any finite sequence of indices $1 \leq$ $i_{1}, \ldots, i_{n} \leq u(n \geq 3)$ such that $i_{j} \neq i_{j+1}, j=1, \ldots, n-1$, the corresponding function

$$
F: K_{i_{1}} \times \cdots \times K_{i_{n}} \rightarrow \mathbb{R}, \quad\left(q_{1}, \ldots, q_{n}\right) \mapsto \sum_{j=1}^{n-1}\left\|q_{j}-q_{j+1}\right\|
$$

achieves its minimum at some $\left(p_{1}, \ldots, p_{n}\right)$ such that $p_{j} \in \partial K_{i j}$ for all j. Specifically, p_{1}, \ldots, p_{n} are the successive reflection points of a periodic billiard trajectory in Q which is normal to $\partial K_{i_{1}}$ at p_{1} and normal to $\partial K_{i_{n}}$ at p_{n}.

Lemma 2.2 If K satisfies (\mathbf{H}), there exist $C>0$ and $\delta \in(0,1)$ such that any $x, y \in$ $B^{-n}(M)(n \geq 1)$ with reflection points $q_{j}=\pi B^{j}(x), p_{j}=\pi B^{j}(y)$ lying in the same components $\partial K_{\beta_{j}}\left(\beta_{j} \in\{1, \ldots, u\}, j=0, \ldots, n\right)$ must have

$$
\left|q_{j}-p_{j}\right| \leq C\left(\delta^{j}+\delta^{n-j}\right) \quad \text { for each } j=0, \ldots, n .
$$

The proof of Lemma 2.1 is essentially described in [Sjö90, Appendix B], [Mor91, pp. 824-825], while we refer to [PS92, Chapter 10] for the above formulation of Lemma 2.2; see also [Ika88, Section 3] in relation to both. Here we summarize the results on the coding of M_{0}.

Theorem 2.3 If $u \geq 2$ and $\theta \in(0,1)$, f is a homeomorphism of M_{0} (topology induced by M) onto $\left(\Sigma, d_{\theta}\right)$, and the shift σ is topologically conjugate to B : $B=f^{-1} \circ \sigma \circ f$.

Proof Let $\left(\beta_{i}\right)_{i=-\infty}^{\infty} \in \Sigma, N \geq 3$, and denote by $M_{\beta}^{(N)}$ the set of points of M whose trajectories make at least N reverse and N forward reflections, consecutively from the components $K_{\beta_{-N}}, K_{\beta_{-N+1}}, \ldots, K_{\beta_{N}} . M_{\beta}^{(N)}$ is closed in M^{\prime}, and nonempty by Lemma 2.1, so $f^{-1}\{\beta\}=\bigcap_{N=3}^{\infty} M_{\beta}^{(N)}$ is nonempty by bicompactness.

Now if $x, y \in f^{-1}\{\beta\}$ then

$$
|\pi x-\pi y|=\left|\pi B^{n}\left(B^{-n}(x)\right)-\pi B^{n}\left(B^{-n}(y)\right)\right| \leq C\left(\delta^{n}+\delta^{m-n}\right)
$$

for any $m \geq n$ by Lemma 2.2. Letting $m \rightarrow \infty$ and then $n \rightarrow \infty$ gives $\pi x=\pi y$, and similarly $\pi B(x)=\pi B(y)$, so f is a bijection. f^{-1} is continuous since if $\alpha \in \Sigma$, $x=f^{-1}(\alpha)$ and $U \subseteq M$ is an open neighborhood of x, then

$$
\pi^{-1} B_{|\cdot|}(\pi x ; \epsilon) \cup(\pi B)^{-1} B_{|\cdot|}(\pi(B(x)) ; \epsilon) \subseteq U
$$

for sufficiently small $\epsilon>0, \delta^{N-1}<\frac{\epsilon}{2 C}$ for sufficiently large N, and each $y \in M_{\alpha}^{(N)}$ has

$$
|\pi x-\pi y|=\left|\pi B^{N}\left(B^{-N}(x)\right)-\pi B^{N}\left(B^{-N}(y)\right)\right| \leq C\left(\delta^{N}+\delta^{2 N-N}\right)=2 C \delta^{N}<\epsilon
$$

and similarly $|\pi B(x) \pi B(y)|<\epsilon$. Since Σ is compact, f is a homeomorphism, and $B=f^{-1} \circ \sigma \circ f$ follows.

Now assuming $u \geq 3$ to avoid the trivial case of a single 2-periodic orbit, it follows that M_{0} is a (compact) topological Cantor set, B is topologically transitive on M_{0}, and its periodic points are dense in M_{0}. Hyperbolicity of M_{0} follows from [Sin70] so M_{0} is basic, and hence is the nonwandering set of B over M_{0}.
X_{0} can of course now be coded by forward sequences via a coding map $\Upsilon: X_{0} \rightarrow$ Σ_{+}defined in the same manner as f (that Υ is injective will be shown in Section 3), where Σ_{+}is the compact ultrametric space under natural metrics $d_{\theta}: \Sigma_{+} \times \Sigma_{+} \rightarrow \mathbb{R}$ $(\theta \in(0,1))$ defined as follows.

$$
\begin{gathered}
\Sigma_{+}=\left\{\left(\alpha_{i}\right)_{i=1}^{\infty} \in \prod_{j=1}^{\infty}\{1, \ldots, u\} \mid \alpha_{i} \neq \alpha_{i+1} \text { for all } i \geq 1\right\} \\
d_{\theta}\left(\left(\alpha_{i}\right)_{i=1}^{\infty},\left(\beta_{i}\right)_{i=1}^{\infty}\right)= \begin{cases}0, & \text { if } \alpha_{i}=\beta_{i} \text { for all } i \geq 1 \\
\theta^{n}, & \text { if } n=\max \left\{j \geq 0 \mid \alpha_{i}=\beta_{i} \text { for all } 1 \leq i \leq j\right\}\end{cases}
\end{gathered}
$$

With the equivalence relations $\sim_{m}(m \geq 1)$ given by $\left(\alpha_{i}\right)_{1}^{\infty} \sim_{m}\left(\beta_{i}\right)_{1}^{\infty} \Longleftrightarrow \alpha_{i}=$ β_{i} for all $1 \leq i \leq m$, and their equivalence classes the cylinders $[\alpha]_{m}$ (also define \sim_{0} such that $[\alpha]_{0}=\Sigma_{+}$for all $\alpha \in \Sigma_{+}$), we can make the following calculations in $\left(\Sigma_{+}, d_{\theta}\right)$, useful in later sections where convex front estimates and Σ_{+}are considered more than Σ. Calculations of exactly the same quantities are most likely available elsewhere, and the proofs are included only for completeness. Certainly the first lemma uses essentially the same argument as [Edg90, (6.2.1)] (apparently originally due to A. N. Kolmogorov).

Lemma 2.4 For any $\alpha \in \Sigma_{+}$and $n \in \mathbb{N}, \operatorname{dim}_{H}\left([\alpha]_{n}\right)=\frac{-\ln (u-1)}{\ln \theta}$.
Proof Let $z=(u-1)^{-1}$, let \mathcal{A} be the cover $\left\{[\alpha]_{n} \mid \alpha \in \Sigma_{+}, n \in \mathbb{N}\right\}$ of Σ_{+}, define $C: \mathcal{A} \rightarrow \mathbb{R},[\alpha]_{n} \mapsto z^{n}$, and let \mathcal{M} be the outer measure on Σ_{+}constructed from \mathcal{A} and C by

$$
\mathcal{M}: \mathbb{P}\left(\Sigma_{+}\right) \rightarrow \mathbb{R}, B \mapsto \inf _{\mathcal{U}} \sum_{A \in \mathcal{U}} C(A),
$$

where $\mathbb{P}\left(\Sigma_{+}\right)=\left\{B \mid B \subseteq \Sigma_{+}\right\}$denotes the power set of Σ_{+}, and the infimum is taken over all countable $U \subseteq \mathcal{A}$ which cover the set B. Now $\operatorname{diam}\left([\alpha]_{n}\right)=$ $\sup _{\beta, \gamma \in[\alpha]_{n}} d_{\theta}(\beta, \gamma)=\theta^{n}$ (since $\left.u \geq 3\right)$. We will show that in fact $\mathcal{M}\left([\alpha]_{n}\right)=$ $C\left([\alpha]_{n}\right)=\left(\operatorname{diam}[\alpha]_{n}\right)^{\ln z / \ln \theta}$ for any $[\alpha]_{n} \in \mathcal{A}$.

For any countable cover $\mathcal{U}=\left\{\left[x_{i}\right]_{n_{i}} \mid i \in I\right\} \subseteq \mathcal{A}$ of $[\alpha]_{n}$, since every element is an open ball and $[\alpha]_{n}$ is compact, we can assume \mathcal{U} is a finite cover, without increasing $\sum_{A \in \mathcal{U}} C(A)$. We also assume every $A \in \mathcal{U}$ has $A \subseteq[\alpha]_{n}$ and the sets of U are pairwise disjoint. Letting $m=\max _{i \in I} n_{i}$, each $\left[x_{i}\right]_{n_{i}}$ is the disjoint union of $(u-1)^{m-n_{i}}$ classes of \sim_{m}, say represented by $y_{i, 1}, \ldots, y_{i,(u-1)^{m-n_{i}}}$. Then

$$
C\left(\left[x_{i}\right]_{n_{i}}\right)=(u-1)^{-n_{i}}=(u-1)^{m-n_{i}}(u-1)^{-m}=\sum_{j} C\left(\left[y_{i, j}\right]_{m}\right) .
$$

Since the $\left[x_{i}\right]_{n_{i}}$ are disjoint, we have $\left[y_{i_{1}, j_{1}}\right]_{m} \cap\left[y_{i_{2}, j_{2}}\right]_{m}=\varnothing$ whenever $i_{1} \neq i_{2}$. Since the $\left[x_{i}\right]_{n_{i}}$ cover $[\alpha]_{n}$, the $\left[y_{i, j}\right]_{m}$ are all the distinct classes of \sim_{m} inside $[\alpha]_{n}$. Hence

$$
C\left([\alpha]_{n}\right)=(u-1)^{m-n}(u-1)^{-m}=\sum_{i, j} C\left(\left[y_{i, j}\right]_{m}\right)=\sum_{i} C\left(\left[x_{i}\right]_{n_{i}}\right)
$$

Since \mathcal{U} was arbitrary, this shows C is countably subadditive. It follows that $\left.\mathcal{M}\right|_{\mathcal{A}}=$ C, since for any \mathcal{U} covering $[\alpha]_{n}$, the restriction to $[\alpha]_{n}$ is also a cover, and

$$
C\left([\alpha]_{n}\right) \leq \sum_{A \in \mathcal{U}} C\left(A \cap[\alpha]_{n}\right) \leq \sum_{A \in \mathcal{U}} C(A) .
$$

Here we used the convention $C(\varnothing)=0$ (we could have included it in \mathcal{A}), and the last inequality follows since for $A=\left[x_{i}\right]_{n}$, either $A \cap[\alpha]_{n}=\varnothing$ (if $x_{i} \notin[\alpha]_{n}$), or $A \subseteq[\alpha]_{n}$ if $x_{i} \in[\alpha]_{n}$ and $n_{i} \geq n$, or $[\alpha]_{n} \subseteq A$ if $x_{i} \in[\alpha]_{n}$ and $n_{i}<n$.

We now use this expression for $\left.\mathcal{N}\right|_{\mathcal{A}}$ to show that when $s=\ln z / \ln \theta$, the s dimensional Hausdorff measure \mathcal{H}^{s} (see e.g. [Edg90]) and \mathcal{M} coincide on the whole
of $\mathbb{P}\left(\Sigma_{+}\right)$. This is enough to show that $\operatorname{dim}_{H}\left([\alpha]_{n}\right)=s$, since $\mathcal{M}\left([\alpha]_{n}\right)$ is clearly finite and non-zero for any $\alpha \in \Sigma_{+}, n \in \mathbb{N}$.

For any $A \subseteq \Sigma_{+}$with cardinality $|A|>1$, there is a maximal $n \in \mathbb{N}$ such that $A \subseteq[\alpha]_{n}$ for some $\alpha \in \Sigma_{+}$. Then for any $\beta=\left(\beta_{i}\right)_{i=1}^{\infty} \in A$ there is a $\gamma=\left(\gamma_{i}\right)_{i=1}^{\infty} \in A$ such that $\beta_{n+1} \neq \gamma_{n+1}$, and $d_{\theta}(\beta, \gamma)=\theta^{n}=\operatorname{diam}\left([\alpha]_{n}\right) \leq \operatorname{diam} A \leq \operatorname{diam}\left([\alpha]_{n}\right)$. Consequently (and clearly also true for $|A|=0,1$) we have $\mathcal{M}(A) \leq C\left([\alpha]_{n}\right)=$ $\left(\operatorname{diam}[\alpha]_{n}\right)^{s}=(\operatorname{diam} A)^{s}$.

Now, recall that for any $B \subseteq \Sigma_{+}, \mathcal{H}^{s}(B)=\lim _{\epsilon\rfloor 0} \mathcal{H}_{\epsilon}^{s}(B)$, where each $\mathcal{H}_{\epsilon}^{s}$ was constructed to be the largest outer measure such that $\mathcal{H}_{\epsilon}^{s}(E) \leq(\operatorname{diam} E)^{s}$ for all $E \in \mathcal{U}=\left\{A \subseteq \Sigma_{+} \mid \operatorname{diam} A<\epsilon\right\}$. By letting ϵ tend to 0 , we have $\mathcal{M} \leq \mathcal{H}_{\epsilon}^{s}$, and hence $\mathcal{M} \leq \mathcal{H}^{s}$.

For the converse, consider arbitrary $\alpha \in \Sigma_{+}, n \in \mathbb{N}$ and $\epsilon>0$. For any $m>n$,

$$
[\alpha]_{n}=\bigcup_{\beta \in[\alpha]_{n}}[\beta]_{m}=\bigcup_{i=1}^{(u-1)^{m-n}}\left[\beta_{i}\right]_{m}
$$

where $\beta_{1}, \ldots, \beta_{(u-1)^{m-n}}$ are representatives of the equivalence classes of \sim_{m} contained in $[\alpha]_{n}$. If m is sufficiently large that $\theta^{m}<\epsilon$, then

$$
\begin{aligned}
\mathcal{H}_{\epsilon}^{s}\left[[\alpha]_{n}\right) & \leq \sum_{i=1}^{(u-1)^{m-n}}\left(\operatorname{diam}\left[\beta_{i}\right]_{m}\right)^{s}=\sum_{i=1}^{(u-1)^{m-n}}\left(\theta^{m}\right)^{\frac{\ln z}{m \ell}}=(u-1)^{m-n} z^{m} \\
& =(u-1)^{-n}=C\left([\alpha]_{n}\right) \quad \text { for any } \alpha \in \Sigma_{+} \text {and } n \in \mathbb{N} .
\end{aligned}
$$

Hence $\mathcal{H}_{\epsilon}^{s} \leq \mathcal{M}$ by maximality of \mathcal{M} as an outer measure with $\left.\mathcal{M}\right|_{\mathcal{A}} \leq C$. The result that $\operatorname{dim}_{H}\left([\alpha]_{n}\right)=s=-\ln (u-1) / \ln \theta$ follows.

Another dimension (sometimes known as (upper) packing dimension) is of interest for the cylinders of Σ_{+}; denoted $\overline{\text { dim }}_{\mathrm{p}}$, it is constructed similarly to Hausdorff dimension, in the following way.

Definition 2.5 For metric space X and $s, \epsilon>0$, define $P_{\epsilon}^{s}: \mathbb{P}(X) \rightarrow[0, \infty]$ for any $B \subseteq X$ by $P_{\epsilon}^{s}(B)=\sup \sum_{i \in I}\left(\operatorname{diam} A_{n}\right)^{s}$, the supremum being over all countable families of pairwise disjoint closed balls with diameter less than ϵ and centres in B (these will be called ϵ-packings of B, and always include the zero-radius packings). Also define $P^{s}: \mathbb{P}(X) \rightarrow[0, \infty], B \mapsto \inf _{\epsilon>0} P_{\epsilon}^{s}(B)$, and let the s-dimensional packing outer measure \mathcal{P}^{s} be the outer measure constructed by $\mathcal{P}^{s}(B)=\inf _{\mathcal{U}} \sum_{A \in \mathcal{U}} P^{s}(A)$, where the infimum is over all covers \mathcal{U} of A. Given $B \subseteq X, s \mapsto \mathcal{P}^{s}(B)$ is nonincreasing and has at most one finite nonzero value. The packing dimension is defined by the following equation.

$$
\overline{\operatorname{dim}_{\mathrm{p}}} B= \begin{cases}0, & \text { if } \mathcal{P}^{s}(B)=0 \text { for all } s>0 \\ \infty, & \text { if } \mathcal{P}^{s}(B)=\infty \text { for all } s>0 \\ \inf \left\{s>0 \mid \mathcal{P}^{s}(B)=0\right\}, & \text { otherwise. }\end{cases}
$$

This dimension is monotonic, non-increasing under Lipschitz maps, and has the following property for cylinders of Σ_{+}.

Lemma 2.6 For any $\alpha \in \Sigma_{+}$and $n \in \mathbb{N}, \overline{\operatorname{dim}_{p}}\left([\alpha]_{n}\right)=\operatorname{dim}_{H}\left([\alpha]_{n}\right)$.

Proof Let $A \subseteq \Sigma_{+}, \epsilon>0$, and $z=(u-1)^{-1}, s=\ln z / \ln \theta$ as in the proof of Lemma 2.4. Note that the closed ball of radius $r>0$ centred at $x \in A$ is $\bar{B}(x ; r)=$ $[x]_{n}=\bar{B}\left(x ; \theta^{n}\right)$ where n is the minimum non-negative integer such that $\theta^{n} \leq r$, so the equivalence classes $[x]_{n}(n \geq 0)$ are exactly the closed balls of positive radius in Σ_{+}. For any $n \in \mathbb{N}, 0<\epsilon<\theta^{n}, \alpha \in \Sigma_{+}$and for a ϵ-packing of $[\alpha]_{n}$ by $\bar{B}\left(x_{i} ; r_{i}\right)$, $x_{i} \in[\alpha]_{n}, i \in I$ (I countable), where in addition $r_{i}<\epsilon$ for all i, suppose temporarily that $r_{i} \neq 0$ for all i. Then we have $\bar{B}\left(x_{i} ; r_{i}\right)=\left[x_{i}\right]_{n_{i}} \subseteq[\alpha]_{n}$, where each n_{i} is minimal such that $\theta^{n_{i}} \leq r_{i}<\epsilon<\theta^{n}$. As a result, we have the following inequality.

$$
\begin{aligned}
\sum_{i \in I}\left(\operatorname{diam} \bar{B}\left(x_{i} ; r_{i}\right)\right)^{s} & =\sum_{i \in I} \theta^{n_{i} s}=\sum_{i \in I}(u-1)^{-n_{i}} \\
& =\sum_{i \in I} \mathcal{M}\left(\left[x_{i}\right]_{n_{i}}\right)=\mathcal{M}\left(\bigcup_{i \in I}\left[x_{i}\right]_{n_{i}}\right) \leq \mathcal{M}\left([\alpha]_{n}\right)
\end{aligned}
$$

This still holds if $r_{i}=0$ for some $i \in I$, as the zero-radius balls do not contribute to the left hand side. Note also that the upper bound here is attained for some suitable packing. For, if $m \in \mathbb{N}$ is sufficiently large, $(u-1)^{-m} \leq \epsilon$ and $[\alpha]_{n}$ is the disjoint union of the distinct equivalence classes of \sim_{m} it contains, say having representatives $x_{1}, \ldots, x_{(u-1)^{m-n}}$. Now

$$
\sum_{i=1}^{(u-1)^{m-n}}\left(\operatorname{diam}\left[x_{i}\right]_{m}\right)^{s}=\sum_{i=1}^{(u-1)^{m-n}} \theta^{m s}=(u-1)^{m-n} z^{m}=(u-1)^{-n}
$$

So $P_{\epsilon}^{s}\left([\alpha]_{n}\right)=z^{n}$, and since $\epsilon \in\left(0, \theta^{n}\right)$ was arbitrary, this also shows $P^{s}\left([\alpha]_{n}\right)=z^{n}$ and hence $\mathcal{P}^{s}\left([\alpha]_{n}\right) \leq z^{n}=C\left([\alpha]_{n}\right)$ in the notation of the proof of Lemma 2.4. Since $[\alpha]_{n}$ was arbitrary, we have $\mathcal{P}^{s} \leq \mathcal{M}=\mathcal{H}^{s}$.

It remains to show the converse, $\mathcal{H}^{s} \leq \mathcal{P}^{s}$. Considering $A \subseteq \Sigma_{+}$, if $|A|=0,1$ then the result is obvious, as $\mathcal{M}(A)=0$. If $|A|>1$, then as in the previous proof there is some $[\alpha]_{n} \supseteq A$ such that $\operatorname{diam} A=\operatorname{diam}[\alpha]_{n}=\theta^{n}$. Let $\epsilon>0$ and $m>n$ be sufficiently large that $\theta^{m}<\epsilon$, and let $\left\{\left[x_{i}\right]_{m} \mid i \in\{1, \ldots, N\}\right\}$ be a finite ϵ packing of A by pairwise disjoint closed balls with $x_{i} \in A$. Suppose there is some x in $A \backslash \bigcup_{i=1}^{N}\left[x_{i}\right]_{m}$; letting $x_{N+1}=x$ and $I=\{1, \ldots, N+1\}$ then gives a packing of A with $N+1$ balls. But there are only $(u-1)^{m-n}$ distinct equivalence classes of \sim_{m} within $[\alpha]_{n}$, so the above induction must fail for some N. Then $\left\{\left[x_{i}\right]_{m} \mid i \in\{1, \ldots, N\}\right\}$ is an ϵ-cover for A, so $\mathcal{M}(A) \leq \sum_{i=1}^{N} C\left(\left[x_{i}\right]_{m}\right)=\sum_{i=1}^{N}\left(\operatorname{diam}\left[x_{i}\right]_{m}\right)^{s} \leq P_{\epsilon}^{s}(A)$. Since $\epsilon>0$ was arbitrary in the above, we have $\mathcal{M}(A) \leq P^{s}(A)$ for any $A \subseteq \Sigma_{+}$. Since \mathcal{P}^{s} is the greatest outer measure such that $P^{s} \leq \mathcal{P}^{s}$, this shows $\mathcal{H}^{s}=\mathcal{M} \leq \mathcal{P}^{s}$.

Figure 3.1: Triangles in the estimate of ϕ_{0}.

$3 \quad \phi_{0}$ and Hausdorff Dimension of X_{0}

Now we give the convex front estimates which will show the coding of forward trajectories strong enough to relate the previous calculations to $\operatorname{dim}_{H} X_{0}$. For a convex front X with n transversal (forward) reflections (say from bodies $K_{\beta_{1}}, \ldots, K_{\beta_{n}}$), we have $d_{j}(s) \in\left[d_{\text {min }}, d_{\text {max }}\right]$ and $\kappa_{K}\left(q_{j}(s)\right) \in\left[\kappa_{\min }, \kappa_{\text {max }}\right]$ for any $1 \leq j \leq n$, and if every $\phi_{j}(s)$ is similarly bounded above by $\phi_{0}<\frac{\pi}{2}$, then we may use (1.3) and $k_{j}(s) \geq 0$ $(0 \leq j \leq n-1)$ to obtain bounds $2 \kappa_{\min } \leq k_{j}(s) \leq \frac{1}{d_{\text {min }}}+\frac{2 \kappa_{\text {max }}}{\cos \phi_{0}}$ for all $1 \leq j \leq n$. It follows from (\mathbf{H}) that a bound $\phi_{0} \leq \arccos \left(b / d_{\max }\right)$ does exist, where b denotes the minimum distance between K_{k} and the convex hull of K_{i} and $K_{j}(i \neq k \neq j)$, if every point of \hat{X} makes a reverse-time reflection.

For example, if $x \in \pi^{-1}\left(K_{i}\right), B(x) \in \pi^{-1}\left(K_{j}\right), B^{2}(x) \in \pi^{-1}\left(K_{k}\right), E=\pi x, F=$ $\pi B(x), G=\pi B^{2}(x)$, and J is the first intersection of the normal ray from F with $\operatorname{Cvx}\left(K_{i}, K_{k}\right)$, then let ℓ be the line tangent to $\partial \operatorname{Cvx}\left(K_{i}, K_{k}\right)$ at J. The points E, G must lie in one closed halfspace of ℓ, while (by definition of J) F lies in the other. We can get an estimate for $\phi=\angle E F J=\angle G F J$ as follows. If $F \in \ell$, we get $E, G \in \ell$ and $\phi=0$. If $F \notin \ell$, the line segments $\overline{E F}$ and $\overline{F G}$ must intersect ℓ, say at E^{\prime} and G^{\prime} respectively, and also the line ℓ^{\prime} through J perpendicular to $\overline{F J}$ must intersect the rays $\overrightarrow{F E}, \overrightarrow{F G}$, say at $E^{\prime \prime}, G^{\prime \prime}$. Then either $\left|E^{\prime \prime} F\right| \leq\left|E^{\prime} F\right|$ or $\left|G^{\prime \prime} F\right| \leq\left|G^{\prime} F\right|$; we without loss of generality assume the former, so that $\cos \angle E F J=\frac{|F J|}{\left|E^{\prime \prime} F\right|} \geq \frac{b}{d_{\max }}$. Essentially the same argument (with an inductive step for $F \in \ell$) can be used for $\operatorname{dim} M \geq 3$ without assuming smoothness of ∂K or convexity of K_{1}, \ldots, K_{u}. By similar methods, there also exists an angle $\phi_{1} \in(0, \pi)$ bounding above all angles between points of K_{i}, K_{j}, K_{k} where $i \neq j \neq k$.

As a result of the above bounds on $k_{j}(s)$, if we set

$$
\lambda=\left(1+d_{\max }\left(\frac{2 \kappa_{\max }}{\cos \phi_{0}}+\frac{1}{d_{\min }}\right)\right)^{-1} \quad \mu=\left(1+2 d_{\min } \kappa_{\min }\right)^{-1}
$$

then the bounds $\delta_{j}(s)=\frac{1}{1+d_{j}(s) k_{j}(s)} \in[\lambda, \mu]$ hold for all s and $j=1, \ldots, n$.

Let $q(s)$ parametrize X and $p(s)$ parametrize $\Gamma=\left\{\pi B^{n}(x) \mid x \in \hat{X}\right\} \subseteq \partial K_{\beta_{n}}$ by arc length, then the distance between endpoints x_{1}, x_{2} of X satisfies

$$
\begin{aligned}
\left\|x_{1}-x_{2}\right\| & =\left\|\int_{X} q^{\prime}(s) \mathrm{d} s\right\| \leq \int_{X}\left\|q^{\prime}(s)\right\| \mathrm{d} s=\int_{\Gamma}\left\|p^{\prime}(s)\right\|\left(\prod_{j=0}^{n-1} \delta_{j}(s)\right) \mathrm{d} s \\
& \leq \mu^{n-1} \int_{X} \delta_{0}(s) \mathrm{d} s \leq \mu^{n-1}|\Gamma| \leq \mu^{n-1} \max _{i}\left|\partial K_{i}\right|
\end{aligned}
$$

where we used $\delta_{0}<1$ and $\left\|q^{\prime}(s)\right\|=\left\|p^{\prime}(s)\right\| \prod_{j=0}^{n-1} \delta_{j}(s)$ (from (A.1)) obtained by repeatedly using estimates of evolutes of X from one reflection to the next (see Section A for details). Assuming both endpoints $x_{1}, x_{2} \in X$ have $(n+1)$-st forward reflections, but $y_{1}=\pi B^{n+1}\left(x_{1}\right) \in \partial K_{i}$ and $\pi B^{n+1}\left(x_{2}\right) \in \partial K_{j}, i \neq j$, we can obtain a similar bound from below for $\left\|x_{1}-x_{2}\right\|$. Specifically, let $\left[s_{1}, s_{2}\right]$ be an interval in which $s=s_{1}, s_{2}$ are the only values for which $(q(s), n(s))$ has an $(n+1)$-st reflection, with $q\left(s_{1}\right)=x_{1}$ and $y_{2}:=q_{n+1}\left(s_{2}\right) \in \partial K_{k}$, say. By the assumption of first reflection points in the convex set $K_{\beta_{1}}, X$ must be a simple arc, and the Lipschitz property for the inverse of its arc-length parametrization shows $\left\|x_{1}-x_{2}\right\| \geq \operatorname{Const}_{4} \int_{X}\left\|q^{\prime}(s)\right\| \mathrm{d} s \geq$ Const $_{4} \int_{s_{1}}^{s_{2}}\left\|q^{\prime}(s)\right\| \mathrm{d} s$. If we suppose $t_{n+1}\left(q\left(s_{1}\right), n\left(s_{1}\right)\right)<\tau:=t_{n+1}\left(q\left(s_{2}\right), n\left(s_{2}\right)\right)$ and that $q(s)$ corresponds to the parametrization $p(s)$ by arc length of $\pi S_{\tau}(\hat{X})$ (in particular its subcurve Y_{n+1} between $z=p\left(s_{1}\right)$ and $\left.y_{2}\right)$, then using (A.2) gives

To see that $\left\|y_{2}-z\right\|$ is bounded from below, note that if the angle $\angle z y_{1} y_{2}$ is obtuse then $\left\|y_{2}-z\right\| \geq\left\|y_{1}-y_{2}\right\| \geq d_{\text {min }}$. If $\angle z y_{1} y_{2}$ is acute, then the (unique) best approximation w to y_{2} on the ray from $B^{n}\left(q\left(s_{1}\right), n\left(s_{1}\right)\right)$ must lie on the same side of y_{1} as does z. Thus $\angle w y_{1} y_{2}=\angle z y_{1} y_{2}$ and $\left\|y_{2}-z\right\| \geq\left\|y_{2}-w\right\|=$ $\left\|y_{1}-y_{2}\right\| \sin \angle w y_{1} y_{2}$. Since $\pi-\angle z y_{1} y_{2}=\angle q_{n}\left(s_{1}\right) y_{1} y_{2}$ is bounded above by $\phi_{1} \in(0, \pi)$, we have $0<\pi-\phi_{1}<\angle z y_{1} y_{2}<\frac{\pi}{2}$, so $\left\|y_{2}-z\right\|>d_{\min } \sin \phi_{1}$. In either case, we have $\left\|x_{1}-x_{2}\right\| \geq$ Const $_{5} \lambda^{n}$ for a suitable positive constant.

Bounds such as those just derived may be recast as Lipschitz properties for the coding map $\Upsilon: X_{0} \rightarrow \Upsilon\left(X_{0}\right) \subseteq \Sigma_{+}$and a suitable inverse, albeit with respect to different metrics.

Proposition 3.1 Suppose there are constants $c, C>0$ such that $c \lambda^{n} \leq\|x-y\| \leq C \mu^{n}$ whenever $x, y \in X_{0}$ with $\Upsilon_{j}(x)=\Upsilon_{j}(y)$ for all $1 \leq j \leq n($ some $n)$, but $\Upsilon_{n+1}(x) \neq$ $\Upsilon_{n+1}(y)$. Then $\Upsilon: X_{0} \rightarrow \Sigma_{+}$is injective and a Lipschitz homeomorphism from X_{0} to $\left(\Upsilon\left(X_{0}\right), d_{\lambda}\right)$, and Υ^{-1} a Lipschitz homeomorphism from $\left(\Upsilon\left(X_{0}\right), d_{\mu}\right)$ onto X_{0}.

Proof Certainly Υ is injective, since for any $x \in X_{0}$ and sufficiently large $n \geq 1$, there is some $z \in X_{0}$ such that $\Upsilon(z) \sim_{n} \Upsilon(x)$ but $\Upsilon_{n+1}(z) \neq \Upsilon_{n+1}(x)$, and so if $y \in X_{0}$ has $\Upsilon(x)=\Upsilon(y)$ then $\|x-y\| \leq\|x-z\|+\|y-z\| \leq 2 C \mu^{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence Υ^{-1} is well-defined (and injective).

For distinct $x, y \in X_{0}$ and $n \geq 0$ maximal such that $\Upsilon_{i}(x)=\Upsilon_{i}(y)$ for all $i \leq n$, we have $d_{\lambda}(\Upsilon(x), \Upsilon(y))=\lambda^{n} \leq \frac{1}{c}\|x-y\|$. Similarly, for distinct $\alpha, \beta \in \Upsilon\left(X_{0}\right)$, $x=\Upsilon^{-1}(\alpha), y=\Upsilon^{-1}(\beta)$, and n as before, we have $\left\|\Upsilon^{-1}(\alpha)-\Upsilon^{-1}(\beta)\right\| \leq C \mu^{n}=$ $C d_{\mu}(\alpha, \beta)$. Finally, that the inverses

$$
\Upsilon: X_{0} \rightarrow\left(\Upsilon\left(X_{0}\right), d_{\mu}\right) \quad \text { and } \quad \Upsilon^{-1}:\left(\Upsilon\left(X_{0}\right), d_{\lambda}\right) \rightarrow X_{0}
$$

are also continuous follows from continuity of the identity

$$
I:\left(\Upsilon\left(X_{0}\right), d_{\lambda}\right) \rightarrow\left(\Upsilon\left(X_{0}\right), d_{\mu}\right)
$$

(for $\epsilon>0$ take $\mu^{n}<\epsilon$ and then $\lambda^{m}<\lambda^{n} \Longrightarrow \mu^{m}<\mu^{n}$).
Our use of this correspondence is to estimate the Hausdorff dimension of X_{0}. Since for some $\alpha \in \Sigma_{+}$and sufficiently large $n \geq 1$ the cylinder $[\alpha]_{n}$ is entirely contained in $\Upsilon\left(X_{0}\right)$, we have $\operatorname{dim}_{\mathrm{H}}\left([\alpha]_{n}, d_{\lambda}\right) \leq \operatorname{dim}_{\mathrm{H}} X_{0} \leq \operatorname{dim}_{\mathrm{H}}\left(\Sigma_{+}, d_{\mu}\right)$, where the bounds can be calculated by Lemma 2.4.

4 Hausdorff Dimension of M_{0}

It remains to relate $\operatorname{dim}_{\mathrm{H}} X_{0}$ to the Hausdorff dimension of M_{0}. If $\hat{X}=S_{\tau}\left(W_{\theta}^{(\mathrm{u})}(x)\right)$ $(\tau>0)$ is the image of a local unstable manifold $W_{\theta}^{(\mathrm{u})}(x)(\theta>0)$ of some $x \in M_{0}$ after a small evolution under the flow S_{t}, then

$$
\operatorname{dim}_{\mathrm{H}}\left(W_{\theta}^{(\mathrm{u})}(x) \cap M_{0}\right)=\operatorname{dim}_{\mathrm{H}} X_{0} \in\left[\frac{-\ln (u-1)}{\ln \lambda}, \frac{-\ln (u-1)}{\ln \mu}\right]
$$

(bi-Lipschitz image). We can also use these estimates for $\operatorname{dim}_{H}\left(W_{\theta}^{(\mathrm{ss}}(x) \cap M_{0}\right)$; these dimensions are independent of x (by [MM83] or [PV88]) but in any case the bounds given are independent of x and θ, and $W^{(\mathrm{u})}(x)=\operatorname{Refl} W^{(s)}(\operatorname{Refl}(x))$, where Refl: $\hat{Q} \rightarrow \hat{Q}$ is the smooth (certainly bi-Lipschitz) involution given by

$$
\operatorname{Refl}(q, v)= \begin{cases}(q,-v), & \text { for } q \in \operatorname{int} Q \\ \left(q, 2\left\langle n_{K}(q), v\right\rangle n_{K}(q)-v\right), & \text { for } q \in \partial K\end{cases}
$$

For Borel $A, B \subseteq \mathbb{R}^{n}$, the following inequalities (proofs appear in [Mat95]; the first is well-known ([Mar54]) and the second is due to [Tri82]) are known.

$$
\operatorname{dim}_{\mathrm{H}} A+\operatorname{dim}_{\mathrm{H}} B \leq \operatorname{dim}_{\mathrm{H}}(A \times B) \leq \operatorname{dim}_{\mathrm{H}} A+\overline{\operatorname{dim}_{\mathrm{p}}} B .
$$

Since $\overline{\operatorname{dim}_{\mathrm{p}}}\left(\Sigma_{+}, d_{\theta}\right)=\operatorname{dim}_{\mathrm{H}}\left(\Sigma_{+}, d_{\theta}\right)$ (see Lemma 2.6), for neighbourhoods $U \subseteq$ V of x and M_{0} in M respectively, θ small enough that $W_{\theta}^{(\mathrm{u})}(x), W_{\theta}^{(\mathrm{s})}(x) \subseteq U$, and $\Upsilon: W_{\theta}^{(\mathrm{u})}(x) \times W_{\theta}^{(\mathrm{s})}(x) \rightarrow R$ the usual local product map to an open rectangular neighbourhood R of x, it is enough to note that Υ is C^{1} to get

$$
\begin{aligned}
\frac{-2 \ln (u-1)}{\ln \lambda} & \leq \operatorname{dim}_{\mathrm{H}}\left(W_{\theta}^{(\mathrm{u})}(x) \cap M_{0}\right)+\operatorname{dim}_{\mathrm{H}}\left(W_{\theta}^{(\mathrm{s})}(x) \cap M_{0}\right) \\
& \leq \operatorname{dim}_{\mathrm{H}} R \leq \frac{-2 \ln (u-1)}{\ln \mu}
\end{aligned}
$$

That Υ is C^{1} follows from [Rob75] (see also [dM73], and [PT93, Appendix I] for some comments). Now the separability of M_{0} and the 'countable sup' property of Hausdorff dimension of Borel sets show $\operatorname{dim}_{\mathrm{H}} M_{0}=\operatorname{dim}_{\mathrm{H}}\left(R \cap M_{0}\right)$ for some x and R, so Theorem 1.1 is proved. Alternatively, that $\operatorname{dim}_{\mathrm{H}} M_{0}=\operatorname{dim}_{\mathrm{H}}\left(W_{\theta}^{(\mathrm{u})}(x) \cap M_{0}\right)+$ $\operatorname{dim}_{\mathrm{H}}\left(W_{\theta}^{(\mathrm{s})}(x) \cap M_{0}\right.$) independent of $x \in M_{0}$ (or θ if it is small enough) follows directly from [MM83] or [PV88].

In particular, $\operatorname{dim}_{\mathrm{H}} M_{0}>0$ for any such system (already known from [PT93, Chapter 4]), but may be made arbitrarily small by choosing $d_{\text {min }}$ large with respect to $\operatorname{diam}\left(K_{i}\right)$. Fixing arbitrarily $A_{i} \in K_{i}(i=1, \ldots, u)$ and considering the obstacles $K_{i}(r)=K_{i}+(r-1) A_{i}(r>0)$ defined in Section 1, we show below that the corresponding $b(r)=\inf _{i \neq k \neq j} d\left(L_{k}, \operatorname{Cvx}\left(L_{i}, L_{j}\right)\right)$ is positive for large r, and hence $K(r)=\bigcup_{i} K_{i}(r)$ still satisfies (H). In fact, we obtain an asymptotic as $r \rightarrow \infty$ for the dimension $\operatorname{dim}_{\mathrm{H}} M_{0}(r)$.

Theorem (Full Statement of Theorem 1.2) Under the above conditions,

$$
\operatorname{dim}_{H} M_{0}(r)=\frac{2 \ln (u-1)}{\ln r}+\mathcal{O}\left(\frac{1}{(\ln r)^{2}}\right) \quad \text { as } r \rightarrow \infty
$$

and for $\theta_{1} \in(0, \pi)$ the minimum angle between distinct K_{i}, K_{k}, K_{j} and r sufficiently large,

$$
\frac{\ln \frac{d_{\min }^{2} \sin \theta_{1}}{2 \kappa_{\max } \operatorname{diam}(K)^{3}}}{\ln r} \leq \frac{\ln r}{2 \ln (u-1)} \operatorname{dim}_{H} M_{0}(r)-1 \leq \frac{-\ln 2 \kappa_{\min } d_{\min }}{\ln r}
$$

Proof If $r>0$ is large enough, the minimum distance between any $L_{i}=K_{i}+$ $(r-1) A_{i}$ and L_{j} is $d_{\min }(r) \geq(r-1)\left\|A_{i}-A_{j}\right\|-\max _{x \in K_{i}, y \in K_{j}}\|x-y\| \geq$ $(r-1) d_{\min }-d_{\max }$, and similarly $d_{\max }(r) \leq(r-1) \max _{i, j}\left\|A_{i}-A_{j}\right\|+d_{\max } \leq$ $(r-1) \operatorname{diam}(K)+d_{\max } \leq r \operatorname{diam}(K)$. The distance $b(r)=\inf _{i \neq k \neq j} d\left(L_{k}, \operatorname{Cvx}\left(L_{i}, L_{j}\right)\right)$ also changes approximately linearly in r for large r; for $i \neq j$, fixed $F_{1} \in K_{k}, F=$ $F_{1}+(r-1) A_{k}, \ell$ a common tangent of L_{i} and L_{j} for which both components lie in the same closed halfspace (for definiteness, choose ℓ to be closest to F), and E, G the points of intersection of ℓ with L_{i} and L_{j} respectively, the height of triangle E, F, G is

$$
\frac{|E F||F G|}{|E G|} \sin \angle E F G \sim r \frac{\left\|A_{i}-A_{k}\right\|\left\|A_{j}-A_{k}\right\|}{\left\|A_{i}-A_{j}\right\|} \sin \angle A_{i} A_{k} A_{j}
$$

as $r \rightarrow \infty$, say let $\alpha=\frac{\sin \theta_{1}}{\operatorname{diam}(K)} d_{\min }^{2}<d_{\text {min }}$. Then $b(r) \geq \alpha r$ for r sufficiently large (case $i=j$ is clear), and $\cos \phi_{0}(r) \geq \frac{\alpha}{\operatorname{diam}(K)}$. Now bounds on $\lambda(r)^{-1}$ and $\mu(r)^{-1}$, respectively from above and below, are given by the following expressions.

$$
T_{1}(r)=1+\frac{2 \kappa_{\max } \operatorname{diam}(K)^{2}}{\alpha} r+\frac{\operatorname{diam}(K) r}{(r-1) d_{\min }-d_{\max }} \quad T_{2}(r)=1+2 \kappa_{\min } d_{\min } r
$$

It can be checked

$$
1=\lim _{r \rightarrow \infty} \frac{\ln r}{\ln T_{1}(r)} \leq \lim _{r \rightarrow \infty} \frac{\ln r}{-\ln \lambda(r)} \leq \lim _{r \rightarrow \infty} \frac{\ln r}{-\ln \mu(r)} \leq \lim _{r \rightarrow \infty} \frac{\ln r}{\ln T_{2}(r)}=1
$$

SO

$$
\begin{aligned}
\liminf _{r \rightarrow \infty}(\ln r)^{2}\left(\frac{\operatorname{dim}_{\mathrm{H}} M_{0}(r)}{2 \ln (u-1)}-\frac{1}{\ln r}\right) & =\liminf _{r \rightarrow \infty}\left(\frac{\ln r}{2 \ln (u-1)} \operatorname{dim}_{\mathrm{H}} M_{0}(r)-1\right) \ln r \\
& \geq \ln \left(\liminf _{r \rightarrow \infty} r \lambda(r)\right) \lim _{r \rightarrow \infty} \frac{\ln r}{-\ln \lambda(r)} \\
& =\ln \left(\frac{1}{2 \kappa_{\max }} \liminf _{r \rightarrow \infty} \frac{r \cos \phi_{0}(r)}{d_{\max }(r)}\right) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \limsup _{r \rightarrow \infty}(\ln r)^{2}\left(\operatorname{dim}_{\mathrm{H}} M_{0}(r)-\frac{2 \ln (u-1)}{\ln r}\right) \\
& \quad \leq 2 \ln (u-1) \ln \left(\frac{1}{2 \kappa_{\min }} \limsup _{r \rightarrow \infty} \frac{r}{d_{\min }(r)}\right) .
\end{aligned}
$$

Using some strict inequalities applying the bounds above, the inequalities for large r follow.

Unfortunately, a precise second asymptotic term for $\operatorname{dim}_{\mathrm{H}} M_{0}(r)$ is not forthcoming even in simple cases; the example considered in [LM96], of three unit radius circles with centres A_{i} equidistant from the origin and spaced at an angle of $\frac{2 \pi}{3}$, has $\cos \phi_{0}(r)=\frac{1}{2}+\mathcal{O}\left(\frac{1}{r}\right)$ and the above bounds (in terms of $d_{\text {min }}(r)$, etc.) separated by a factor of 2.

4.1 Better Numerical Estimates

The continued fraction (from (1.3)) for $k_{j}(s)$ can in fact be used to obtain bounds for curvature significantly better than those used previously. Recall that if $(q(s), n(s)) \in$ \hat{X} made $j+2$ transversal reflections, we had

$$
k_{j+1}(s) \in\left[\frac{k_{j}(s)}{1+d_{\max } k_{j}(s)}+2 \kappa_{\min }, \frac{k_{j}(s)}{1+d_{\min } k_{j}(s)}+\frac{2 \kappa_{\max }}{\cos \phi_{0}}\right]
$$

Notice for $\gamma, \theta>0$ that the map $f_{\gamma, \theta}:(0, \infty) \rightarrow \mathbb{R}, x \mapsto 2 \gamma+\frac{x}{1+\theta x}$ has one fixed point x^{*}, since $\left(x^{*}-2 \gamma\right)\left(1+\theta x^{*}\right)=x^{*}$ if and only if $x^{*}=\gamma \pm \sqrt{\gamma^{2}+2 \gamma / \theta}$, of which only the greater solution is positive. Denoting the two solutions temporarily by $x_{ \pm}^{*}$, we have

$$
f_{\gamma, \theta}(x)-x=\frac{2 \gamma+2 \gamma \theta x-\theta x^{2}}{1+\theta x}=-\theta \frac{\left(x-x_{+}^{*}\right)\left(x-x_{-}^{*}\right)}{1+\theta x}
$$

and hence $f_{\gamma, \theta}(x)>x$ when $0<x<x_{+}^{*}$, and $f_{\gamma, \theta}(x)<x$ when $x>x_{+}^{*}$. Since $f_{\gamma, \theta}$ is strictly increasing (see Figure 4.1 on page 128), x_{+}^{*} attracts every $x>0$ monotonically under the iterated map $f_{\gamma, \theta}$. Since $\lim _{x \rightarrow \infty} f_{\gamma, \theta}(x)=2 \gamma+1 / \theta$ we also have $f_{\gamma, \theta}(x) \in$ $(2 \gamma, 2 \gamma+1 / \theta)$ for all $x>0$.

Figure 4.1: Plot of function $f_{\gamma, \theta}$.

Now consider the function given by what was previously known as x_{+}^{*} :

$$
g:(0, \infty) \times(0, \infty) \rightarrow(0, \infty),(\gamma, \theta) \mapsto \gamma+\sqrt{\gamma^{2}+2 \gamma / \theta}
$$

Clearly, $f_{\gamma_{1}, \theta_{1}}(x) \leq f_{\gamma_{2}, \theta_{2}}(x)$ for all $x>0$ whenever $0<\gamma_{1} \leq \gamma_{2}$ and $\theta_{1} \geq \theta_{2}>0$, and it follows that $g\left(\gamma_{1}, \theta_{1}\right) \leq g\left(\gamma_{2}, \theta_{2}\right)$ under the same conditions. In fact on the (natural in our case) domain $\left[\kappa_{\text {min }}, \frac{\kappa_{\text {max }}}{\cos \phi_{0}}\right] \times\left[d_{\text {min }}, d_{\text {max }}\right]$, minimum and maximum values of g are respectively $g_{\min }=g\left(\kappa_{\min }, d_{\max }\right)$ and $g_{\max }=g\left(\frac{\kappa_{\max }}{\cos \phi_{0}}, d_{\min }\right)$. With these definitions, we have the following theorem.

Theorem 4.2

$$
\frac{2 \ln (u-1)}{\ln \left(1+d_{\max } g_{\max }\right)} \leq \operatorname{dim}_{H} M_{0} \leq \frac{2 \ln (u-1)}{\ln \left(1+d_{\min } g_{\min }\right)}
$$

Proof Firstly, either $k_{0}(s) \in\left[g_{\min }, g_{\max }\right]$, in which case $k_{j}(s) \in\left[g_{\min }, g_{\max }\right]$ for any $j \geq 0$ where it is defined, or $k_{0}(s)$ lies outside this interval. However, we can always use the former bounds for $\operatorname{dim}_{\mathrm{H}} M_{0}$ estimates, as shown below.

Consider a particular $s \in(0,1)$ such that $q(s) \in X_{0}$, and any sequences $\left(\gamma_{j}\right)_{1}^{\infty} \subseteq$ $\left[\kappa_{\min }, \frac{\kappa_{\max }}{\cos \phi_{0}}\right]$ and $\left(\theta_{j}\right)_{1}^{\infty} \subseteq\left[d_{\min }, d_{\text {max }}\right]$, and inductively define $k_{j+1}(s)=f_{\gamma_{j}, \theta_{j}}\left(k_{j}(s)\right)$ for $0 \leq j \leq n-1$. For any open interval $U=(a, b) \supseteq\left[g_{\min }, g_{\max }\right]$ it can be shown there is a (minimal) $j_{0}(s)>0$ such that $j \geq j_{0}(s) \Longrightarrow k_{j}(s) \in U$, as follows. If $k_{N}(s) \leq g_{\max }$ for some $N \geq 0$, then inductively

$$
k_{j+1}(s)=f_{\gamma_{j}, \theta_{j}}\left(k_{j}(s)\right) \leq f_{\frac{k_{\max }}{\cos \phi_{0}}, d_{\min }}\left(k_{j}(s)\right) \leq f_{\frac{k_{\max }}{\cos \phi_{0}}, d_{\min }}\left(g_{\max }\right)=g_{\max }
$$

for all $j \geq N$, and similarly for the lower bound, so if $k_{N}(s) \in\left[g_{\min }, g_{\max }\right]$ for some $N \geq 0$, the result follows. Suppose then that $k_{j}(s) \leq a$ for all $j \geq 0$, and define $p_{0}(s)=k_{0}(s), p_{j+1}(s)=f_{\kappa_{\text {min }}, d_{\max }}\left(p_{j}(s)\right)$, so that $\lim _{j \rightarrow \infty} p_{j}(s)=g_{\text {min }}$. Since
$p_{j}(s) \leq k_{j}(s)$ for all $j \geq 0$, this gives $k_{j}(s)>a$ for some j, a contradiction. The case $k_{0}(s) \geq b$ can be dealt with similarly under the definitions $m_{0}(s)=k_{0}(s)$, $m_{k+1}(s)=f_{\frac{k_{\text {max }}}{\cos \phi_{0}}, d_{\text {min }}}\left(m_{k}(s)\right)$, and we get a suitable $j_{0}(s)$ for each point of X_{0}. Since X_{0} is compact, $\inf _{q(s) \in X_{0}} k_{0}(s)$ is attained, say at $s=s_{0}$. Analogous to $j_{0}\left(s_{0}\right)$, there will also be some minimal j such that $p_{j}\left(s_{0}\right) \in U$ and $m_{j}\left(s_{0}\right) \in U$, say $j=l_{0}\left(s_{0}\right) \geq j_{0}\left(s_{0}\right)$.

Now consider the subset \hat{Z}_{n} of \hat{X} of points with at least n forward reflections, the connected component W_{n} of Z_{n} containing $q\left(s_{0}\right)$, and the curve Y_{n} of n-th reflections, where $n>l_{0}\left(s_{0}\right)$. Since $k_{0}^{\prime}(s)$ is bounded (X is C^{3}) and the length of each connected component of Z_{n} tends to 0 as $n \rightarrow \infty$, for any $\epsilon>0$ we can choose $n>l_{0}\left(s_{0}\right)$ sufficiently large that for $s \in q^{-1}\left(W_{n}\right),\left|k_{0}\left(s_{0}\right)-k_{0}(s)\right|<\epsilon$. If $k_{0, \text { min }}$ is the minimum curvature of X, then $f_{\kappa_{\text {min }}, d_{\text {max }}}$ and $f_{\frac{k_{\text {max }}}{\cos \phi_{0}}, d_{\text {min }}}$ are contractions of $\left[k_{0, \min }, \infty\right)$ with respective fixed points $g_{\min }$ and $g_{\max }$, and contraction ratio at most $\alpha=\left(1+d_{\min } \min \left\{k_{0, \min }, a\right\}\right)^{-2}<1$. By first making the choice of $\epsilon \leq \alpha^{-l_{0}\left(s_{0}\right)} \min \left\{p_{l_{0}\left(s_{0}\right)}\left(s_{0}\right)-a, b-p_{l_{0}\left(s_{0}\right)}\left(s_{0}\right), m_{l_{0}\left(s_{0}\right)}\left(s_{0}\right)-a, b-m_{l_{0}\left(s_{0}\right)}\left(s_{0}\right)\right\}$ and then $n=n_{0}$ as above, we can ensure $l_{0}(s) \leq l_{0}\left(s_{0}\right)<n_{0}$ is well-defined for all $s \in q^{-1}\left(W_{n_{0}}\right)$, and hence so is $j_{0}(s) \leq l_{0}(s)$.

Now $k_{j}(s) \in(a, b)$ for all relevant s and each $j>n_{0}$ if we restrict to $W_{n_{0}}$ rather than X. The condition of Proposition 3.1 can be modified to there exist $C, c>0$ and $0<\lambda<\mu<1$ such that $c \lambda^{n-n_{0}} \leq\|\pi x-\pi y\| \leq C \mu^{n-n_{0}}$ whenever the images under Υ of $x, y \in \hat{X}_{0}$ agree to exactly $n \geq n_{0}$ places, where $\lambda=\left(1+d_{\max } b\right)^{-1}$ and $\mu=\left(1+d_{\min } a\right)^{-1}$, and proceeding as usual we get $\frac{-\ln (u-1)}{\ln \lambda} \leq \operatorname{dim}_{\mathrm{H}} X_{0} \leq \frac{-\ln (u-1)}{\ln \mu}$. In the limit as $a \uparrow g_{\min }$ and $b \downarrow g_{\max }$, we have the result.

These estimates are always better than the previous values and hence give the same asymptotic for $\operatorname{dim}_{\mathrm{H}} M_{0}(r)$, but as before do not give a precise asymptotic for the error term. In fact, bounds on the error are the same: for $T_{1}(r)=1+d_{\max }(r) g_{\max }(r)$ and $T_{2}(r)=1+d_{\min }(r) g_{\min }(r)$, and provided $d_{\min }(r), d_{\max }(r)$ and $\phi_{0}(r)$ are C^{1} (certainly true in our case), calculations show $\lim \inf _{r \rightarrow \infty} \frac{r}{T_{1}(r)}=\frac{1}{2 \kappa_{\max }} \lim _{\inf }^{r \rightarrow \infty}$ $\frac{r \cos \phi_{0}(r)}{d_{\max }(r)}$ and $\limsup _{r \rightarrow \infty} \frac{r}{T_{2}(r)}=\frac{1}{2 \kappa_{\text {min }}} \lim \sup _{r \rightarrow \infty} \frac{r}{d_{\text {min }}(r)}$.

4.3 Concluding Remarks

The most desirable extension of the above results would be to weaken the condition (\mathbf{H}), which may be possible if only certain reflections of non-tangent trajectories are considered for the bound ϕ_{0}. Points of $X \backslash X_{0}$ however clearly are not subject to such a bound.

For K an obstacle in $\mathbb{R}^{n}(n \geq 3), M$ is no longer two-dimensional, and most of the above is no longer applicable. M_{0} should remain zero-dimensional due to the coding, and then possibly the foliations of [Pix83] (if smooth enough) may be useful to relate the Hausdorff dimensions of X_{0} and M_{0}, but the convex curve estimates are unlikely to translate so well, in part because in place of the curvature formulae (1.3) we have only an inequality relating k_{j+1} and k_{j}.

There are more general estimates of Hausdorff dimension for Cantor sets such as M_{0} following from [PT93, Chapter 4] in terms of thickness $\tau(r)$ and denseness $\theta(r)$ of X_{0}, to which ours seem related. However, these are hard to use in our case without
some modification to avoid problems with the uniformity of 'gap' sizes. Also possibly useful in determining more closely the behaviour of $\operatorname{dim}_{\mathrm{H}} M_{0}$ are [MM83] and [PV88], from which we have that $\operatorname{dim}_{\mathrm{H}}\left(W_{\theta}^{(\mathrm{u})}(x) \cap M_{0}\right)=\overline{\operatorname{dim}_{\mathrm{p}}}\left(W_{\theta}^{(\mathrm{u})}(x) \cap M_{0}\right)$ independent of $x \in M_{0}$, similarly for stable local manifolds, and $\operatorname{dim}_{\mathrm{H}} M_{0}=\overline{\operatorname{dim}_{\mathrm{p}}} M_{0}=$ $\operatorname{dim}_{\mathrm{H}}\left(W_{\theta}^{(\mathrm{u})}(x) \cap M_{0}\right)+\operatorname{dim}_{\mathrm{H}}\left(W_{\theta}^{(\mathrm{s})}(x) \cap M_{0}\right)$, which as indicated above eliminate the need for the calculation of $\overline{\operatorname{dim}_{p}}$ in Lemma 2.6. We also have continuity of the Hausdorff dimension with C^{1} perturbations of B, which implies continuity under certain perturbations of K (if (\mathbf{H}) is still satisfied), and may be useful in reducing the smoothness assumptions used.

Finally, there are questions relating to the behaviour of $\operatorname{dim}_{\mathrm{H}} M_{0}$ as components are added or removed (possibly infinitely many) from the obstacle K (i.e., u is changed), while retaining or losing conditions like (H). For instance, it is not immediately clear whether there exists a (possibly unbounded) K with a countably infinite number of components that still satisfies (or nearly satisfies) (H), or how M_{0} would behave for such a system.

A Details of Main Estimate

In this section, included for completeness only as it essentially follows [Sto03], we describe one way of deriving the following estimates used in Section 3.

$$
\begin{gather*}
\left\|p^{\prime}(s)\right\| \prod_{j=0}^{n-1} \delta_{j}(s)=\left\|q^{\prime}(s)\right\| \tag{A.1}\\
\frac{\left\|p^{\prime}(s)\right\|}{1+\left(\tau-t_{n}(s)\right) k_{n}(s)} \prod_{j=0}^{n-1} \delta_{j}(s)=\left\|q^{\prime}(s)\right\| \tag{A.2}
\end{gather*}
$$

In both (A.1) and (A.2), q parametrises a convex curve X with n reflections, and p parametrises a certain curve near the n-th or $(n+1)$-st reflection, as described below.

First, choose arbitrary distinct $x_{1}, x_{2} \in \hat{X}$, let $\tau_{j}=\max \left\{t_{j}\left(x_{1}\right), t_{j}\left(x_{2}\right)\right\}$, and let $l_{j} \in$ $\{1,2\}$ be the (minimal for $j=0$) index of the x_{i} for which $t_{j}\left(x_{l_{j}}\right)=\tau_{j}$. Denote by \hat{Y}_{j} the oriented (piecewise smooth) subcurve of $S_{\tau_{j}}(\hat{X})$ with endpoints the respective images of x_{1} and x_{2}. This is the earliest evolute of the corresponding subcurve of X that lies after the j-th reflection; notice that one of the endpoints lies on $\partial K_{\beta_{j}}$. Also denote by $p_{j}(x)=\pi S_{\tau_{j}}(x)$ the image on Y_{j} of any $x \in \hat{X}$ with πx lying on the curve between πx_{1} and πx_{2}.

Secondly, let $\epsilon_{j}=\left\|p_{j}\left(x_{1}\right)-p_{j}\left(x_{2}\right)\right\|=\epsilon_{j}^{\left(l_{j}\right)}$ and $\delta_{j}=\delta_{j}^{\left(l_{j}\right)}$ where, for $i=1,2, \epsilon_{j}^{(i)}$ and $\delta_{j}^{(i)}$ are defined by

$$
\epsilon_{j}^{(i)}=\left\|\pi S_{t_{j}\left(x_{i}\right)}\left(x_{1}\right)-\pi S_{t_{j}\left(x_{i}\right)}\left(x_{2}\right)\right\| \quad \text { and } \quad\left(\delta_{j}^{(i)}\right)^{-1}=1+\left(t_{j+1}\left(x_{i}\right)-t_{j}\left(x_{i}\right)\right) k_{j}\left(x_{i}\right)
$$

For suitable strictly convex smooth curves Y and Z (such that every outwards normal trajectory from Y reflects transversally from Z with reflection angle bounded
above by some $\phi \in\left(0, \frac{\pi}{2}\right)$), and for any $y_{1}, y_{2} \in Y$, we have the following inequalities regarding the billiard in the exterior of $\operatorname{Cvx}(Z)$ (these follow from e.g. [Ika88, Lemma 3.7]).

$$
\begin{align*}
\left(1+t_{1}\left(y_{1}\right) \kappa\right) D-c D^{2} & \leq\left\|\pi S_{t_{1}\left(y_{i}\right)}\left(y_{1}\right)-\pi S_{t_{1}\left(y_{i}\right)}\left(y_{2}\right)\right\| \tag{A.3}\\
& \leq\left(1+t_{1}\left(y_{1}\right) \kappa\right) D+C D^{2} \\
\left(1+t_{1}\left(y_{1}\right) \kappa\right) D-c D^{2} & \leq\left\|\pi S_{t_{1}\left(y_{1}\right)}\left(y_{1}\right)-\pi S_{t_{1}\left(y_{2}\right)}\left(y_{2}\right)\right\| \tag{A.4}\\
& \leq\left(1+t_{1}\left(y_{1}\right) \kappa\right) D+C D^{2} .
\end{align*}
$$

Here $D=\left\|q_{1}-q_{2}\right\|$ is dependent on $q_{i}=\pi y_{i}(i=1,2), c, C>0$ are some constants dependent only on ϕ_{0} and the minima and maxima of the curvatures of Y and Z, and κ is the curvature of Y at q_{1}.

Returning to the billiard in the exterior of K, assuming $\tau_{j}<\min _{i=1,2} t_{j+1}\left(x_{i}\right)$ and $\tau_{j+1}<\min _{i=1,2} t_{j+2}\left(x_{i}\right)$ we may apply (A.3) to $\hat{Y}=\hat{Y}_{j}, Z=\partial K_{\beta_{j+1}}, y_{1}=S_{\tau_{j}}\left(x_{1}\right)$ and $y_{2}=S_{\tau_{j}}\left(x_{2}\right)$ (so $\pi y_{i}=p_{j}\left(x_{i}\right)$ for $i=1,2$), and further assuming $l_{j}=l_{j+1}=1$ we have the following inequality $(0 \leq j \leq n-1)$.

$$
\begin{equation*}
\frac{\epsilon_{j}}{\delta_{j}}-\operatorname{Const}_{1}\left(\epsilon_{j}\right)^{2} \leq \epsilon_{j+1} \leq \frac{\epsilon_{j}}{\delta_{j}}+\operatorname{Const}_{2}\left(\epsilon_{j}\right)^{2} \tag{A.5}
\end{equation*}
$$

This can also be shown to hold for any l_{j}, l_{j+1} by using symmetry in x_{1} and x_{2}, switching y_{1} and y_{2} if necessary, and finding constants such as Const $_{3}=d_{\max } k_{\max }-$ $d_{\text {min }} k_{\text {min }}+$ Const $_{1}$ so that $\epsilon_{j}^{(1)}\left(\delta_{j}^{(1)}\right)^{-1}-\operatorname{Const}_{3}\left(\epsilon_{j}^{(1)}\right)^{2} \leq \epsilon_{j}^{(1)}\left(\delta_{j}^{(2)}\right)^{-1}-\operatorname{Const}_{1}\left(\epsilon_{j}^{(1)}\right)^{2}$. For $j=n-1$ we use (A.4) to get the following analogous inequality, where we can clearly assume constants $C, c>0$ also valid in (A.5) for $j=0, \ldots, n-1$; independent of the particular j.

$$
\begin{equation*}
\frac{\epsilon_{n-1}}{\delta_{n-1}}-c \epsilon_{n-1}^{2} \leq\left\|q_{n}\left(x_{1}\right)-q_{n}\left(x_{2}\right)\right\| \leq \frac{\epsilon_{n-1}}{\delta_{n-1}}+C \epsilon_{n-1}^{2} \tag{A.6}
\end{equation*}
$$

Now no longer assuming the above conditions on τ_{j} (except for $j=0$), let $\Gamma=$ $\pi B^{n}(\hat{X}) \subseteq \partial K_{\beta_{n}}$ and suppose both x_{1} and x_{2} have $(n+1)$-st forward reflections, but $y_{1}=\pi B^{n+1}\left(x_{1}\right) \in \partial K_{m}$ and $y_{2}=\pi B^{n+1}\left(x_{2}\right) \in \partial K_{m^{\prime}}$ where $m \neq m^{\prime}$, with $t_{n+1}(s)=$ $+\infty$ for all $q(s)$ on the subcurve between them (so reflections at y_{1} and y_{2} are tangencies). The curve just after 'reflection' $\left(\hat{Y}_{n+1}=S_{\tau_{n+1}}(\hat{X})\right.$ if we extend the definitions for $j \leq n)$ then has the endpoint $p_{n+1}\left(x_{l_{n+1}}\right)$ on ∂K; assume this is y_{2}. Consider corresponding parametrizations $X: q(s)$ and $Y_{n+1}: p(s)=\pi S_{\tau}\left(q(s), n_{X}(q(s))\right)$, each smooth between s_{1}, s_{2} such that $x_{i}=q\left(s_{i}\right)(i=1,2)$. For arbitrary $q(s)$ and $q\left(s_{0}\right)$ on the subcurve between x_{1} and x_{2}, we have corresponding $\check{\tau}_{j}=\max \left\{t_{j}(s), t_{j}\left(s_{0}\right)\right\}$, curves \check{Y}_{j} etc., to which we can apply (A.5) (for $0 \leq j \leq n-1$) if s is close enough to s_{0} that $\check{\tau}_{j}<\min \left\{t_{j+1}(s), t_{j+2}\left(s_{0}\right)\right\}$ and $\check{\tau}_{j+1}<\min \left\{t_{j+2}(s), t_{j+2}\left(s_{0}\right)\right\}$ hold for each j. Clearly $\lim _{s \rightarrow s_{0}} \check{\delta}_{j}=\delta_{j}\left(s_{0}\right)$ for $j \leq n-1$, it is easy to check $\lim _{s \rightarrow s_{0}} \check{\epsilon}_{j}=0$ $(0 \leq j \leq n)$, and since \check{Y}_{n} evolves to a subcurve of Y_{n+1} in time $\tau_{n+1}-\check{\tau}_{n}<d_{\max }$ and the curvature of \check{Y}_{n} is bounded below (the limiting curvature of $S_{-t}\left(\hat{Y}_{n}\right)$ at any $s_{3} \in\left[s, s_{0}\right]$ as $t \uparrow \check{\tau}_{n}-t_{n}\left(s_{3}\right)$ is bounded below by $2 \kappa_{\min }$, and (1.2) gives a lower bound
on $\left.\kappa_{\check{Y}_{n}}\left(s_{3}\right)\right)$, by [Ika88] or [Sto03, Lemma 1] there are $\epsilon, C, c>0$ such that if $\check{\epsilon}_{n}<\epsilon$ then we have the following.

$$
\begin{equation*}
\left(1+\left(\tau-\check{\tau}_{n}\right) \kappa_{\check{Y}_{n}}(s)\right) \check{\epsilon}_{n}-c \check{\epsilon}_{n}^{2} \leq\left\|p(s)-p\left(s_{0}\right)\right\| \leq\left(1+\left(\tau-\check{\tau}_{n}\right) \kappa_{\check{Y}_{n}}(s)\right) \check{\epsilon}_{n}+C \check{\epsilon}_{n}^{2} \tag{A.7}
\end{equation*}
$$

By choosing s sufficiently close to s_{0} we can assume $\left(\check{\delta}_{j}\right)^{-1} \geq c \check{\epsilon}_{j}$ for $0 \leq j \leq n-1$ and $1+\left(\tau-\check{\tau}_{n}\right) k_{n}(s) \geq c \check{\epsilon}_{n}$, so rearranging (A.5) and (A.7) gives (for $0 \leq j \leq n-1$) the following.

$$
\begin{gather*}
\frac{\check{\epsilon}_{j+1}}{\frac{1}{\grave{\delta}_{j}}+C \check{\epsilon}_{j}}=\frac{\check{\delta}_{j}}{1+C \check{\delta}_{j} \check{\epsilon}_{j}} \check{\epsilon}_{j+1} \leq \check{\epsilon}_{j} \leq \frac{\check{\delta}_{j}}{1-c \check{\delta}_{j} \check{\epsilon}_{j}} \check{\epsilon}_{j+1}, \tag{A.8}\\
\frac{\left\|p(s)-p\left(s_{0}\right)\right\|}{1+\left(\tau-\check{\tau}_{n}\right) \kappa_{\check{Y}_{n}}(s)+C \check{\epsilon}_{n}} \leq \check{\epsilon}_{n} \leq \frac{\left\|p(s)-p\left(s_{0}\right)\right\|}{1+\left(\tau-\check{\tau}_{n}\right) \kappa_{\check{Y}_{n}}(s)-c \check{\epsilon}_{n}} . \tag{A.9}
\end{gather*}
$$

Starting with $j=0$, applying (A.8) n times and then (A.9) gives the following inequalities.

$$
\begin{aligned}
& \frac{\left\|p(s)-p\left(s_{0}\right)\right\|}{1+\left(\tau-\check{\tau}_{n}\right) \kappa_{\check{Y}_{n}}(s)+C \check{\epsilon}_{n}} \prod_{j=0}^{n-1} \frac{\check{\delta}_{j}}{1+C \check{\delta}_{j} \check{\epsilon}_{j}} \\
& \quad \leq \check{\epsilon}_{0} \leq \frac{\left\|p(s)-p\left(s_{0}\right)\right\|}{1+\left(\tau-\check{\tau}_{n}\right) \kappa_{\check{Y}_{n}}(s)-c \check{\epsilon}_{n}} \prod_{j=0}^{n-1} \frac{\check{\delta}_{j}}{1-c \check{\delta}_{j} \check{\epsilon}_{j}} .
\end{aligned}
$$

Dividing by $s-s_{0}$ and taking limits (note $\check{\epsilon}_{0}=\left\|q(s)-q\left(s_{0}\right)\right\|$) then gives equation (A.2). The other result is obtained similarly at $s=s_{0}$; consider the parametrization by arc length $\Gamma: p(s)$ and use the estimate (A.8) n times, followed by the estimate

$$
\frac{\check{\delta}_{n-1}}{1+C \check{\delta}_{n-1} \check{\epsilon}_{n-1}}\left\|q_{n}\left(s_{1}\right)-q_{n}\left(s_{2}\right)\right\| \leq \check{\epsilon}_{n-1} \leq \frac{\check{\delta}_{n-1}}{1-c \check{\delta}_{n-1} \check{\epsilon}_{n-1}}\left\|q_{n}\left(s_{1}\right)-q_{n}\left(s_{2}\right)\right\|
$$

obtained by rearrangement from (A.6).

References

[BSC90] L. A. Bunimovich, Ya. G. Sinaĭ and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards. Uspekhi Mat. Nauk 3(273) 45(1990), 97-134, 221.
[Bun89] L. A. Bunimovich, Dynamical systems of hyperbolic type with singularities. In: Dynamical systems, II, Springer-Verlag, Berlin, 1989, 151-178.
[dM73] W. de Melo, Structural stability of diffeomorphisms on two-manifolds. Invent. Math. 21(1973), 233-246.
[Edg90] Gerald A. Edgar, Measure, topology, and fractal geometry. Springer-Verlag, New York, 1990.
[Ika88] Mitsuru Ikawa, Decay of solutions of the wave equation in the exterior of several convex bodies. Ann. Inst. Fourier (Grenoble) 38(1988), 113-146.
[LM96] Artur Lopes and Roberto Markarian, Open billiards: invariant and conditionally invariant probabilities on Cantor sets. SIAM J. Appl. Math. 56(1996), 651-680.
[Mar54] J. M. Marstrand, The dimension of Cartesian product sets. Proc. Cambridge Philos. Soc. 50(1954), 198-202.
[Mat95] Pertti Mattila, Geometry of sets and measures in Euclidean spaces. Cambridge University Press, Cambridge, 1995.
[MM83] Heather McCluskey and Anthony Manning, Hausdorff dimension for horseshoes. Ergodic Theory Dynam. Systems 3(1983), 251-260.
[Mor91] Takehiko Morita, The symbolic representation of billiards without boundary condition. Trans. Amer. Math. Soc. 325(1991), 819-828.
[Pix83] Dennis Pixton, Markov neighborhoods for zero-dimensional basic sets. Trans. Amer. Math. Soc. 279(1983), 431-462.
[PS92] Vesselin M. Petkov and Luchezar N. Stoyanov, Geometry of reflecting rays and inverse spectral problems. John Wiley \& Sons Ltd., Chichester, 1992.
[PT93] Jacob Palis and Floris Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Cambridge University Press, Cambridge, 1993.
[PV88] J. Palis and M. Viana, On the continuity of Hausdorff dimension and limit capacity for horseshoes. In: Dynamical systems (Valparaiso, 1986), Springer, Berlin, 1988, 150-160.
[Rob75] R. Clark Robinson, Structural stability of C^{1} flows. Lecture Notes in Math. 468, Springer, Berlin, 1975, 262-277.
[Sin70] Ja. G. Sinaĭ, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspehi Mat. Nauk 2(152) 25(1970), 141-192.
[Sin79] Ya. G. Sinai, Development of Krylov's ideas. Princeton University Press, Princeton, N.J., 1979. An addendum to the book "Works on the foundations of statistical physics" by N. S. Krylov, Princeton Series in Physics.
[Sjö90] Johannes Sjöstrand, Geometric bounds on the density of resonances for semiclassical problems. Duke Math. J. 60(1990), 1-57.
[Sto03] Luchezar N. Stoyanov, A sharp asymptotic for the lengths of certain scattering rays in the exterior of two convex domains. Asymptot. Anal. 35(2003), 235-255.
[Tri82] Claude Tricot, Jr., Two definitions of fractional dimension. Math. Proc. Cambridge Philos. Soc. 91(1982), 57-74.

The University of Western Australia
School of Mathematics \& Statistics (M019)
35 Stirling Highway
Crawley, WA 6009
Australia
email: rkenny@maths.uwa.edu.au

[^0]: Received by the editors August 28, 2001; revised May 29, 2003.
 AMS subject classification: Primary: 37D50, 37C45; secondary: 28A78.
 (C)Canadian Mathematical Society 2004.

