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Abstract. 
Some features of the dynamics of particles affected by drag, in the field of the Sun and planets, 

are presented here. In particular mean motion and secular resonances are investigated. When dust 
particles are considered as a whole in the zodiacal cloud, a simple secular theory can explain much 
of its geometry. Dynamics of particles near an inner planet is mostly dispersive, but an average 
behavior can be deduced from some analytical and numerical considerations. 
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1. Introduction 

Dust particle's dynamics is ruled by the combined effect of drag force (coming from 

radiation pressure) and the perturbation of the planets of the Solar System. Drag 

force alone accounts for the decay of the particle's semimajor axis and eccentricity. 

Other orbit elements are kept constant (mean longitude of course varies). Such a 

particle spirals towards the Sun with an increasingly circularized orbit. 

When planets are included in dust particle dynamics, a lot of complications 

arise, due to the fact that, its semimajor axis decay maintained, the particle ex-

periences a lot of dynamically relevant phenomena, including mean motion and 

secular resonances and passage by all inner planets. 

The dynamics of a dust particle is highly dependent on the particle's size, density 

and other physical properties. These determine the radiation force imposed on the 

particle. The ratio of this force to the gravitational force is denoted by β. The 

decay rate for the semimajor axis and eccentricity as a function of β can be found 

in (Wyatt and Whipple, 1950) 

We divide this work in three parts, each one including a different aspect in a 

particle's dynamics, which are: mean motion resonances , secular variation of orbital 

elements (secular resonance) and passage near a planet. 

2. M e a n Mot ion Resonances 

A dust particle coming towards the Sun by drag encounters many mean motion 

resonances on its course. Some are internal, meaning that the particle's orbit is 

inside that of the planet responsible for the resonance, and some are external. 

Dust particles are often trapped in external resonances, mainly with the Earth 

(Jackson and Zook, 1989). Trapping probability is associated with the particle's 

size, and its orbital elements just before resonance. Smaller particles, which are 

faster (towards the Sun), are more hardly trapped in resonance than larger ones. 

Trapping probability also increases with the disturbing planet's mass and depends 

on its orbital elements. Also more external planets have a greater probability to 

cause particles' trapping, because, for a given size, particles decay slower for higher 

distances to the Sun. 
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SEMIMAJOR AXIS (AU) 

Fig. 1. 

Dispersion in proper inclination of a set of 30 particles with β = 0.02 and initial 

inclination = 10°. Particles are started with the same initial semimajor axis with 

inclination vectors ending on a circle whose center is the common forced inclination. 

The evolution of these points (ends of the inclination vectors) is tracked. At each 

output, a circle is fitted to those points. The square root of the sum of the squared 

distances of those points to the fitted circle divided by the number of points less 1 

is the mentioned dispersion. 

Any mean motion resonance causes a lot of dispersion in a particle's orbital 
elements. This dispersion can be defined by the experiment described next. We 
start numerical integrations with some particles, having initial equal semimajor 
axis, equal forced eccentricities and inclinations vectors (these depend only on the 
semimajor axis), equal proper eccentricities and inclinations, but different longi-
tudes of pericenter and ascending nodes, in such a way that the eccentricity and 
inclination vectors have their ends distributed in circles. Also the initial longitudes 
of the particles are randomly selected. We can notice the evolution of that set of 
particles by watching the 'motion' of those starting circles. These circles , in fact, 
evolve quite smoothly, that is to say, the circles are maintained as near-circles for 
a long time, unless a dispersive factor is encountered. Mean motion resonances are 
one of these factors. The most dispersive internal resonance is the 3:1 resonance 
with Jupiter ( we consider particles with semimajor axis below 3AU). 

Figure 1 shows the dispersion in inclination experienced by a set of 30 particles 
with β = 0.02 , as they pass through several resonances with Jupiter. 

https://doi.org/10.1017/S0074180900091361 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900091361


3 5 1 

3. Secular variation of Orbital elements 

To study the secular evolution of the orbital elements of small particles, we must 
put together the secular decay of the semimajor axis and eccentricity due to drag 
and the secular variations of other orbital elements due to planetary perturbations. 
So, in a first order, we have, for the secular decay of a and e due to drag: 

ά 2ßGMs 

V~~ CO? 

è bßGMs 

V 2 ca2 

where G is the gravitation constant, Ms the Sun's mass and c the speed of light. 

Using complex numbers nomenclature, we define ζ = eexpire or ζ = JexpiQ. The 

first order secular variation of these elements due to planetary perturbations, is 

given by: 

ζ = igz + i Σ uk e x P Wkt (1) 

where g is the proper frequency of the disturbed (massless) body, depending on its 
semimajor axis; j / * is a coefficient also depending on the disturbed body's semimajor 
axis and related to the Solar System eigenfrequency p*. When no drag is present 
(the classical approach for asteroids), the solution of ζ is given by ζ = zp + zj, 

where: 
zp = z0 exp igt 

zf = ~ Σ ~ Γ e x P ^ * * 
9 - 9k 

zp is called the proper component and Zf the forced component. 

This is a classical result that shows that the total ζ is a sum of a vector, with 

constant modulus, rotating with the proper frequency g, and a sum of as many 

vectors as the Solar System eigenfrequencies considered, each rotating with that 

eigenfrequency. 

When drag is present, the coefficients depending on the particle's semimajor 

axis can no longer be taken as constants in the above integrations, because they 

now have a secular decay. The solution of ζ for particles affected by drag is given 

by: 

Zp = zo exp iG(t) 

zf = z , f z ? F * 

where F = i Σ exp igut 

The decomposition of ζ into a proper and a forced element, as shown above, is some-
what unnatural for particles. In fact zp rotates with the particle's proper frequency 
g, which varies with the particle's semimajor axis. G(t) is an integral of g[a(t)]. On 
the other hand, we can no longer say that zj is a sum of vectors rotating with the 
Solar System eigenfrequencies. A good way to study the behavior of Zf when drag 
is present is to consider variables W and F, defined by 

W = Zf exp—igkt 
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Fig. 2. 

Figure 2a is an amplification of the beginning of the variation in figure 2b. In each 

of both graphs, we see 3 curves: W, Y and W — Y, which is the static component of 

the forced element in a frame rotating with the corresponding Solar System eigen-

frequency. On this frame W — Y remains on the X-axis. W is the dynamical forced 

element (component) on the same frame. In both graphs it is shown as a curve 

evolving. Y is shown as a set of vectors starting on the X-axis (W — Y) and ending 

on the curve W. 

Y = (zf - zf)exp-igkt 

The equations for W and Y are 

W = i(g - gk)W - iv 

y = Kg - 9k)Y - Mk 

where Mk — g ^ g k Figures 2a and 2b show the variation of W and Y , for the 

inclination case, with only Jupiter and Saturn as disturbing planets. Y is shown 

as vectors with origin in the X-axis and end on the curve W. Figure 2a shows the 

details in the beginning of the variation and figure 2b shows all the evolution to near 

the Sun, passing through secular resonance. For t = 0, zj = Zf and Y = 0. If Mk 

were constant (non-drag case) Y would be constantly equal to zero as expected. In 

the drag case, Mk creates an instant increase of | Y | on the X-axis. Then i(g — gk) 

makes Y rotate. Y also gives an idea of how the drag forced element gets far from 

the non-drag forced element. Figure 2b shows the point where secular resonance is 

encountered, that is when W has a tangent parallel to the Y-axis, at a point not on 

the X-axis. Long past the secular resonance, Y essentially rotates with frequency 

equal to g— gk centered at a slowly varying point on the negative half of the X-axis. 

In a sense, one can see the equation for Y as one giving rise to the creation of 
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instantly new proper element. If, at some point, drag ceased to affect the particle, 

it would have its forced component associated to its semimajor axis (as in the non-

drag case) and a proper element added by Y at the point where drag ceased to 

exist and then evolve according to the classical non-drag approach. 

4. Passage by a Planet 

Equation 1 is really deduced from a more basic expression involving the planet's 

orbital elements, given below (inclination case): 

ζ = i g ζ — ï T t A j Z j 

where the A j S depend on Laplace coefficients and Zj are the planets' (secular) 

inclination vectors, which developed in terms of the Solar System eigenmodes, give 

rise to equation 1. On the other hand, we have g = Y^Aj (inclination case), which 

allows us to write 

(z - zk) = i \ S A j (z - ZJ)] - zk 

A k is particularly high in the neighborhood of planet k ,which yields the approxi-
mate expression, for a neighborhood of a planet: 

Ck = iAkCk 

where Ck = ζ — zk is the inclination vector measured from planet k's orbital plane. 
This shows us that in the neighborhood of a planet, the inclination vector of a 
particle essentially rotates around that of the nearby planet. This is also an ap-
proximate result due to the fact that the real motion in the proximity of a planet 
is very dispersive and the effective rate of variation of the node highly depends on 
the value of the inclination. 

Figures 3a and 3b help us to understand the dynamics of particles crossing a 
region gravitationally dominated by an inner planet. We integrated around 1000 
particles in the field of the Sun and Earth alone, each particle started at 1.15AU 
and coming as far as 0.85 AU. They were started with randomly chosen initial 
inclinations from 0 to 10 degrees, and an initial eccentricity equal to 0.05. All 
particles associated to β = 0.12. At 0.85AU we measure each particle's inclination 
and longitude of the node and take the differences from the initial conditions. 
Figure 3a shows Δ Ω against initial inclination. Each point represents the result of 
a particular particle. One notices the expected tendency in the decrease of Δ Ω with 
the increase of initial inclination. Also the dispersion is smaller. 

Figure 3b may be more elucidative as we assume that the particles analized in 
our simulation are started with their inclination vectors on a circle, then we sum 
to each initial inclination vector on the circle their Δ Ω and Δ7,coming from the 
numerical integration above mentioned. The final inclinations are shown as points 
spread out in an irregular manner. 

5. Some Practical Conclusions 

The notion of forced dynamical elements for dust particles is a basic concept in 

defining symmetry planes for the zodiacal cloud. In particular, inclination vectors 
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In a, the variation of the inclination vector near a planet is mostly a rotation ofthat 

vector around the inclination vector (end) of that planet, with increasingly angular 

frequency, as closer to the planet the particle gets. In b, particles affected by drag, 

started near the Earth, with inclination vectors (ends) distributed on a circle evolve 

in such a way that the circle is distorted due to different angular frequencies for 

particles with different inclinations (figure 3a). 

with ends located on circles are related to the observation of bands, which have 
been associated to the Hyrayama family of asteroids ( Dermott et al, 1984). The 
evolution of these circles as particles spiral towards the Sun reflects the evolution 
of such bands. The maintenance of an approximate circle reflects the surviving of 
the bands to regions closer to the Sun. The center of that approximate circle can 
be associated to the symmetry plane of the bands. Near an inner planet, the circle 
method breaks down, because of dispersion and different angular frequencies for 
the node. A symmetry plane is hard to define but it tends to the planet's orbital 
plane as the size of the particle is bigger. Of course all the dynamics of particles 
depend on its size, in particular the variation of the symmetry plane in respect with 
the particle's mean distance to the Sun. Passage by mean motion resonances with 
Jupiter tends to disperse the orbital elements but with no great harm to the method 
described above. On the other hand, when particles are trapped in resonance with 
an inner planet that contributes to positioning the symmetry plane to near the 
orbital plane of that planet. 
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