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Simultaneous Additive Equations:
Repeated and Differing Degrees

Julia Brandes and Scott T. Parsell

Abstract. We obtain bounds for the number of variables required to establish Hasse principles, both
for the existence of solutions and for asymptotic formule, for systems of additive equations con-
taining forms of differing degree but also multiple forms of like degree. Apart from the very general
estimates of Schmidt and Browning-Heath-Brown, which give weak results when specialized to the
diagonal situation, this is the first result on such “hybrid” systems. We also obtain specialized results
for systems of quadratic and cubic forms, where we are able to take advantage of some of the stronger
methods available in that setting. In particular, we achieve essentially square root cancellation for
systems consisting of one cubic and r quadratic equations.

1 Introduction

When c¢;; are nonzero integers and d; are natural numbers with d; > --- > d,, we
consider the solubility of the general system of additive forms

s
di — .
(L1) Z;cijxj =0 (1 <ig r)
j=

in integers x1, . . ., ;. There is a fundamental dichotomy in the strategy for handling
such systems, which depends on whether all forms are of the same degree. When the
degrees are the same, the classical approach is to make a linear change of variables
so that the mean values factor into a product of one-dimensional integrals, as in the
work of Davenport and Lewis [13], Cook [11,12], and Briidern and Cook [6], though
recently new ideas have become available in the work of Briidern and Wooley [7-10].
Meanwhile, when the d; are distinct, such investigations are made possible by the it-
erative method of Wooley [22-24], which yields mean value estimates for exponential
sums of the shape

fi(as A) = Y e(aax™ + -+ apx®
xeA
when A is a set of suitably smooth integers. Here Parsell [16] has obtained bounds
for pairs of equations in a few particular cases by optimizing over a large collection of
iterative schemes in the style of Vaughan and Wooley [21]. In [15], these results were
extended to pairs of Diophantine inequalities and to more general mixed systems with
all degrees distinct.
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Additive systems in which some, but not all, of the degrees are repeated would
seem to require a hybrid of the two approaches, and the purpose of this paper is to
present such a strategy. The bounds we ultimately obtain are in line with what might
be expected, given the results discussed above.

It is convenient for the analysis to sort the equations in (1.1) by placing the various
degrees in order of decreasing multiplicity. For 1 < [ < t write k;;,...,k; () for
those distinct values of the exponents dj, . . ., d, that occur with the same multiplicity
;. Plainly, we may suppose that g > -+ > y;. Write further p; = y;v(1) and

(1.2) i =wvQ) +- -+ pv(I-)+uyn (1<n<v(l),1<1<1)

andletr; = r; (1), sothatr; = py+---+p; = r,and with the conventions that r; o = r;_;
and rg,0 = 0. We adopt the notation

Jin=[riaa+Lr,] (A<n<v(l),1<1<1),
J=[na+Lrn] (A<I<t).

After re-arranging the equations, we may then further suppose that the system
takes the shape

N
St =0 (ied,1<n<v(l),1<1<0).
j=1

We write Kj = kjq+---+ kl,v(l)) andK =dy +---+d, = 1Ky +--- + u, K, for the total
degree of the system (1.1). We further write M = y and adopt the convention that
Yo = pr+1 = 0. We note that the two viewpoints (dy, .. .,d,) and (k; p) of organizing
the degrees of the forms appearing in the system are both occasionally useful, so we
retain both notations.

In most cases, the number of variables required to establish local solubility in the
current state of technology (see for example the work of Knapp [14]) is larger than
what is needed to establish a local-global principle via the circle method, so we focus
our attention on the latter problem. We aim for two types of Hasse principles, one for
existence of solutions and one for asymptotic formule. For the problem concerning
existence of solutions, we make use of smooth number technology. Write

A(P,R) ={ne[L,P]: p|n, p prime = p < R}

for the set of R-smooth numbers up to P. Throughout, we fix R = P" for some suffi-
ciently small positive number # = #(s, d).

We say that the system (1.1) is highly non-singular if for every 1 < n < v(I) and
every 1</ <t one has

(1.3) det(cij)iesy,,jea, # 0

for every p;-tuple J; € {1,...,s}. At the cost of a few extra variables, one can replace
this condition by a weaker but more complicated rank condition across the blocks of
variables defined in Section 2 below. Since both conditions are satisfied by almost all
systems of the shape (1.1), we choose the former hypothesis for its simplicity and for
the additional flexibility it affords us in the analysis.

Define

(14) @ =v(1) +---+v(h).
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For any vector of distinct natural numbers ky, = (k1,1 )1<n<v(1),11<h> WTite

kn= max {k;,}, k=%k, and p=p, =min{p,...,u}.
1<n<v(1)
1<I<h

Furthermore, let ug(ky, ) denote the least integer u with the property that
15) Sy Ui AP, R dy < e,
0,1)%h

Let G*(dy,...,d,) = G*(k; g) denote the smallest integer s for which every highly
non-singular system (1.1) has the property that there exists a nontrivial positive integer
solution whenever there exist non-singular positive real solutions and non-singular
p-adic solutions for all primes p. Similarly, let vo(k;,) denote the least integer v with
the property that

(16) f[ o i (501 PP dy « pr-(Kit=+Ki)ve,
0,1)%h

Then write G*(d,, . .., d,) = G* (k; u) for the analogous number of variables required
(under the same local solubility hypotheses) to show that the number of solutions
x € [1, P]* of every highly non-singular system is given by

1.7) N(P) = (C+o0(1))P*

for some positive constant C = C(s,d).

Theorem 1.1 (i) Let s(ky,) = max{uo(ky), sk(1+ @)} for 1 < h < t. Then one
has

t
G (ksp) <2 (pn — phns1)s(kn) + M.
h=1

(i) Lets(ky) = max{vo(ky), k(1 + @)} for 1 < h < t. Then one has

t
G (k) <2 (pn — pnar)s(ky) + 1.
h=1

Apart from general results of Birch [2], Schmidt [18], and, recently, Browning and
Heath-Brown [5], which apply to more general (non-diagonal) systems, the bound
in Theorem 1.1 is the first of its kind in which the diagonal structure is exploited to
obtain competitive bounds on the number of variables required. We note that, in the
presence of sufficiently strong mean value estimates so that the above maxima were
%k(l + @y,) for all h, the bounds in (i) and (ii) would become k(M + r) + M and
k(M + r) + 1, respectively. While conclusions of such strength are currently beyond
our grasp, Theorem 1.1 can be made explicit by inserting bounds from the literature.
In particular, by applying the results of Wooley [27, Theorem 1.1] and very recently
Bourgain, Demeter, and Guth [3, Theorem 1.1] one obtains the following.

Corollary 1.2 Suppose that d; > 3 for all i, and write

1~ ~ 1
?l(kh) = max{ikh(kh +1), 5k(1+ (Dh)} forl<h<t.
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Then one has

t—1

G*(k;y) < pk(k+1) +22(yh = tpe1)S1(kp) + 1.
h=1

Here we are able to take vo(ky) = ;75;1 (7<'h +1) in Theorem 1.1 (ii), and in this
instance one easily verifies that vo(k,) = k(k + 1) exceeds 2k(1 + @;). Similarly,
the results of Wooley [23] (see also [15, Corollary 1.3]) show that one has uq(k;) <
(1+0(1))H(ky), where H(ky,) = k@, (logky, + 3log @;,), with refined conclusions
available for various ranges of the parameters. One may therefore derive bounds anal-
ogous to Corollary 1.2 for the function G* (k; g). We highlight in particular some
consequences of our results for the simplest collections of exponents not covered by
previous work.

Corollary 1.3  Let k and n be integers with k > n > 2. Then one has the bounds
G*(k,k,n) <2k(k+1)+1, G*(k,k,n,n)<2k(k+1)+1,

k(k+1)+n(n+1)+1 ifk<in(n+1),

G*(k,n,n) <
(k.. n) {k(k+3)+1 ifk>in(n+1),

and

G*(k,k,n) < (6+0(1))klogk, G*(k,k,n,n)<(8+0(1))klogk,
G*(k,n,n) < (4+0(1))klogk + 2nlogn.

Observe that here it suffices to have k > n > 2, as in the results for G*(k, k, n)
and G*(k, k, n, n) we only use the bounds vo(k, n) < 2k(k +1), which hold for all
k > 3 regardless of the value of n. For G*(k, n, n) one needs additionally the bound
vo(n) < $n(n +1), which holds for n > 3 by the bound of Wooley and Bourgain-
Demeter-Guth as above and for n = 2 by Hua’s Lemma.

While these bounds follow as a direct consequence of our more general estimates,
one would expect that a more detailed analysis of these special cases should yield bet-
ter results. In particular, the strategies of Wooley [26] for making the transition from
complete Vinogradov-type systems to incomplete systems associated with Waring’s
problem have the potential to be employed here to a greater extent. Thus, we may
expect some small improvements in the bounds for vy (k), which we have estimated
trivially by vo(1,2, ..., k). In fact, we may illustrate the potential of our methods by
considering certain systems of small degree.

Theorem 1.4  For systems of rq quadratic and r¢ cubic equations one has the bounds

4rq + |_(20/3)ch +1 if?’Q 2rc,

G*(2,3;r0,1c) <
(2:3ra.c) {Src+[(8/3)rQJ+1 ifrc > rq.

Furthermore, for rc > rq we also have G*(3,2;r¢,rq) < 7rc + [(11/3)rq .
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Note that for systems of r quadratic forms and one cubic form, Theorem 1.4 yields

G*(2,3;70,1) <4rq +7=2-(2rq +3) +1,

so the bound achieves the square root barrier in this case, thus joining the small group
of examples for which we are able to establish bounds of this quality. Unfortunately,
for other situations we do not obtain equally strong results, largely due to the lack of
sufficiently powerful mean values. We also note that it may be possible to remove the
explicit assumption of non-singularity for the real and p-adic solutions by adapting
work of Brandes [4]. We intend to pursue some of these refinements in future papers.

In Section 2, we establish our main mean value estimate, and we then prove The-
orem 1.1 in Sections 3 and 4 by applying the circle method. Finally, in Section 5 we
establish a few auxiliary results that will allow us to refine our arguments to obtain
the bounds advertised in Theorem 1.4 for systems of cubic and quadratic equations in
Section 6.

2 The Mean Value Estimate

The following notational conventions will be observed throughout the paper. Any
expression involving the letter ¢ will be true for any (sufficiently small) ¢ > 0. Con-
sequently, no effort will be made to track the respective “values” of €. Also, any state-
ment involving vectors is to be understood componentwise. In this spirit, we write
(¢,b) =(g,b1,...,b,) whenever b € Z", and we interpret a vector inequality of the
shape C<b<Dtomeanthat C<b; < Dfori=1,...,n.

For « € [0,1)" define

Tl,n
(21 Yion= . cjai (1<j<s,1<n<v(l),1<1<1)
i=rp-1+1
and write y; = (Vj,1,n)1<n<v(1),1c1<r- Furthermore, set fj(a;A) = f(y;3.A) where
A =[1,P]or A =A(P,R), with the convention that the explicit mention of the set A
will be suppressed whenever there is no danger of confusion. We partition the indices
{1,...,s} into M + 1 blocks

t Uh—HPh+1

(2.2) {L...,s}=%0J U Dum
h=1 m=1

where each block %, ,,, is of size 2u), with any excess variables placed into the block
P, and define

t
(2.3) so= Y (fn — fns1)Un.
h=1

Consider the mean value

t Uh—Hh+1
(2.4) Luu(A) = : [T IT II fi(esA)de

O " bl mal jeBy

This mean value can be bounded in terms of simpler mean values.
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Theorem 2.1 For A =[1,P] or A = A(P,R) one has
t

Lujeou(A) < [Ty i, (A) )75,
h=1

where ], x, (A) denotes the mean value
i ()= [ i (s )P dy.
[0,1)

In particular, this implies that we will have a perfect mean value estimate for
Iy x,u (A) as soon as we have perfect estimates for the primitive mean values J,,, 1, (A)
forl<h <t

Corollary 2.2 Suppose uy, is large enough that one has
]uh,kh (A) « P2uh*(K1+~-+Kh)+s (1 < h < t).
Then Iu,k,,u (.A) «< PZS"_KH.

This follows from Theorem 2.1 on observing that
hZ:(Kl +o+ Kp)(pp — pn1) = Ky + -+ Kepy = K.
Proof of Theorem 2.1 Set A = [1, P] or A = A(P, R), and write
so(h) = lzh;(yl —pi)u; (1<h<t) and s9(0) =0,

so that so(t) = so.
First of all, by making a trivial estimate and applying the trivial inequality

(2.5) |21 za| < za|" + o+ |za]”s
we find that
t Uh—Bht1 )
(2.6 () < [ TTTT 17y AP de
> h=1 m=1

for some j(h, m) € By, . Observe that the mean value on the right-hand side of (2.6)
counts solutions to the system

t Un=Pha1
(2.7) Y ciitnmyEnm (ki) =0 (i€Jn1<n<v(l),1<1<1),
h=1 m=1

where we wrote §p,m (k) = X jea(h,m) (—l)ij’-‘. We now choose the sets J; occurring
in (1.3) according to (2.6) as J; = {j(h,m) : 1 < m < yp — Yps1, 1 < h < t}, where
j(h,m) € By, forall hand m. Let J = J;, write C; , for the (y; x M)-matrix defined
by

(2.8) Cin = (Cij)ier,,jeg (A<n<v(l), 1<),

andlet §; , = (fh’m(k””)) 1<m<pp—pipen,I<hst
more compactlyas C; ,&;,, =0 (1<n<v(l),1<I<t).

€ Z*!. Then system (2.7) can be written
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We prove the statement by induction. Consider the case I = 1. In view of the
nonsingularity condition (1.3), we have det C; , # 0 for 1 < n < (1), and it follows
that the equations Cy,§;; = -+ = Cy (1) §1,,(1) = 0 are satisfied if and only if

(2.9) §i="=&,1)=0.

Consider now those equations within (2.9) that correspond to h = 1. On recalling that
|B(1, m)| = 2u;, we see that this subsystem consists of y; — p, copies of the system

2uy

Z(—l)jxj.“'" =0 (1<n<v(D),
j=1

whose solutions are counted by the mean value J,,, i, (A). It follows that the total num-
ber of solutions of the subsystem corresponding to h = 1is given by (J,,, i, (A))#7#2.
Suppose now that for some [ with 2 < [ < t the systems

(2.10) §pi="=8&,m=0 (I<h<I-1)

have been solved, so that all variables x; with j € %}, ., 1 < m < pp — pp41, and
1< h < I-1are determined. This fixes the values of &, ,,, (ks ,,) foralll < m < pp—pin
and1< h < I-1forall degrees k;/ , with1 < n < v(1'), 1 < 1" < t. We now seek to solve
the subsystem associated to the degrees k; 1. .., k; (7). Upon writing the vector of
variables already determined as
A = (fh,m(kl,n))1<m<yh—yh+1,1<h<l—1 e ZM -,

the system is of the shape C; ,{; , = 0 for 1< n < v(I), where {; , = (a;,»; &) ,,). The
nonsingularity condition implies that C; , = [A},4|By,], where By ,, is a (7 x y;)-
matrix with det(B;,,,) # 0 for1< n < v(I). Hence the system in question is equivalent
to the system

(211) Bl,nfl,n +Al,nal,n =0 (1 N V(l))

Write p = —(Aj,n1,n)1<n<v(1) € ZP* and &) for the vector comprising those compo-
nents of & corresponding to the set J;. Further, write k(1) = (ki,1,..., k;,y(1)) and set
f = f@)- Then the number of solutions of the system (2.11) is given by

L Hrh—Hhn

[T IT fOjm AN e(ar-p)da
m=1

[o,1)P1 15

t Unh—HBh+1 )
< / o [T II |f()’j(h,m)§A)| “ daj,
(.0 h0 ma

and here the latter integral counts solutions of the system B; ,&; , = 0, (1< n < v(1)).
Since the non-singularity condition implies that det(B;,,) # 0, we therefore deduce
that the number of solutions to (2.11) is bounded above by the number of solutions
of the system &, =0 (1< n < v(I)), and the contribution stemming from the case
h = I can be interpreted as y; — y;,; copies of the system

2uy

S (D=0 (1<n<v(l)).
j=1
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Combining this with (2.10), we find that the number of choices for the variables in
each of the blocks (1, m) with 1 < m < y; — y;41 is bounded above by the mean
value Jy,, x, (A). It now follows by induction that

t

Lujeu(A) < [Tt (A)) 117,

1=1

and this completes the proof of the theorem. ]

3 The Minor Arcs

We now describe our Hardy-Littlewood dissection. For the purpose of the very gen-
eral Theorem 1.1 we can afford to economize on effort by working exclusively with a
narrow set of major arcs. The weakness of the ensuing minor arc estimates is of little
consequence to the quality of our bounds, and we avoid pruning arguments.

We take X < P to be a parameter tending to infinity with P. Define the major arc

M(g,a;X) = {@e[0,1) :|qa; —a;| < XP~9,1<i<r},

and write (X)) for the union of all M(g,a;X) with1 < a < ¢, (g,a) = 1, and
1< g < X. We then write m(X) = [0,1)"\91(X) for the minor arcs.

We establish a Weyl-type estimate by exploiting the non-singularity condition for
an M-tuple of exponential sums.

Lemma 3.1 Suppose that « € m(X). Then there exists 0 > 0 such that for each
M-tuple (ji, ..., jm) of distinct indices there exists an index j; for which one has

5 (as L P])| < PX7.
Proof Fix j as in the statement of the lemma. Let o < 1/(2k), and suppose that

for some & € [0,1)" one has [fj, (a;[1,P])| > PX" for each i = 1,..., M. Then
(15, Lemma 2.4] implies that there exists g << X2k for which

| < X2Rop~kn (1< n<w(D),1<I< 1< <M).

(3.1) 19y;iin

For ease of reference to the coordinate transform matrices defined in the previous
section, we find it convenient to partition the indices as in (2.2), with jj,..., ja oc-
curring in distinct blocks. Thus we write j = (j; )icicm = (F(7, 1) ) reme<pp-unr 1<h<ts
and for each [ and n write

T
YT,n = ( (Yj(h,m),l,n)ISmlSy}:ﬁyhﬂ) and &Kln = (‘Xn,,,,ﬁ-l: cees Oy )T-
<hst

We also write y, , for the extension of y; , to all 1 < h < . Then the relations (2.1)
givey,, = Clar, (1 <n<v(l),1<1<t),whereCpy = [A1|Bi,] is the
y; x M coefficient matrix defined in (2.8). It follows from (1.3) that det(B; ,) # 0
and hence that a;,, = (B[,)"y}, (1 <n < v(I),1 <1< t). Thus for each i with
r1n-1+1< i<, onehas

t Bh—Hht

=2 > bithm)iVithm)ln
h=l m=1
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where the bj(p, ), are entries of the matrix ( BIT) " )~! whose moduli are hence bounded
above by some absolute constant. It follows from (3.1) that

t Hi—Pia
ko p—kin
lgail <35 Y7 1bjchmy.illayinmy,inl < X*OP
h=1 m=1

We therefore deduce that & € 91(X) for X sufficiently large, and the result follows. M

We now complete the analysis of the minor arcs for Theorem 1.1. For case (ii), we
set s = 25 + 1, write fj(a) = fj(a;[1, P]), and set

(3.2) Nown(B) = [, [1/(@) da.
j=1

For j=1,...,Mand ¢ > 0, let m{) denote the set of & € [0,1)" for which |f;(a)| <
PX™°. For a given index j, we partition the remaining 2s, indices into blocks %}, ,,
with | By, | = 2uy,, where uy, = vo(ky,) as in (1.6), so that

Nojop(mP) < PX Iy . ([1, P]).

Lemma 3.1 ensures that there exists ¢ for which m ¢ m® u---um®™), and it follows
from Corollary 2.2 that whenever X is a small power of P and ¢ is small enough, one

has
(3.3) Ny u(m) < PX 70 proKee o psoKx=of2,
In case (i) we set s = 2s9 + M and partition the indices j = M +1,..., s as before, but

with the block sizes uy, = ug(ky ) determined by (1.5). Here we write
M I Un—Hh+

Nocu(®) = [ TTA@TT T TT g(e)da,

i=1 h

=1 m=l jeRBy,

where we suppose that f; (&) = f;(a;[1,P]) for1 <i < Mand gj(«) = fj(a, A(P,R))
for M +1 < j <s. Then it follows from Lemma 3.1 that

Negu(m) < PMX 71y 1, (A(P, R)),
and when ¢ is sufficiently small, an application of Corollary 2.2 delivers the bound
(3.4) Ny p(m) < PEX772,

This completes the analysis of the minor arcs in the setting of Theorem 1.1.

4 The Major Arcs

We complete the proof of Theorem 1.1 by obtaining the expected contribution from
our thin set of major arcs. Although the analysis is in principle relatively routine, the
combination of repeated and differing degrees requires us to exercise some care in
adapting existing approaches. As with our minor arc estimates, we make critical use
of the non-singularity condition to extract non-singular sub-matrices of coefficients.
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Set X = (log P)"/(®") if A = A(P,R) and X = PY/(6") when A = [1, P], and consider
the slightly expanded major arcs

nx)=U U) gax),

where 91(g, a; X) is given by the set of all & € [0,1)" satisfying
l@rn =g ar . < XP7Fn (1<n<v(]),1<1<0).

Then n(X) = [0,1)" \ MN(X) € m(X), and the work of the previous section implies
that the contribution of the minor arcs is negligible compared to the expected main
term.

We write

S(q.a) = Z ((allx Mg+ az,v(t)xk””(‘))/‘J)
and recall that the argument of [20, Theorem 71] (see also [15, (2.2)]) gives
(4.1 S(g,a) «< (g, a)l/k 1-1/k+e

Further define w = 0 if A = [1, P] and w = 1 when A = A(P, R), and set
0~ [ ) e i
where p denotes Dickman’s function. We recall from the arguments of [20, Theo-
rem 7.3] and [22, Lemma 8.6] (see also [15, (2.3), (2.4)]) the estimate

t v(l) PN
(4.2) v(B;P) < P(1+ Y Y |BialP fn)

1=1 n=1

It then follows easily that when a = a/q + 8 € 91(g,a, X) € 91(X), one has
fi(a) =q7'S(q, Aj)v(8;;P) + O(X*P*(logP)™*),

where
Tln
(4.3) Ajin= Y cjai (1<j<s,1<n<v(l),1<I<t)
i=r) y_1+1
and
Tln
(4.4) Siun= . aifi (A<j<s,1<n<y(l),1<1<1),
i=r) u_1+1

so that § = y — A/q. We write S;(q,a) = S(q, A;j) and v;(B; P) = v(8;; P), and define

S0-% ¥ Ta's(@a) ad 300- [ TTvi(sP)ap
q<X 1<agq j=1 ]:1
(g:2)=1

with J(P, X) = X|_ 1><v(l)[ XP~Fun, Xp~kn ]t Then since vol (X)) <« X2 *1p~K,
one finds that

(4.5) A(X)ﬁ(a)~-~ﬂ(a) da = G(X)J(X) + O(P X (logP)™)
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for some v > 0.
We now show that one can complete the singular series and singular integral as
usual by defining, for each fixed P,

6= Ylim S6(Y) and J= 1}im J(Y).

We first complete the singular series. Write

Alg)=q" ) HS(M)

I<agq j=1
(9:a)=1

and note that A(q) is multiplicative in g, whence the singular series, if convergent,
can be written as

(4.6) G:HiA(pi).

p i=0

We show that the product in (4.6) converges.

Lemma 4.1 Suppose that the system (1.1) is highly non-singular with s > 2so, where sg
is given by (2.3) with uy, > 5 K(1+@y) (1< h<t). Then the singular series is absolutely
convergent and one has S - G(X) <« X~ 5for some § > 0.

Proof We partition the indices as in (2.2) and let v, = 2uy + (s — 2s9)/M > 2uy,
for 1 < h < t. Then one has },_, v, (4 — pins1) = s, and hence by (2.5) there exists
je P x - x By, with the property that

t Bh—Hht
2 TIstaa) < ¥ T1 T Sjom(@a)™
I<agq j=1 l<agq h=1 m=1

(g,a)=1 (g,a)=1

We now apply the change of variables (4.3). Thus, on writing

al,n = (ah,n_ﬁ—l) R arl’n)T and A;—,n = (Aj(h,m),l,n)z;,m

with 1< m < pp —ppand [ < h < t, we obtain Aj, = B[ a; ., where the matrix B,
isasin (2 11). In particular, one has detB; , # O forall1< n < v(l)and 1< I < t. Asa
result, the remaining coefficients Ajj ) 1,n With1<m < pp —ppand 1< h <l -1
can be expressed as linear combinations of those Aj(y, )1, having & > 1. Then on
writing
Ajnmy = (Njnmyinicnsv(ty  and A= (Ajnm) )i<m<pn—pniro
NN 1<hst

the invertibility of the transformation further implies that the coefficients of A oc-
curring in these relations satisfy (¢, A) < 1 whenever (g,a) = 1. Hence there exist
constants C, C’ for which

t Uh—Hnn t Uh—Hh+1
> IT IT ISiomy(@a)™ < > TT IT 1S(qAjmm)l™
1<agq h=1 m=1 |Al<Cq h=1 m=1
(g,a)=1 (g.A)<C’
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It follows from (4.1) that

t Uh—HBh+1

AP <p™ 3 IT T1 1S Ajgm)l™
|Algcp’ h=1 m=l
(p',A)<C’

I Bn—Hh+

« p—is/k+5 Z H H (PiiAj(h,m))Vh/k'

|Al<Cp’ h=1 m=1
(p',A)<C’

Let «(p) denote the largest integer satisfying p*(#) < C" and define ey, ,, via

(P Ajnmy) = P
Then one has
Un—Hh+1

Ay < p e (TT T po/*) 2 (p' ),
e h=1 m=1
where the sum is over all 0 < e, ,, < i with the condition that e, ,, < x(p) for at
least one pair of indices (h,m), and E(p’,e) denotes the number of A < Cp' sat-
isfying (p*, Aj(n,m)) = p°"m for every h and m. Recalling that for h < [ the coeffi-
cients Aj(p,m),1,» are linearly dependent on (Aj(x,m),1,n)n>15 it suffices to determine
the number of choices for those coefficients where h > [, in which case the number of
choices for any given A j(j, ),1,, is certainly bounded above by p'~emm . Tt follows that

y

h
where we used (1.2) and (1.4). Thus altogether we have the estimate

t Uh—Hht

"“(pi—eh,m)v(l) «p"T1 II pee,
h=1 m=1

1

E(ple) <[]

t Hn—H
I=1 =

m

. . . t Uh=fhn
A(Pz) « szs/k+1r+£ Z H H th’m (vh/k—w,,)_
e h=1 m=1

Observe that the sum over e essentially amounts to a divisor function with the addi-
tional constraint that at least one of the e}, ,,, must be bounded above by «x(p) in order

to satisfy coprimality. Thus after executing the summation one finds that A(p’) «

p—i(s/k—r)+f+£) where

t
E<i( Y (un = wne) (i fk = @4)) = (i = k(p)) min(v/k - @)
h=1
= i(s/k =) = (i~ x(p)) min(vy/k - @),
and since p*(?) is bounded by an absolute constant, we obtain
(4.7) A(Pi) « p—iminh(vh/k—wh)ﬂ:‘

On recalling that uj, > %(1 +®@p,) (1< h<t),the fact that vy, > 2u), implies that one
has A(p') « p'"'=) for some 7 > 0, uniformly for i € N. It follows that

& =T1(1+ L A(p)) <[+ cp™)
P i=1

P
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for some constant ¢ > 0, and this establishes the convergence of the singular series in
the setting of Theorem 1.1. The second assertion of the lemma follows immediately.
|

We now turn to the completion of the singular integral.

Lemma 4.2  Suppose that the system (1.1) is highly non-singular with s > 2s,, where
so is given by (2.3) with uy, > Sk@y, (1< h < t). Then the singular integral is absolutely
convergent, and one has J - J(X) < PSKX™7 for some o > 0.

Proof First, observe that by a change of variables one has

300 <P [ TTvi(pn s

We now partition the indices as in (2.2). By (2.5), there exists j € % x --- x %y,
with the property that

t Unh—Uh+1

300 <P [ TT T jgum (BDI d,
h=1 m=1

where the set R contains all vectors f satisfying

max max max|B;| > X.
I<Igt 1sngy (1) i€dy,,

We make the change of variables (4.4), and write

T T
l;l,n = (ﬁfz,nfﬁl’ cee ’/37‘1,,1) and 8;’,1 = ((8j(h,m),l,n)ISmgﬂh*Mhu) .

I<hgt

We then find, as above, that 87, = (B;,,)"B, , and detB; , # 0 (1< n < v(l),1<
I < t). Hence the remaining coordinates &;(s,m),1,» With 1 < m < pj — ppy and
1< h < I -1arelinear combinations of those &;(j, ),1,» having 1 < m < pj, — pp41 and
I < h < t, and the non-singularity of the coordinate transform implies further that

max max max — max  |8jum)nil > X
1<I<t 1<ngv(l) ISh<t ISmSpp—ppa

whenever § € R. We will write 8 for the vector comprising all 8y, my,1,,» With
i<lI<h<t,1<n<v(l),and1 < m < yy — ppy. After integrating with respect to
those components of § = oW having [ = 1, one obtains from (4.2) that

2uy

t Bh— Hh+1 t v(1) :
J<<f 1+ZZ|6(hm)ln|) dé

1=1 n=1
t Hh—bin t v(l)
LB

provided that uy > %v(1) for all h. The resulting integral may be simplified by ex-
ploiting the fact that the variables &;(1,u),1,» with I > 2 are linear combinations of the

5

) o de®
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components of & @) This implies that

t HBhZHha t v(l) —MTh+V(1)+(M1—#z)(—2%+v(1))
J < / I1 (“Z > |5j<h,m),l,n|) ds®
Yh=2 m=1 1=2 n=1
t Ph—Pha t v(l) —MT"H(I)
< f [T II (” > |5j(h,m),l,n|) d8®,
R 22 mat 1=2 n=1

where in the last step we used the assumption u; > %v(l) again to simplify the ex-
ponent. We may now iterate the procedure for increasing values of I. Thus, provided
that uy, > %(v(l) +v(2)) for all h > 2, the same argument yields

t Uh—Ph+1 v(l) 72:;(,, (1) +(2)
J « f - H (1+ Z Z |6j(h,m),l,n|) d8(3)
T k=2 m=1 1=3 n=1
t Un—Ph+t t v(l) _MTh+V(1)+V(2)
« [,_, I1 (1+ ) |5j(h,m),1,n|) de®,
*h=3 m=1 1=3 n=1

and after t iterations we obtain convergence if uj, > %ka)h (1< h < t). Furthermore,
it is clear that under the same condition one has

h~Hh+1

t
J-3(X) < psK f H H |Vj(h,m)(ﬂ,1)|2uh dp < ps-Kx-o
R h=1 m=1
for some o > 0. -

A coordinate transform now shows that J = P Xy, with

Yoo = [ f[o’l]se(iﬁi@)i(()) d¢dp,

i=1

where ©;(x) = c,-lxld" + -+ ¢ix%, and it follows from Lemma 4.2 that y.. is a finite
constant. Furthermore, the argument of [16, Lemma 7.4] is easily adapted to prove
that, under the conditions of Lemma 4.2, this constant is positive whenever the system
(1.1) possesses a non-singular real solution in the positive unit hypercube.

A standard argument also yields

Xp = 2 Ap") = lim p~ I M(p"),
i=0

where M(p') denotes the number of solutions of the congruences modulo p’ corre-
sponding to the equations (11). It follows from (4.7) that x, = 1+ O(p™') > § for p
sufficiently large, and for small primes one uses Hensel's lemma to deduce that y, > 0
if the system (L.1) possesses a non-singular p-adic solution. The proof of Theorem 1.1
is now complete on recalling (3.3), (3.4), (4.5), Lemma 4.1, and Lemma 4.2, and the
constant in (1.7) is given by C = yoo [T, xp-
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5 Auxiliary Estimates for Systems of Cubics and Quadratics

The proof of Theorem 1.4 requires a more careful treatment. In this section we collect
a number of auxiliary results that will be of use when we complete the proof in the
final section. Here the system is given by

cinx} + -t ex =0 (1<i<re),
(5.1) ) 2 ‘
d,'lxl +~~-+d,~sxs:0 (ISISI’Q),

whence relation (2.1) reduces to

rQ rc
(5.2) Ya.j= Y. dijoza; and  ys ;=) cija,i,
i=1

i=1
and the exponential sum takes the shape
filaA) = Z e()’s,jx3 + Vz,sz) = f()’j)-
xeA
We will commonly write y; = (y3,j>y2,j) for1 < j < sand YD = (yit,...,pis) for

i € {2,3}. Furthermore, y = (y®), p(?)). Note in particular that, since the respective
ranks of the coefficient matrices (¢;;) and (d;;) are rc and rq, only r = rq + r¢ of the
2s entries of y are independent.

For i € {2,3} define

m;(X) = U {aef01):]qal <XP™},

1<g<X

M(X)= U {ael0,1):]a-a/ql<XP},

0<a<q<X

and write M*(X) = M;3(X) x M,(X). The respective complementary sets will
be denoted with lower case letters and adorned with the same suffixes or asterisks.
Furthermore, for X < Q write M;(Q,X) = M;(Q) N M;(X) and M*(Q, X) =
M (Q) ~ M (X).

Lemma 5.1 Suppose that f(«) = f(a;[1,P]), set Q = P*/%, and let Y be a positive
number.

(i) Foranyu > 2, one has

Sup f If (@) P*day, << PPRi(y71/3 4 p3/a-urey,
aky €M, (Q) 7 M (QY) /

(ii) For any u > 7, one has

“da <« P43 Y71/6 P3—u/2+£ )
ey U (o)1 s P00 peley

Proof It follows from [1, Lemma 4.4] that for & = a/q + B € M*(Q) one has
fl@) < q'S(q.a)v(B; P) + Q**.

In the case of the second expression we therefore obtain the bound

Jrecam f@Idas [ 1g75(g a)v(Bi Pl dar @ vol 0 (Q),

https://doi.org/10.4153/CJM-2016-006-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2016-006-4

Simultaneous Additive Equations 273

and it follows from the argument of Lemma 8.3 (ii) in [28] that
“15(g,a)v(B; P)|*da « P* 3y /¢
S, 4 SC@2)v(B:P)

whenever u > 7. Upon noting that vol 9*(Q) <« Q*P~>, this establishes the bound
claimed in (ii).

We now consider case (i). To simplify notation, we write i = k; and j = k, for the
remainder of the proof. Analogously to the above argument, for a; € ;(Q) we have

63 [ o @ dar <3 z s [ 7 (B PP,

q=1 a;=
(aq)l

+ Q¥ yol M, (Q).
Now (4.2), together with the argument of Lemma 4.2, yields
[ BRIy << P [ 7 (1 |BiPE B PT) B, << Py
for all u > 2. Furthermore, we have

1
Z q—ZuS q)a)Zu <<H
a;=1 P
)-1

Mz
M8

Apap(Ph),
1
(a,

1=0

B~
I

where

Z S q’a)Zu

(aq) 1

2(q) =

Observe that (4.1) gives g72“S(g,a)%* < g 2*/>*¢ whenever (g,a) = 1, whence for
sufficiently small § > 0 we have

Pl
A[aj](p’) « Z p—(2/3)ul+e « P(Hu/3)1+e « p,l,g
a;=1

(a,p)=1

for I > 3 and u > 2. Furthermore, for I € {1, 2} we have the estimate
(5.4) S(p',a) « (p',a)/2p!l2+e

following from [17, Corollary I1.2F] and from the argument of the proof of [20, The-
orem 7.1] (see also [28, Lemma 7.1]). We therefore have the bound

pl
A[uj](pl) « Z pful+s « p(l—u)l+s
a;=1
(a,p)=1

for I € {1,2}, and thus altogether

)

ZA[aj](pl) =1+ O(pl—u+s +p3—2u+e).

1=0
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It follows that for some suitable absolute constants ¢;, ¢3, ¢3, and & > 0 we have

I ZA[aj](pl) <[]+ eap ™+ ep? ) < [J(1+ ap o),
p 1=0 P P

whenever u > 2 and ¢ is small enough. The proof is now complete on inserting our

estimates into (5.3), noting that vol ;(Q) <« Q*P~" for i € {2,3}, and recalling that

Q= P34, n

In order to establish a suitable pruning lemma for smooth exponential sums we
first need an additional auxiliary result. Let

P
I(Bs, B2) = /;P e(Bax® + P3x’)dx.

The following is a modification of [20, Theorem 7.3].

Lemma 5.2 We have I(Bs, B2) < P(1+ P?|B,| + P|B3]) ™2,

Proof Asin the proof of 20, Theorem 7.3] we observe that the claim is, via a change
of variables, equivalent to

ﬁl e(Pax® + Bax”)dx << (1+|Ba| +Bs) 2.

Let p(x) = 2f,x + 3fB3x%. If o/ denotes the set of all x € [1/2,1] satisfying |p(x)| >
(|B2] + |B3])"/?, then the contribution from this set is given by

[ e(Bax® + pax)ax << (1Bal + Bs)

It thus remains to bound the contribution of 4 = [1/2,1] ~ . Either ¥ is empty,
in which case there is nothing to prove, or we can find a € [1/2,1] with |p(«)| <
(|B2] + |B3])!/2. On the other hand, by the triangle inequality we have

p(a)] > [2B2a] - 3B30| > |Ba] - 3|Bs].
In the case when |, > 6|Bs], we thus have 2[B,| < [p(a)| < (|| + 1Bs))? <
(%|/52|)1/2, s0 |B2] < 14/3, but for |B3] < |B,] < 1the claim is trivial. We may therefore
assume that |8,| < 6|Bs], so that for each a € € one has |p(«)| < (7|3])"/?. Since
we made the assumption that a > 1/2, this implies that 328, + 34| < (7|Bs])V2. 1t
follows that the measure of ¢ is bounded above by

vol{1/2 < a < 1: |28, + 3Bsax| < 2(7|B3]) 2} < |Bs| /2.
This establishes the statement. |

More generally, a similar argument can be used to show that for any set of degrees
ki <--- < k; one can find some suitable constant 0 < & < 1 such that

[E: e(jZ;/ijkf)dx < P(1+ ;Pkf|ﬂj)_l/t,

replacing the exponent 1/k; that can be directly inferred from [20, Theorem 7.3] with
the stronger 1/¢.
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We are now in a position to establish the main pruning lemma for systems of cubic
and quadratic forms, and here we largely follow the treatment devised by Briidern
and Wooley [7]. In what follows, we write g(&) = f(a; [3P, P]) and h(&) = f(a;.A),
where A denotes either [1, P] or A(P, R).

Lemma 5.3 Let A € Q be fixed, and let Q = P3/4,

(i)  For any & > 0 we have the relation

sup  sup lg(as, a2)* O h(Aas + A, u)?|das < PHOX9/2,
L ueR azet, (Q) ¥ Ms(Q.X)

(ii) Additionally, we have

su su as, 00 h(Aas + A, u)8|da «< ptxVs,
MSRMEDR?(Q) Ma(Q)X)L%'( 3> 02)h(Aas u)°|das

Proof We first show (i). This follows almost directly from the argument of the proof
of [7, Lemma 9]. If A = B/S, where B € Z and S € N, then by a change of variables we
have

240 2
) h(Aas + A, p)"|d
o, 80502 h(Aas 1, 1) ldas

:s[ Sats, @2) O h(Bas + A, 1)?|dacs.
Q) |g(Saz, a2) ™" h(Bas + A, ) |dats

Let x denote the multiplicative function defined by
-i/3 .
i pte, i23,
k(p') = .
(P ) {p—z/Z’ ie {1’2}
Then as a consequence of [1, Lemma 4.4], equations (4.1) and (5.4), and Lemma 5.2,
for every a € 9" there exists g < Q such that
g(as, a2) << x(q)P(1+ P*[Ba| + P*|Bs]) 7 + ¢?*,

and one easily confirms that the first term in this expression is the dominating one. It
follows that

2+6 2
, h(Aaz +A,pu)7|d
o 8@ ) Ph(Aas + 1, 1) ldas

S > |h(B(as/q + Bs) + A )
< xk(q)P)*+° / dgs,
SO 2 e G pig s gy
(a,9)=1
and in a similar manner to the treatment in [7] we deduce that for every ¢ € R one
has

S h(Blas/g+ )+ bl Y Y e((€~y*)Baslq)

asz=1 az=1  x,yeA
(a,q)=1 (as,q)=1

<IBl > (¥’ -y’.q) < P’q°qs,

1<x,y<P
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where g3 denotes the cubic kernel of g defined via ¢ = goq3 with qo cubefree. It
follows that altogether we have

2+0 2
, h(Aas + A, p)"|d
D (@50 h(Aas 1, ) ldas

Q oo
<Py g k(@)™ 0gs [ (1 PRl + PIBs])0 ds

q=1 X
« p1+6X—6/2 Z qe(K(q))2+6q3-
q=1
Finally, the sum over q converges whenever ¢ is small enough compared to 6.

In order to prove the second statement of the lemma, we observe that by Holder’s
inequality we have

> h A, 6
st( , )\g(“s az)h(Aas + A, 4)°|das
5 3”1 A +A, 2d 13
<<(\/j:/[3( , )|g(063 “2) ( o3 [l) | “3)

1 8 2/3
x ([ |h(Aaz+ A, p)Pdas) .
0

By considering the underlying equations it transpires that the second integral is
bounded above by

1 1
f |h(oc3,oc2)|8doc3<<f £ (a3, 0)[*dats << P°,
0 0

where we used Theorem 1 of [19]. It now follows from (i) that the expression in ques-
tion is bounded above by (P2X~Y/2)1/3(P%)2/3 « P*X~¢ as claimed. [ |

6 Proof of Theorem 1.4

We now have the means at hand to complete the proof of Theorem 1.4. Our first task
in this section is to obtain a sharper version of the Weyl-type estimate contained in
Lemma 3.1.

Lemma 6.1 Suppose that Q < P>/* and & ¢ m(Q). Then for all M-tuples j there
exists an index j; with |f;, (a1, P])| < P¢Q7Y/3,

Proof Fix j, and suppose that for some a € [0,1)" one has |f;, ()| > P**Q™Y/> for
each 1< i < M. Then by applying Theorem 5.1 of [1], as in the argument of Lemma 5.2
of [28], we find that there exist g < Q and 7 > 0 such that | gy, ;,| < QP™>"" and

lgys,j:| < QP77 (1< i < M). The invertibility of the coordinate transform implies,
as in the proof of Lemma 3.1, that for large enough P one has

lqazi <QP™* (1<i<rq)  and  [qas:| <QPT (1<i<rc).
As before, we conclude that & must lie in 9t(Q), and the enunciation follows. ]

Recall the definitions (2.4) and (3.2). Henceforth set Q = P/, and as before we
let X = PY/(6") for the asymptotic estimate and X = (log P)"/(®") for the lower bound.
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Recall the definition of 9 and 91 from Sections 3 and 4 and set M(Q, X) = M(Q)
9(X). In what follows, we will abbreviate Ny ,(B) = Ny(B) and Iy (A)
I.(A) for simplicity. Our first goal is to estimate N(m(Q)), where we have A =
[L, P].

Write m(/) for the set of & € [0,1)" for which |f; ()| < P*/4*¢, and let o = s — 2s,.
For any given o-tuple (ji,...,js) € {1,...,s} the non-singularity condition implies
that the remaining 2s, variables may be assembled into a mean value of the shape
I4([1, P]), and thus Lemma 6.1 implies that

No(m0U) Ao amUo)) « P31, ([1, P]).

Consider a fixed « € m(P>*). Lemma 6.1 ensures that one can find an index j, €
{1,...,r} with @ € mU"). Iterating this procedure, after k — 1 steps we can find an
index jx € {1,..., 7+ k =1}~ {ji,..., jx_1} with & e mU¥)_ Since & € m(P>*) has
been arbitrary, after o steps it follows that m(P¥*) ¢ U(mU") n ... n mU~)), where
the union is over all g-element subsets of {1, ..., 0 + r — 1}. We may conclude that

No(m(P**)) « P31, ([1, P]).

We first consider the case rq = r¢ = /2, so that t = 1 and v(1) = 2. Recalling
Wooley’s bound

(6.1) Js,(2,3)([1, P]) < P/ere
of [28, Theorem 1.3], Lemma 6.1 together with Theorem 2.1 yield for u; = 5 that
NS (m(P3/4)) « P% (5—2s0)+e (]5’(2)3) ( [1’ P] ))r/Z « P% (s=57)+e (P5+1/6+5)r/2‘

Note that the exponent is smaller than s— K = s—5r/2 whenever s > (16/3)r, and since
(16/3)r = (32/3)rq = (32/3)rc, this is in line with the enunciation of the theorem.
In the cases with rq # r¢ we have

(6.2) t=2, k=3, v(1)=v(2) =1
If rq > rc, the parameters are given by
(6.3) W=rq, H2=TCH Uy =2, up=>5,
and we deduce from Theorem 2.1 that
I2,5)([LP]) << (Ja.2([1 P])) @7 (s (2,3 ([1L, P])7¢ < (P2€)ra7re (poi/oreyre,
where we used Hua’s inequality and Wooley’s bound (6.1) as above. This shows
NS (m(P3/4)) « P%(5—(4rQ+6‘fc))+3rc+2rQ+rc/6+e,
and for s > 4rq + (20/3)r¢ the exponent is smaller than s — (2rq + 3r¢).
For r¢ > rq we take
Yr=rc, H2=7qQ, uy=4, uz=5,
and in this case Wooley’s bound (6.1) together with Hua’s Lemma yield
Nq(m(P**)) « pal=(reszral e (g, 5 ([1, P])) ™72 (J5 (2,3 ([1, P]))"
« P%(s—(8r5+2rq))+s (P5+E)rcer (P5+1/6+£)TQ ,

which is acceptable whenever s > 8r¢ + (8/3)rq.
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In the case A = A(P, R), the analysis is more delicate due to the fact that we have
only a limited number of complete exponential sums at our disposal. In this case we
take

(6.4) Wmi=rc, U2=TqQ, up=3, uy=5,

and we aim to prove the theorem with s = 7r¢ + [(11/3)rq|. We write A = r¢ — rq
and let

S

64
N:(B) = [ TThi@) TT gi(e)da
B j=6A+1

where g;(a) = g(y;) and hj(«) = h(y;), and g(«) and h(«) are as in the preamble
to Lemma 5.3 with A = A(P, R). By considering the underlying Diophantine equa-
tions, one finds that the number of solutions of the system (5.1) with x € [1, P]* is
bounded below by N7 ([0,1)"), whence it suffices to establish a lower bound for the
latter quantity. It follows from [25, Theorem 1.2] that for a suitable choice of R there
exists a number 7 > 0 satisfying

(6.5) J5.3(P; A(P,R)) <« P34,

and we note for future reference that the current bounds imply 7 < 1/24. Let m(/)
denote the set of & € [0,1)" for which |g;(a)| < P¥**¢. By Lemma 6.1, one has

mc m(6A+1) U---U m(7A+rQ)’

so after re-indexing and summing over j, we find that N7 (m) is bounded above by a
sum of at most r¢ expressions of the shape

6A 7A s
proevse [ TTimg(@)l TT lgi(@)!™" T lgj(e)lda
(0.7 5 j=6A+1 j=7A+1

We now apply (2.5) in such a way that, for some sets of indices J;, J, and J; with
|J1] =132 = A and |J3] = rq, one has

Ne(m) << P (TTIy(@)l°) (T gy (@)™ (ITles(@)"") da

jedh j€da je€ds

Here we have written
(6.6) 1//:T(4A—1)+[§rQ]—%rQ,

and we have used the fact that s = 7A +10rq + [2rq]. We next apply (5.2). Writing
Ai = (A2,i, As,i ), where Ay ; is a linear combination of the y ; with [ # i, we find that

67) Ni(m) <P [ (TT Iy + A0 80r)*1) (TTls(r)P) dy
’ Jjedz jeds
+e _4r A
< P(sup sup | Jh(y+2)°g(p)!ldys)

AeR? y,€[0,1) >
32/3 45\
< ( f[o)l)z g(y)*Pdy) ™.
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It follows from [28, Theorem 1.3] that the second integral is bounded above by P'7/3*¢,
Meanwhile, upon abbreviating 01; (Q) by 9;, we also have

sup [h(y +21)°g(y)"*"|dys < ( sup [g(y)[™*") f [h(y +1)[°dys
y2e[0,1) 0D yem* [0.1)

+sup [ [y +4)°g(y)' T [dys.
M3
In the first term, (6.5) together with [28, Lemma 5.2] yields

3 _37+¢ ! —A1+¢
('sup [g(p)I"*7) f[o ) |h(y +1)[°dys « P37 fo |h(y)|°dy «< PHH7re,
yem* >

In order to estimate the contribution from the major arcs, we observe that an appli-
cation of Holder’s inequality yields

S 2800 dys << ([ 180V Gy 00dys) ([ I lays) ™,

where w; = (2-871)/5, w, = (3+87)/5, and ¢ = (26 +167)/(3 + 87). Observe in
particular that for 7 < 1/24 one has ¢ > 8. It follows that the first integral is O (P*/?) by
Lemma 5.3 (i), and the second one is O(P?~3+¢) by Hua’s Lemma, whence we obtain
an overall contribution of PG/5)(1=47) p(9-3)(3+87)/5+e  p4=47+€ from the major arcs.
Together with the minor arc contribution we find

sup Ih(y + 1)Sg(p) 47|y, « P47+,
yeefo,1) J[0D)
and therefore
f[O»IY(]le_gIz Iy, + A)I°lg(r)I*7) (]_1;’[3 18(y;)P?*) da << e+ pi7/3re,
On recalling (6.6) and (6.7), we thus obtain
N7 (m) « pr(48-1)+e p[2ro]-3rq parc+(5/3)rq-47A . pirc+[3rq]-7/2

for ¢ sufficiently small.
It follows from our definitions of major and minor arcs that

(6.8) N;(n(X)) « Ns(m(Q)) + Ns(M(Q, X)),

where N, (B) denotes either N,(B) or N (B). In view of the preceding estimates,
(6.8) shows that the analysis of the minor arcs n(X) will be complete upon obtaining
a satisfactory bound for N;(M(Q, X)).

Lemma 6.2 Let1< X < QY®M) be arbitrary, and suppose that system (5.1) is highly
non-singular with s given via (2.3) where w is as in (6.3) or (6.4). Then we have

N,(M(Q, X)) « psKx-1/(©eM)
Proof The relation (5.2) implies that whenever a € 9t(Q), then for every pair of
indices i, j there exists an integer b; ; with [b; j| < B = rmax; j{c;j,d;;} such that
Viij — bi,j € My, (Q). We show that when a ¢ 91(X), then necessarily one has
y ¢ N(Y) + Z" for Y = XYM, For this purpose, observe that for i € {1,2} only
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u; of the entries of (¥ are independent. Now suppose that all entries of p(¥) are in
Ny, (Y) + Z". Then for every j € {1,..., u;} there exist g; < X and Ay, ; € Z with
|yki,j — Ak,,j/qj| < YP%. The invertibility of the coordinate transform (5.2) implies
that we may retrieve the ay, from the y(¥), and we therefore deduce that

|t — ax,1/ql <KYPR (1< 1< )

for some constant « depending at most on the (¢;;) and (d;;). However, we have
q=q1-qu < Y#, whence ag, ; € My, (Y#) € My, (YM) = N, (X) (1<j<ry).
It follows that whenever & € M(Q, X), there exists some pair of indices (k;, j) with
Vki.j € 0k, (Y) + Z. So altogether y e M(Q, Y) +Z" n [-B, B]".

For the rest of the argument we abbreviate 9t = M(Q), M = N(Y), and M =
M(Q, Y), and we use the same conventions for the respective symbols when equipped
with suffixes or asterisks.

For rq # rc and A = [L,P] setv; = 2u; + (s — 2s9)/M for i € {1,2}, so that
(p1— p2)v1 + Uavz = s. The relations (2.5) and (5.2) together with the above argument
imply that there exist sets of indices J; and J,, with |J;| = p1 — p» and |J5| = y», such
that

NS(M(Q,X)) < \[j\/[( : I} |f(y1)|v1 I} |f(y])|1’zd“
) iedy jeds
A \/J-V[(Q,Y) ieI_SIl |f(yz)|V1 JL_HIZ |f(y])|vzdy

Note that by the non-singularity condition we may assume that all entries (yx,,;)icg,
are determined by the entries (yx,,;) jeg,- We therefore obtain

1,\75 M(Q, X f Ty (OMF17H2 (k2) N2 dy.
MUQXD << Jo e Ty )Jle;lz\f()/])l 7

o T )y ™) TT (I,
(Dﬁ*)ﬂz ieds

where we wrote

Ty, (B,y")) = [B [T Okais Vani)I" Ay

iedy
Observe that we have v; > 2u; > 4 and v, > 2u, = 10 regardless of which of r¢ or rq
is larger. Writing

(€)= s [ 1f o ve) "y
Vi €M, ¥ €
we may therefore deploy Lemma 5.1 to obtain
~ _ 271
R0u(@ x)) < T ([ 15 0)a)"™ [ foleay
£ T T ([ 1))
« p(V2—5)I42+(V1—k1)(H1—H2)Y—l/ﬁ.

Upon noting that s = v;(p1 — 42) + vz and K = 5u, + ki (p1 — p2), this yields the
desired conclusion.
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Similarly, for rq = r¢ = r/2 we deduce from (2.5) and Lemma 5.1 (ii) that

r/2
Kf (M(Q,X)) « ps~2s0 f |f(y1)|10 dy « Ps—250+(5/2)rY—1/6,
$ (m*)r/z—lXM*(g )

and the result follows on noting that sg = K = 2rq + 3r¢ = (5/2)r in this case.
Finally, in the smooth case we have |J;| = A = r¢ — rq and |J,] = rq, and as in the
argument leading to (6.7) we obtain

N7 (M(Q, X)) < PIC/)ral [TIR(y; +2)°e(y)I TT lg(y))Idy
MQY) e, jeda

for suitable vectors A; = (12,;,3,;) € R?, where Ay ; is a linear combination of the
coefficients yy ; with [ # i. By writing

T (B.y®) = sup [ TTIh(y, +40)°8(r)ldys.i
Aer2A JB g
we see that

N*(M(Q, X)) « PIG/)rel f

T A (2) 10
neyao Gy ) [T1g(y))IPdy;

j€da
+p[(2/3>ro1f Ty, (M5 x M5, ) TT Ig(y,)dy;-
(om+)"Q jed2
Let

T(€) = sup sup [ |h(y+1)°g(y)|dys.
y2€0M AeR2 J €

Then by an argument analogous to the one above with Lemma 5.3 (ii) in the place of
Lemma 5.1 (i) we obtain

N;(M(Q.X)) << PICOWIT@m) ([ 17 [°ay) ™ [ 17"y

+ PICAIT() TG ([ IF()I°dy) "™
m’t*
« P[(z/s)rQ]P4AP5rQ Y—I/G « Ps—Ky—1/6‘
This completes the proof of the lemma. ]

The analysis of the minor arcs n(X) = [0,1]"~\91(X) is now completed by inserting
Lemma 6.2, together with the estimates ensuing from Lemma 6.1, into (6.8).

For the major arc analysis, only small modifications to the arguments of Section 4
are required. In completing the singular series, we again must make a case distinction
as to whether rq > r¢ or not. If rq > r¢, we have (6.2) and (6.3), and with these
parameters (4.7) becomes

(6.9) A(pi) « p—i(§(10+1/r)—2)+e+p—i(§(4+1/r)—1)+e « p—§(1+1/r)+s,

from which it follows that

(6.10) S A(p') < pHrE
i=3
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For i € {1,2} we make recourse to the estimate (5.4). Following through the argument
of the proof of Lemma 4.1, one thus obtains

(611) A(Pz) « p—i(%(4+l/r)—l)+s i p—i(%(10+1/r)—2)+s « p—l—l/(Zr)+£ (Z _ 1’2)'
Now on combining (6.10) and (6.11), one has for a suitable constant ¢ that

S <JJ+ep™ MOy «1.
P

If r¢ > rq we have (6.4), and thus

i(3(10+1/r)-2)+¢ —i(3(6+1/r)-1)+¢ i(1+1/(3r))+e

< p

A(p') < p tp
which is also satisfactory. Finally, in the case r = r¢ the bound is given by the first
term in (6.9), whence A(p’) <« p~*/3 for all i. It follows that the singular series
converges also in the setting of Theorem 1.4, and also that & - &(X) « X~° for some
6>0.

For the singular integral, the results of Lemma 4.2 are satisfactory even in the case
of Theorem 1.4. To verify this, we first observe that when rq # rc, one has u; > 2 >
3/2 = (k/2)v(1) and u, = 5> 3 = (k/2)(v(1) + v(2)), whereas when rq = r¢, we
have u; = 5 > 3 = (k/2)v(1). The proof of Theorem 1.4 is now complete on recalling
the concluding discussion of Section 4.
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