EMBEDDING A SEMIGROUP OF TRANSFORMATIONS

J. S. V. SYMONS

(Received 27 November 1973)

Communicated by T. E. Hall

Let X be an arbitrary set and θ a transformation of X. One may use θ to induce an associative operation in \mathcal{F}_X, the set of all mappings of X to itself as follows:

$$\alpha \ast \beta = \alpha \theta \beta \quad (\alpha, \beta \in \mathcal{F}_X).$$

We denote the resulting semigroup by $(\mathcal{F}_X; \theta)$. Magill (1967) introduced this structure and it has been studied by Sullivan and by myself.

Sullivan asks when $(\mathcal{F}_X; \theta)$ can be embedded in (\mathcal{F}_X, \circ), the full transformation semigroup under composition. He shows that if X is finite this can be done if and only if θ is a permutation of X and that any embedding (an isomorphism perforce) is of the form

$$\alpha \rightarrow g^{-1} \theta g \quad (\alpha \in \mathcal{F}_X)$$

where g is a permutation of X. The infinite case is left open. The purpose of this note is to prove the following.

Theorem 1. If X is infinite then any (\mathcal{F}_X, θ) may be embedded in (\mathcal{F}_X, \circ).

Proof. Let $X = X_E \cup X_0$ where X_0 and X_0 are disjoint and of the same cardinality, necessarily that of X. Select bijections g and h such that

$$h: X \rightarrow X_E \quad \text{and} \quad g: X \rightarrow X_0.$$

For α in \mathcal{F}_X we define $\alpha \phi$ as follows

$$x \alpha \phi = x h^{-1} \alpha g \quad (x \in X_E)$$

$$= x g^{-1} \theta \alpha g \quad (x \in X_0).$$

It is clear that the first part of the definition guarantees that $\alpha \rightarrow \alpha \phi$ is one to one. Observe that $\alpha \phi: X \rightarrow X_E = X_0$. It follows that for α and β in \mathcal{F}_X we have that

$$\alpha \phi \beta \phi = \alpha \phi g^{-1} \theta \beta g. \quad \text{Thus if } x \text{ is in } X_E,$$
Embedding a semigroup

\[xx\beta \phi = xh^{-1}xg \cdot g^{-1} \theta \beta g = xh^{-1}x\theta \beta g = x(x \ast \beta)\phi \]

while if \(x \) is in \(X_0 \),

\[xx\phi \beta \phi = xg^{-1}x\theta xg \cdot g^{-1} \theta \beta g = xg^{-1}x\theta \beta g = (x \ast \beta)\phi. \]

It follows that \((x \ast \beta)\phi = x\phi \beta \phi\), as required.

The classification of the embeddings of \((T_x; \theta)\) in \((T_x, \circ)\) is extremely difficult. Partial results have been obtained. We shall describe our most pleasant result in this direction.

We call a transformation semigroup \(S \subseteq T_x \) irreducible if the set

\[xS = \{xx; x \in S\} \]

coincides with \(X \) for each \(x \) in \(X \). Further, we shall say than an embedding \(\phi \) of \((T_x; \theta)\) in \((T_x, 0)\) is irreducible if \(T_x \phi \) is irreducible.

Theorem 2. Any irreducible embedding of \((T_x; \theta)\) in \((T_x, \circ)\) is of the form

\[x \rightarrow g^{-1} \theta xg \quad (x \in T_x) \]

for some fixed permutation \(g \) of \(X \).

Proof. Assume \(\phi \) is such an embedding and let \(\kappa = \kappa_x \) denote the constant function in \(T_x \) with range \(x \). We choose \(y \) in the range of \(\kappa \phi \) and consider \(y(\kappa \phi)^{-1} \).

If \(z \) is any member of this latter set then for any \(x \) in \(T_x \)

\[(zx \phi) \kappa \phi = z(\kappa \phi) \phi = z \kappa \phi = y. \]

This shows that \(y(\kappa \phi)^{-1} \) is invariant under \(T_x \phi \) and hence, by irreducibility, coincides with \(X \). This shows that \(\phi \) maps constants to constants from which follows

\[\kappa_x \phi = \kappa_x g \quad (x \in X) \]

where \(g \) is an injective transformation of \(X \). But then for each \(x \)

\[\kappa_x \theta xg = (\kappa_x \ast x)\phi = \kappa_x \phi x\phi \]

which implies \(\theta xg = gx \phi \). Thus \(X g x \phi \subseteq X g \), and this is contrary to irreducibility unless \(g \) is onto. In this case \(g \) permutes \(X \) and \(\alpha \phi = g^{-1} \theta xg \), as required.

It is clear that \(\phi \) above is an embedding if and only if \(\theta \) is onto \(X \). Hence we have the following:

Corollary. It is possible to irreducibly embed \((T_x; \theta)\) in \((T_x, \circ)\) if and only if \(\theta \) is onto.
References

Monash University
Clayton 3168, Australia.