J. Austral Math. Soc. 20 (Series A) (1975), 222-224.

EMBEDDING A SEMIGROUP OF TRANSFORMATIONS

J. S. V. SYMONS

(Received 27 November 1973)

Communicated by T. E. Hall

Let X be an arbitrary set and θ a transformation of X. One may use θ to induce an associative operation in \mathcal{T}_X , the set of all mappings of X to itself as follows:

$$\alpha * \beta = \alpha \theta \beta \qquad (\alpha, \beta \in \mathscr{T}_{x}).$$

We denote the resulting semigroup by $(\mathcal{T}_X; \theta)$ Magill (1967) introduced this structure and it has been studied by Sullivan and by myself.

Sullivan asks when $(\mathcal{F}_X; \theta)$ can be embedded in (\mathcal{F}_X, \circ) , the full transformation semigroup under composition. He shows that if X is finite this can be done if and only if θ is a permutation of X and that any embedding (an isomorphism perforce) is of the form

$$\alpha \to g^{-1} \theta \alpha g \qquad (\alpha \in \mathscr{T}_{\chi})$$

where g is a permutation of X. The infinite case is left open. The purpose of this note is to prove the following.

THEOREM 1. If X is infinite then any $(\mathcal{T}_{X}, \theta)$ may be embedded in $(\mathcal{T}_{Y, \theta})$.

PROOF. Let $X = X_E \cup X_0$ where X_0 and X_0 are disjoint and of the same cardinality, necessarily that of X. Select bijections g and h such that

$$h: X \to X_E$$
 and $g: X \to X_0$.

For α in \mathcal{T}_X we define $\alpha \phi$ as follows

$$x\alpha\phi = xh^{-1}\alpha g \quad (x \in X_E)$$
$$= xg^{-1}\theta\alpha g \quad (x \in X_0).$$

It is clear that the first part of the definition guarantees that $\alpha \to \alpha \phi$ is one to one. Observe that $\alpha \phi: X \to X_g = X_0$. It follows that for α and β in \mathcal{T}_X we have that $\alpha \phi \beta \phi = \alpha \phi g^{-1} \theta \beta g$. Thus if x is in X_E ,

$$x\alpha\phi\beta\phi = xh^{-1}\alpha g \cdot g^{-1}\theta\beta g = xh^{-1}\alpha\theta\beta g = x(\alpha^*\beta)\phi$$

while if x is in X_0 ,

$$x\alpha\phi\beta\phi = xg^{-1}\theta\alpha g \cdot g^{-1}\theta\beta g = xg^{-1}\theta\alpha\theta\beta g = (x * \beta)\phi$$
.

It follows that $(\alpha * \beta)\phi = \alpha\phi\beta\phi$, as required.

The classification of the embeddings of $(\mathcal{T}_X; \theta)$ in (\mathcal{T}_X, \circ) is extremely difficult. Partial results have been obtained. We shall describe our most pleasant result in this direction.

We call a transformation semigroup $S \subseteq \mathcal{T}_X$ irreducible if the set

$$xS = \{x\alpha; \alpha \in S\}$$

coincides with X for each x in X. Further, we shall say than an embedding ϕ of $(\mathcal{T}_X; \theta)$ in $(\mathcal{T}_X, 0)$ is irreducible if $\mathcal{T}_X \phi$ is irreducible.

THEOREM 2. Any irreducible embedding of $(\mathcal{T}_X; \theta)$ in (\mathcal{T}_X, \circ) is of the form

$$\alpha \to g^{-1} \theta \alpha g \qquad (\alpha \in \mathscr{T}_{\chi})$$

for some fixed permutation g of X.

PROOF. Assume ϕ is such an embedding and let $\kappa = \kappa_x$ denote the constant function in \mathcal{T}_x with range x. We choose y in the range of $\kappa \phi$ and consider $y(\kappa \phi)^{-1}$. If z is any member of this latter set then for any α in \mathcal{T}_X

$$(z\alpha\phi)\kappa\phi = z(\alpha\kappa)\phi = z\kappa\phi = y.$$

This shows that $y(\kappa\phi)^{-1}$ is invariant under $\mathcal{T}_X\phi$ and hence, by irreducibility, coincides with X. This shows that ϕ maps constants to constants from which follows

 $\kappa_x \phi \approx \kappa_{xg} \qquad (x \in X)$

where g is an injective transformation of X. But then for each α

$$\kappa_{x\theta zq} = (\kappa_x * \alpha)\phi = \kappa_x \phi \alpha \phi$$

which implies $\theta \alpha g = g \alpha \phi$. Thus $Xg \alpha \phi \subseteq Xg$, and this is contrary to irreducibility unless g is onto. In this case g permutes X and $\alpha \phi = g^{-1} \theta \alpha g$, as required.

It is clear that ϕ above is an embedding if and only if θ is onto X. Hence we have the following:

COROLLARY. It is possible to irreducibly embed $(\mathcal{T}_x; \theta)$ in (\mathcal{T}_x, \circ) if and only if θ is onto.

References

- K. D. Magill, Jr. (1967), 'Semigroup structures for familes of functions, I. Some homomorphism theorems', J. Austral. Math. Soc. 7, 81-94.
- R. P. Sullivan (to appear), 'Generalized partial transformation semigroups', J. Austral. Math. Soc.
- J. S. V. Symons (to appear), 'On a generalization of the transformation semigroup', J. Austral. Math. Soc.
- J. S. V. Symons (1973), Automorphisms of transformation semigroups (Ph.D. thesis, University of Western Australia, 1973).

Monash University

Clayton 3168, Australia.