EMBEDDING A SEMIGROUP OF TRANSFORMATIONS

J. S. V. SYMONS

(Received 27 November 1973)
Communicated by T. E. Hall

Let X be an arbitrary set and θ a transformation of X. One may use θ to induce an associative operation in \mathscr{T}_{X}, the set of all mappings of X to itself as follows:

$$
\alpha^{*} \beta=\alpha \theta \beta \quad\left(\alpha, \beta \in \mathscr{T}_{X}\right)
$$

We denote the resulting semigroup by $\left(\mathscr{T}_{x} ; \theta\right)$ Magill (1967) introduced this structure and it has been studied by Sullivan and by myself.

Sullivan asks when $\left(\mathscr{T}_{X} ; \theta\right)$ can be embedded in $\left(\mathscr{T}_{X}, \circ\right)$, the full transformation semigroup under composition. He shows that if X is finite this can be done if and only if θ is a permutation of X and that any embedding (an isomorphism perforce) is of the form

$$
\alpha \rightarrow g^{-1} \theta \alpha g \quad\left(\alpha \in \mathscr{T}_{X}\right)
$$

where g is a permutation of X. The infinite case is left open. The purpose of this note is to prove the following.

Theorem 1. If X is infinite then any $\left(\mathscr{T}_{X}, \theta\right)$ may be embedded in $\left(\mathscr{T}_{X}, 0\right)$.
Proof. Let $X=X_{E} \cup X_{0}$ where X_{0} and X_{0} are disjoint and of the same cardinality, necessarily that of X. Select bijections g and h such that

$$
h: X \rightarrow X_{E} \text { and } g: X \rightarrow X_{0}
$$

For α in \mathscr{T}_{X} we define $\alpha \phi$ as follows

$$
\begin{aligned}
x \alpha \phi & =x h^{-1} \alpha g & & \left(x \in X_{E}\right) \\
& =x g^{-1} \theta \alpha g & & \left(x \in X_{0}\right)
\end{aligned}
$$

It is clear that the first part of the definition guarantees that $\alpha \rightarrow \alpha \phi$ is one to one. Observe that $\alpha \phi: X \rightarrow X_{g}=X_{0}$. It follows that for α and β in \mathscr{T}_{X} we have that $\alpha \phi \beta \phi=\alpha \phi g^{-1} \theta \beta g$. Thus if x is in X_{E},

$$
x \alpha \phi \beta \phi=x h^{-1} \alpha g \cdot g^{-1} \theta \beta g=x h^{-1} \alpha \theta \beta g=x\left(\alpha^{*} \beta\right) \phi
$$

while if x is in X_{0},

$$
x \alpha \phi \beta \phi=x g^{-1} \theta \alpha g \cdot g^{-1} \theta \beta g=x g^{-1} \theta \alpha \theta \beta g=(x * \beta) \phi .
$$

It follows that $\left(\alpha^{*} \beta\right) \phi=\alpha \phi \beta \phi$, as required.
The classification of the embeddings of $\left(\mathscr{T}_{x} ; \theta\right)$ in $\left(\mathscr{T}_{X},{ }_{0}\right)$ is extremely difficult. Partial results have been obtained. We shall describe our most pleasant result in this direction.

We call a transformation semigroup $S \subseteq \mathscr{T}_{X}$ irreducible if the set

$$
x S=\{x \alpha ; \alpha \in S\}
$$

coincides with X for each x in X. Further, we shall say than an embedding ϕ of $\left(\mathscr{T}_{X} ; \theta\right)$ in $\left(\mathscr{T}_{X}, 0\right)$ is irreducible if $\mathscr{T}_{X} \phi$ is irreducible.

Theorem 2. Any irreducible embedding of $\left(\mathscr{T}_{x} ; \theta\right)$ in $\left(\mathscr{T}_{X}, \circ\right)$ is of the form

$$
\alpha \rightarrow g^{-1} \theta \alpha g \quad\left(\alpha \in \mathscr{F}_{X}\right)
$$

for some fixed permutation g of X.
Proof. Assume ϕ is such an embedding and let $\kappa=\kappa_{x}$ denote the constant function in \mathscr{T}_{x} with range x. We choose y in the range of $\kappa \phi$ and consider $y(\kappa \phi)^{-1}$. If z is any member of this latter set then for any α in \mathscr{T}_{X}

$$
(z \alpha \phi) \kappa \phi=z(\alpha \kappa) \phi=z \kappa \phi=y
$$

This shows that $y(\kappa \phi)^{-1}$ is invariant under $\mathscr{T}_{X} \phi$ and hence, by irreducibility, coincides with X. This shows that ϕ maps constants to constants from which follows

$$
\kappa_{x} \phi=\kappa_{x g} \quad(x \in X)
$$

where g is an injective transformation of X. But then for each α

$$
\kappa_{x \theta \alpha g}=\left(\kappa_{x} * \alpha\right) \phi=\kappa_{x} \phi \alpha \phi
$$

which implies $\theta \alpha g=g \alpha \phi$. Thus $X g \alpha \phi \subseteq X g$, and this is contrary to irreducibility unless g is onto. In this case g permutes X and $\alpha \phi=g^{-1} \theta \alpha g$, as required.

It is clear that ϕ above is an embedding if and only if θ is onto X. Hence we have the following:

Corollary. It is possible to irreducibly embed $\left(\mathscr{T}_{x} ; \theta\right)$ in $\left(\mathscr{T}_{X}, \circ\right)$ if and only if θ is onto.

References

K. D. Magill, Jr. (1967), 'Semigroup structures for familes of functions, I. Some homomorphism theorems', J. Austral. Math. Soc. 7, 81-94.
R. P. Sullivan (to appear), 'Generalized partial transformation semigroups', J. Austral. Math. Soc.
J. S. V. Symons (to appear), 'On a generalization of the transformation semigroup', J. Austral. Math. Soc.
J. S. V. Symons (1973), Automorphisms of transformation semigroups (Ph.D. thesis, University of Western Australia, 1973).

Monash University

Clayton 3168, Australia.

