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ABSTRACT 

The dimensionless form of the field equations and 
boundary conditions governing plane flow of a grounded 
cold ice sheet emerge from balance statements of mass, 
momentum, and energy. They constitute an amended version 
of a reduced model of ice-sheet flow, due to Morland 
(1984) and Hutter (1983), and circumvent the restrictions 
imposed by the reduced model, namely the neglect of the 
longitudinal stretching effects. The amended version permits 
satisfaction of mass balance at the ice divide for arbitrary 
basal sliding conditions and gives a better reproduction of 
the local flow features. 

Under very mild simplifying assumptions, namely that 
horizontal thermal conduction can be ignored close to the 
divide, we present a numerical analysis of the ice divide 
which has second-order accuracy. This analysis permits 
determination of the temperature profile, velocity, and stress 
distributions in a symmetric ice divide, provided that the 
ice-divide height, the local behavior of the accumulation 
and surface-temperature functions, and the geothermal heat 
flow are prescribed. 

I. INTRODUCTION 

Ice divides are areas where important surrogate 
information about the climate or glacier history may be 
obtained. For example, they are the best areas for obtaining 
cores for isotope analysis (Raymond, 1983), and their flow 
regime can have a profound influence on erratic trajectories 
(Boulton and others, 1985), especially if one includes saddle 
points under the class of divides. However, ice divides 
present certain mathematical difficulties which (i) prevent 
the reduced model of Morland (I984) and Hutter (I983) 
from describing their evolution and characteristics, and (ii) 
require high-order preCISIOn in their numerical analysis 
when reliable local solutions of the stress, velocity, and 
temperature distributions are being sought. 

Steady-state conditions of the reduced model were 
numerically studied by Yakowitz and others (1986) and 
Hutter and others (I986, 1987). These solutions were 
constructed with the aid of a marching procedure by 
starting at the divide, selecting a divide height, performing 
an ice-divide analysis, and proceeding column by column 
up to the margin (at which the height must vanish) was 
reached. The pre-selected ice-divide height was varied until 
the integrated accumulation function vanished for the 

170 

solution to satisfy total mass balance. But, unfortunately, a 
large amount of basal slip was required for the predictions 
to be accurate. The reason for the inadequacy of the model 
was the neglect of longitudinal stretching effects, which we 
know to be significant in the vicinity of ice divides 
(Raymond, 1983). 

Our new improved model equations incorporate the 
longitudinal stretching effects. They are derived from the 
exact continuum equations by ignoring the horizontal 
thermal diffusion in the heat equation (this term is known 
to be small). With this model, strong basal friction is now 
permissible, but a finite-difference solution scheme must 
possess at least second-order accuracy to admit an 
acceptable local solution. Even higher-order accuracy is 
needed if a complete ice-sheet solution is to be found . 

We will demonstrate this analysis for plane-flow 
conditions and a locally symmetric ice divide. The analysis 
of a dome of a locally axisymmetric ice sheet is analogous 
and only requires minor changes. Basic equations will only 
be briefly stated and not derived, as they can be found, 
for instance, in Hutter (1983). 

2. GOVERNING EQUATIONS 

The equations of the model prior to any 
approximat ions are as follows. 

2.1. Field equations 
When restricted to plane flow, the dimensionless 

veloc ities U, W, stresses ax ' az ' T, and the temperature T 
are governed by the equations (see Fig. I): 

aax aT 
(a) E -- + 0, 

ax az 

aT aaz 
(b) E - + I, 

ax az 

au aw 
(c) ax + az 0, 

au 
(d) ax 

I I 
-a(T)w(T I s2) - (<T - az) , 
v II 2 x (I) 
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Fig. I . Symmetric plane ice sheet indicating the 
coordinates, the free surface, and the bottom profiles, 
including a sketch of the finite-difference approximation 
close to the divide . 

TABLE la. SCALES USED TO NON-DIMENSIONALIZE 
THE FIELD EQUATIONS AND BOUNDARY 
CONDITIONS. NUMERICAL V ALUES ARE TYPICAL 
FOR THE SITUATION. A RANGE OF VALUES IS 

DISCUSSED IN THE TEXT 

00 = 105 (N m-2) 

qm = I (m a-I) 

Ro = 105 (m) 
do = 2000 (m) 
Do = I (a-I) 
D.T = 20 (K) 
Go 10-2 (K m-I) 

Typical stress range 
Typical vertical velocity or accumul
ation rate 
Representative length 
Representative thickness 
Typical stretching 
Temperature range 
Typical value for geothermal 
temperature gradient 
Aspect ratio (= ratio of typical 
depth and length) 
Scale for rate factor 

TABLE lb. PHYSICAL PARAMETERS 

P 918 (kg m -3) Ice density 
g 9.81 (m S-2) Earth's acceleration 
)..ice 2.2 (N kg- l K -1) Thermal conductivity of ice 

.= Asoil 
C 2 x 103 (kg m S-3 K- I ) Heat capacity 
T F = 273.15 (k) Melting temperature at 

atmospheric pressure 
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TA BLE Ba. MATERIAL RESPONSE FUNCTIONS FOR 
POL YCR YST ALLINE ICE 

ao = 0.7242, bo = 11.9567, a I = 0.3438, bI 2.9494 

Co = 0.3336, Cl = 0.3200, c 2 = 0.02963 

TABLE Bb. ACCUMULATION-RATE AND SURFACE
TEMPERA TURE FUNCTIONS (EXAMPLES) 

Acc(X,H(X» = Ao[1 - exp(-(H - He(X» I AIJ 

Ts(X,H(X» = To - TIH(X) - T 2X 

He(X) = Ho(l - H2X2) 

AO 0.5, Al 0.2-0.05 

To -0 .1, TI 0.5-1.0 , T2 0-10- 1 

Ho = 0.5-1.5 , H2 = 10-2-10-1 

TABLE IIc. BASAL SLIDING LAW AND GEOTHERMAL 
HEAT FLOW 

-0.5 

-0.4 

T(O.Z) 

Qgeoth(X,F B(X» 

UF(loz l,T,T) 

1, 

I I 
---T /1 - 10 
10zl /1 ' 

TABLE le. DIMENSIONLESS PARAMETERS BASED ON -03 
THE ABOVE SCALES 

~= IO-C IO-l, 
gdo 

IO- L lOo, s a = 
pgdo CD.T 

qm )... 

IO-C IO- I , 
Ice 

IO- L lOo, .p ---- 13 = 
doDoao pCdoqm 

V 6 · s, dol Ro = 10-3-10-1, 

pgd~qm ).. 
Boil GOdO 

""( = ---- 10°-102 , ----- = IO-L IOO. 
D.T)". E )... D.T 

Ice Ice 

(In the reduced model equations v = E2 and 9 I/Il s .) 

-0.2 

-0.1 

+--,--,--,--,--,--.--,-~---Z 

o 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 = Ho 

Fig. 2. Typical shape of the temperature distribution at the 
divide (2 = 0 corresponding to the bottom, 2 = Ho to 
the top) . 
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au 2 aw 2E 2 
(e) + E - = -a(T)w(Tnls )T , 

az ax v 

aT aT aT 
(f) at + u--+w--= 

ax az 

2a 2 
+ -a(T)w(Tnls )TIl 

v 

where aCT) is a temperature-dependent rate function, 
w(T III S2) is a creep response function, and 

I 
- (a - a )2 + T2 
4 x z (2) 

is the second stress-deviator invariant (see Hutter and 
others, 1986). s, v, and E are dimensionless constants, which 
are independent here but were given by s = Ea- 1/ 2 and 
v = E2 in the reduced model. We still may assume that E 

and v are smaller than unity and that e is 0(1) or larger, 
but an inter-relationship is not presently suggested. In 
addition, a and B are given constants; they are called an 
energy-dissipation and a thermal diffusion number, 
respectively. In terms of physical constants and typical 
scales, these constants are given in Table I. Numerical 
values have a considerable spread. 

In Equations (I), statements (a) and (b) are a horizontal 
force balance, (c) is the incompressibility condition, while 
(d) and (e) are constitutive relations of stress relating 
strain-rate in a non-linear fashion to the stress deviator. 
The non-linearity is expressed by the temperature-dependent 
rate factor aCT) and the creep response function w(TIl/s

2) . 
Finally, (f) is the heat equation that incorporates advection, 
thermal diffusion, and strain heating. As shown by Morland 
(1984), all these terms are significant in thermo-mechanical 
coupled ice-sheet dynamics. 

Rate factors aCT) between 263 and 273 K satisfy a 

(e) U 

(f) W 
dFB u
dX' 

(g) 
dFB aT aT 

E2 -----
dX ax az 

+ ~geoth(XF (X»[I + E2[aFB12]! . 
.L ' B axJ 

In Equations (3), (a) is a kinematic statement 
expressing the evolution of the surface profile; (b) and (c) 
are surface-stress conditions relating U x' u z, and T to the 
atmospheric pressure but ignoring the small wind-stress 
term. Relation (d) is the Dirichlet condition of temperature, 
i.e. we prescribe the surface temperature through TS<X,H,t). 
At the base, a sliding condition is applied. This is formally 
implemented in Equations (4) by prescribing the horizontal 
velocity component (Equation (e» and requesting tangency 
of the sliding velocity along the base Z = F B(X), expressed 
in Equation (f). Statement (g) equates the heat flow from 
the basal surface into the ice to the dimensionless frictional 
heat plus the dimensionless geothermal heat flow 
Qieoth (X,FB,t) which is positive as a flow towards the ice. 
Orders of magnitude for Qieoth are 0.1-\.0. The term 
involving "'I represents generation of frictional heat along the 
base; "'I is a dimensionless quantity with the order of 
magnitude ~102; it is also defined in Table I. 

We emphasize that the boundary condition in Equations 
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polynomial relation aCT) = P3(T). Likewise, w(TIlIs2) is often 
a power law, but numerous laboratory and field studies (see 
Hutter, 1983, chapter 2) have indicated that polynomial 
expressions fit available data better. We shall adopt a "finite 
viscosity" expression to avoid mathematical singularities at 
the free surface (Johnson and McMeeking, 1984) but leave 
both aCT) and w(Tn/s2) arbitrary to adjust for local 
constitutive behavior. A choice is given in Table II. 

The constitutive relations of Equations (Id and e) do 
not incorporate any stress~induced anisotropies (i.e. 
directional dependencies). To our knowledge, such anisotropy 
effects have so far not been incorporated in any 
glaciological context. However, inhomogeneities (i.e. positional 
dependencies) can easily be incorporated in the rate factors 
as well as the creep-response function by making a and w 
also position-dependent. So, our formulation permits 
incorporation of the differences of the softening effect of 
the dust particles in Pleistocene ice by an internal variable 
(see Hutter and Yulliet, 1985) or simply by making a and w 
position-dependent. 

2.2. Boundary conditions 
The field Equations (I) and (2) are complemented by 

boundary conditions at the free surface 

aH aH 
(a) - + U- - W Acc(X,H,t), 

at ax 

aH aH 
(b) -ax Eax + T PatmEax' 

at Z H(X) (3) 

aH 
(c) -TE ax + U z 

(d) T = Ts(X,H,t), 

and at the base 

at Z (4) 

(3)--(4) are exact statements valid for any value of E. The 
climatology input is provided by p.tm (usually = 0) and the 
two forcing functions Acc(.) and Ts(')' and the interaction 
with the substratum is described by the geothermal heat 
flow Qleoth(.) and the sliding law U y (')' 

The accumulation rate has generally a strong depen
dence on H. Denoting by HE the snow-equilibrium height, 
we have Acc > 0 if H > HE and Acc < 0 if H < HE with 
Acc = 0 at H = HE' A polynomial dependence on the 
variable (H - HE) may be appropriate, but an X- or 
I-dependence can also be incorporated by choosing 
HE = HE(X,t). 

The surface temperature Ts is the temperature 
measured 10 m below the surface. It also has a strong 
dependence on height, which in a first approximation can 
be assumed to be linear. 

The geothermal heat flow Q~eoth is often assumed to 
be constant (corresponding to 3°C/! 00 m). However, it may 
equally be assumed to be a function of position and time. 
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Computationally, it is also advantageous to prescribe the 
geothermal heat through a "virtual" horizontal plane, 

(5) 

rather than Q1"0th. Values of Qgeoth(X,FB(X» are generally 
larger in the central region than towards the margin. This 
follows simply from the insulating effect that is exhibited 
by the ice sheet. 

The sliding law is probably the most complicated of 
all. It must be selected with caution because both physical 
and mathematical arguments will determine its form (Hutter, 
1983). For a finite slope margin (wedge type), one must 
have VF = c2 1 az I T as the margin position is approached. In 
other words, the sliding velocity is linear in the shear 
traction and the overburden pressure. 

The explicit forms of all these functional relations used 
in this paper are given in Table 11. 

We now give a heuristic proof that Equations (I) can 
circumvent the restriction that basal sliding must be large. 
To this end, recall that, from Hutter and others (1986), the 
curvature of the surface profile at the ice divide, computed 
according to the reduced equations is given by 

(6) 
Glide + Slide 

where 

Glide 

HD 

J 2w(Tn / s2 ) (HD - FB)2 a(T(O,z»dz, 

FB 

and HD = H(O), F B = F B(O), ax(O) = 0z(O), and thus, 
TU(O) = 0 since T(O) = O. With Tn = 0 at the divide, w = 

w(0) which vanishes for a power flow law implying GLIDE = 
O. This necessarily requires SLIDE i- O. We have chosen 
w(0) i- 0 and thus would make H' dependent upon a "finite 
viscosity at zero stress", a quantity which is poorly known. 
In addition, GLIDE is very small which again requires that 
SLIDE is of order unity. The point is that the shallow-ice 
approximation yields doubtful results close to the divide. 
For the improved model, longitudinal stretching is 
significant so ax(O) i- 0z(O) cannot vanish even with T(O) = 

O. 
Balancing both sides of Equation (I d) then requires 

o~ = ±.(ax - az ) = va~ so that Equations (Ic and d) with 
T = ET red uce to 

av aw 
+ 

ax az 
0, 

At a symmetric ice divide, Equations (la) and (le) are 
identically satisfied, and we may write in accordance with 
mass balance 

w = - A r _Z - F B] 
cc W

D 
- FB ' 

and then deduce from above 
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This relation defines both aVlaX and a~ at the divide, if 
T and H are prescribed. With a~ i- 0, one has TU i- 0, 
w(Tn) i- 0, and thus GLIDE i- O. In fact, we shall 
demonstrate that w ~ 0(1) under usual circumstances and so 
SLIDE may vanish without making Hi) infinite. 

Henceforth, steady-state conditions will be considered 
and time derivatives in Equations (I f) and (3a) will be 
omitted. 

2.3. Numerical solution strategy 
Suppose we ignore the terms E2a2T / aX2 in the energy 

Equation (I f). The soundness of this approximation can be 
tested a posteriori. Let the finite-difference approximation 
of the derivative of / with respect to X be denoted by Sf. 
(We shall define 5/ below.) Then, Equations (I) and (2) 
may be written as 

aT 
(a) 

az 
- -E50x ' 

(b) ~= I - EST, 
az 

aw 
(c) 

az 
-SV, 

(7) 

av 
-E 2SW 

2E 2 
(d) - + -a(T)w(Tn/ S )T, 

az v 

aT 
(e) 

az 
T' , 

aT' 
HVST 

2a 2] (f) - + WT' - ~a(T)w(Tn/S )Tn ' 
az 

with 

2vSU 
(a) 

(8) 

(b) 

Note that Equation (7a) is a re-arrangement of Equation 
(Id) and Equation (7b) is a combination of Equation (7a) 
and the definition of Tn, in Equations (2). 

The boundary conditions are as follows: 

at Z = FB(X): 

(a) W = V5FB, 

(b) T' = _~Qgeoth(X) + E25T5FB -

- YV[T - e(ax - aZ)SFB - E2T(SFB)2), 

(c) V 

and at Z H(X) : 

(a) V·H' - W = Acc(X,H(X», 

(b) - axEH' + T = EH' Patm ' 

(c) - !EH' + az = - Patm , 

(d) T = Ts(X,H(X). 

(9) 

(10) 

Observe that for any fixed value of x Equations (7) 
and boundary conditions (9) and (10) define a two-point 
boundary value problem (TPBVP) for the unknown 
functions T, az , W, V, T, and T', provided that the 
approximating derivatives Sax' 5T, SV, SW, ST, and 5FB 
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are known. 
In order to take advantage of this property, the 

solution strategy is as follows . For any given value of the 
divide height Hn' we shall proceed in three steps: 

Step J. All unknowns will be determined at the divide and 
in the column next to the divide. (That is, for x = ° and 
for x = .t.x.) 

Step 2. Using a marching procedure, the unknown functions 
will be determined for all x = k · .t.x (k ~ 2), such that 
H(k.t.x) > 0. The margin position xM(Hn ) is reached when 
for the first time H«k + I ).t.x) ~ 0. 

Step 3. The divide height Hn is determined by the 
condition that the integrated squared accumulation must 
vanish . That is, the value of Hn is obtained by solving the 
equation (Ta is called the target function) 

0 . (11 ) 

For example, the secant method (Yakowitz and Szidarovszky, 
1986) can be used for the numerical solution of this 
equation. The advantage of using the secant method is the 
fact that this method does not use derivatives of the target 
function . Note that the computation of the target function 
at any value of Hn requires the completion of steps I and 
2 for this fixed value of Hn ' 

In this paper, we shall not discuss the marching process 
in general; we shall leave this step to a succeeding paper. 
But step 1 will be discussed in detail. 

We now demonstra te how the ice-divide analysis is 
performed . 

3. NUMERICAL TREATMENT OF THE ICE DIVIDE 

For simplicity, a symmetric configuration will be 
considered. 

3.1. Divide analysis 
At a symmetric ice divide the following symmetry 

conditions must be fulfilled: 

aT 
U(O,Z) 0, ax<0,Z) 0, 

aw 81°,Z) 0, T(O,Z) 0, (12) 

aax aaz 
ax'0,Z) ax<0,Z) 0, H' (0) 0. 

Substituting these relations into the steady-state versions of 
the governing field Equations (I) and boundary conditions 
(2) and (3), the following system of equations 

aaz aT 
(a) az 1 - E-ax' 

(b) W(Z) = w(O)(Z), 

(c) aT' I [ az = 13 WT' 
2a 2] - ~a(T)w(Tn/S )Tn ' ( 13) 

aT 
(d) az T' , 

aw I .t. 
(e) az - - --a(T}w(Tn/ s2)-

v 2 
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with boundary conditions 

(a) T' _~Qgeoth(o) , at Z FB(O) , 

(b) T T, (O,H(OI) ,] 
at Z H(O) 

(c) az -Patm(O), 

(14) 

is obtained. In the above 

(15a,b) 

and W(O)(Z) is a prescribed function . Our initial - and 
later improved - ice-divide analysis will therefore be based 
on an approximate representation of the vertical velocity 
profile , the first estimate being based upon the linear 
relation 

Z - FB(O) 
W(O)(Z) = -A (0 H(O») (16) 

cc L ' H(O) - F B(O) . 

Note also that, since w is increasing in .t.2 and .t. is a 
multiplier, there is a unique solution .t. of Equation (I3e) 
for any values of H(O) and T . For the suggested numerical 
procedure this is important. The procedure is now as 
follows: 

Equations (13c, d , and e) with the definitions in 
Equation (15) and the boundary conditions in Equations (14a 
and b) yield a TPBVP for T' and T. In the solution of 
this TPBVP, .t. is obtained by solving the non-linear 
Equation (13e) using thereby the estimate in Equation (16); 
Tn then follows from Equation (l5a,b). Finally, we may 
recall that U = T = ° at the divide. 

Note that the functions ax and az are not determined; 
only their difference, function .t., is obtained. As we shall 
see later, in the column next to the divide a si multaneous 
computation of all variables with those at the divide is 
possible which makes all the variables available. 

3.2. Second-order derivative approximation 
We list here without proof a first X -derivative 

approximation of second order, i.e. the error is 0(t.X2). Let 
X = 0 be the point of symmetry. Consider the derivative 
8f18X. Then to second order, 

where 

6j(X) 

8[ 
ax 

0, if x = ° and [ is even, 

2 ([(X) - [(0» 
if X = .t.X and [ is even, 

(a) 

(b) 

( 17) 

j(X) 
t.X ' if (X = ° or X = t.X) and j is odd, (c) 

3f(X) - 4[(X - .t.X) + [(X - 2.t.X) 
--'----'-------'--'----'-------''-'-------'-, if X > .t.X. 

2.t.X 

(d) 

This formula will be used repeatedly in what follows. 

We also need the backward second derivative in Z 

82[ 
----'--(O,Z) = 62 [(O,Z) + 0(.t.Z2) 
az2 

where 

62 [(O,Z) 
I 

-2 [2W(0,Z) - 5W(0,Z - .t.Z) + 
.t.Z (18) 

+ 4W(0 ,Z - 2.t.Z) - W(O,Z - 3.t.Z)]. 
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In the above, even functions satisfy the property f(X) 
fe-X) while for odd functions one has f(X) = -fe-X). 

3.3 Column next to the divide 
Recall that at the divide we know the functions W, T, 

T' , l!., and U = T = 0. 
Assume now that X = l!.X. Then, up to secol/d order, 

the even functions are the same at the divide and in the 
column next to the divide. Thus 

(a) W(l!.X,Z) ~ W(O,Z), 

(b) T(l!.X,Z) ~ T(O,Z), ° ~ z ~ H(O). 

(c) lI(lIX,Z) '" lI(O,Z). 

(19) 
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The other functions U, T, O"x' and TII at the divide 
and next to the divide can be obtained simultaneously in 
several steps. 

Step I 
From Equation (7c) and relations (17c and d), we may 

deduce the approximations 

l!.X 
[ 3W(0,Z) - 4W(0,Z + l!. Z) + W(O,Z + 2l!.Z») , if Z 

2l!.Z 

U(l!.X,Z) 
l!.X 

- 2l!.Z [3W(0,Z) - 4W(0,Z - l!.Z) + W(O,Z - 2l!.Z») , if Z H(O) , (20) 

l!.X 
- - [W(O,Z + l!.Z) - W(O,Z - l!.Z») , 

2l!.Z 

Thus, U(l!.X,Z) is now known for all Z. 

Step 2 
By using the boundary conditions in Equations (3) at 

Z = H(O), the values of O"x(l!.X,H(O», O"il!.X,H(O», 
T(l!.X,H(O» can be determined with an estimated value of 
H' (lIX). (H' (l!.X) evaluated from Equation (3a) would be 
zero if second-order accuracy is used.) Then Equations (3b 
and c) and the definition of l!. imply for X = l!.X and 
Z = H(O) , 

l!. 
O"x 

E2H' 2 
- Pat m ' 

I -

T Patm EH' + O"X EH' , (21 ) 

0"_ O"x - l!., .. 
all of which can be computed. 

Step 3 
We iterate on Equations (21) by constructing improved 

values of H'. From a Taylor-series expansion of H' we 
have 

(22) 

From a Taylor-series expansion in X of the steady version 
of Equation (3a), it follows that 

[ a2 
Acc(O,Ho) 

ax2 

+ a
2
W(O,Ho )] 

ax2 
H" (23) 

0 
[ aW(O,Ho ) aAcc(O,Ho )] 
3 + 

az az 

The derivative terms of Acc(') can be computed to any 
desired order of numerical accuracy, because this function is 
prescribed. aW(O,Ho)/aZ is given by Equation (16), but 
a2W(0,Ho )/aX2 is still unknown; it can be determined in 
the following way. 

By differentiating Equation (le) with respect to X and 
imposing the symmetry relation T(O,Z) = 0, we obtain 

if FB(O) < Z < H(O) 

(24) 

so that with the aid of Equations (l7c) and (18) we obtain 
for Z = H(O) 

~[~a[T(O'Z)JW[~J T(lIX,Z) + 
E2 v 4s 2 l!.X 

I 
+ - [2W(0,Z) - 5W(0,Z - l!.Z) + 

l!.Z2 

+ 4W(0,Z - 2l!.Z) - W(O,Z - 3l!.Z)] ]. 

(25) 

With Equation (25), an improved estimate of H~ and 
therefore that of H' (l!.X) is computed as given by Equations 
(22) and (23). Step 2 then provides improved values for 
O"x(t.X,H) , O"z(lIX,H), T(t.X,H). 

Step 4 
Similarly, at the divide we have from the boundary 

condition (14c) 

(26) 

and therefore, since t. is known at the divide, 

O"x(O,H(O» = O"z(O,H(O» + l!.(O,H(O». (27) 

Furthermore, we know that 

T(O,H(O» = 0, and also T(O,Z) ° for all Z. (28) 

Step 5 
Starting from the free surface, we show how a 

marching procedure down the two columns at the divide 
and next to it can be developed to obtain all these 
functions O"x(O,Z), O"iO,Z), O"x(l!.X,Z), O"z(l!.X,Z), and 
T(lIX,Z) for all values of Z. For Z = H(O), they are all 
known. Let now Z be given, and assume that all the above 
functions are known for Z + t.Z. Then the procedure is as 
follows: in Equation (7b), the respective derivative 
approximations of aO"z(l!.X,Z + l!.Z)/ az and 5T(l!.X,Z + l!.Z) 
are substituted. Together with Equation (l9c) this yields 
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T(t.X,Z + t.Z) 
I - E --"--'------

t.Z 
if z + t.z H(O), (29a) 

t.X ait.X,Z + 2t.Z) - az(t.X,Z) 

2t.Z 
if z + t.z < H(O), (29b) 

or, after re-arrangement, 

[ 
E 

T(t.X,Z + t.Z)] 
- t.z I -

t.x ' 
if z + t.z H(O), (30a) 

(t.X Z 2t.Z) - 2t.Z I - E --.:..~'-----.:. 
[ 

T(t.X Z + t.Z)] 
az ' + t.x ' if z + t.z < H(O). (30b) 

Note that Equation (29a) is only a first-order 
derivative approximation, but after multiplying it by fiZ 
and re-arranging the terms in order to obtain relation (30), 
we finally obtain a second-order approximation of az(t.X,Z). 
Relation (29b) is itself a second-order derivative 
approximation, and so Equation (30b) gives a third-order 

approximation for az(fiX,Z). 
Next, since aT/aX is even, one has up to second order 

aT(O,Z)/ax = aT(H,Z)/aX. 

Consequently, Equation (30) also holds at X = 0, so that 

[ 
E 

T(t.X,Z + t.Z)] 
az(O,Z + fiZ) - fiZ I - fiX ' if z + t.z H(O), (3Ia) 

T(t.X,Z + t.Z)] , 
t.x 

if z + t.z < H(O). (31 b) 

With this we deduce, since t.(O,Z) is already known, 

(32) 

Finally, function T(t.X,Z) can be updated as follows: in 
Equation (7a), Sax and BT/ BZ at (t.X,Z + t.Z) can be 
approximated. Then, as for relations (30a and b), we 
obtain 

2EfiZ [ ] T(t.X,Z + fiZ) + -- ax(t.X,Z + t.Z) - ax(O,Z + t.Z) , if z + t.z 
t.x 

H(O), (33a) 

T(t.X,Z) 

4Et.Z [ ] T(t.X,Z + 2t.Z) + t.x ax(t.X,Z + t.Z) - ax(O,Z + t.Z) ,if z + t.z < H(O). (33b) 

Thus, all functions at level Z are determined, since 

Tn(t.X,Z) ~[ax(t.x,z) - az(t.x,z)f + T2(t.X,Z) . 

(34) 

By this marching process, all variables at the divide 
and in the column just next to the divide are computed . 

The procedure described above is based on a prescribed 
form of function W(Z) of the divide, which was given by 
Equation (16). Note that by starting from any feasible 
function W(Z), the above process can be repeated easily. 
For any function W(Z), the quality of the fit of the 
resulting solution functions can be measured by adding the 
squares of the relative errors in satisfying Equations (7) and 
boundary conditions (9) and (10) at X = 0 and X = t.X. 
Then, the corrrect choice will be that function W(Z) which 
minimizes this overall added squared error. We refrain from 
presenting any details and pass directly to the presentation 
of numerical results . 

4. NUMERICAL EXAMPLE 

The procedure described in sections 3.1-3.3 was tested 

176 

in a hypothetical numerical example. The actual values of 
the parameters were selected as 

0.8, ex = 0.2, /3 = 0.031, v 0.002776, 

0.000308, E = (v)"~ . 

The step sizes in both directions, X and Z were selected as 

t.X = t.z = 0.05. 

In order to obtain a feeling of how the numerical 
results depend on the values of the above parameters, we 
systematically changed the value of one of the above 
parameters to obtain six cases, which were as follows: 

Case I: Original data 
Case 2: HD = 0.9 
Case 3: ex = 0.3 
Case 4: /3 = 0.041 
Case 5: v = 0.003776 
Case 6: s2 = 0.000408 . 

The temperature distributions for these cases are 
tabulated in Table Ill, and a typical shape (for original 
data) of function T(O,Z) is drawn in Figure 2. For the 
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TABLE lIl. TEMPERATURE DISTRIl3UTION ON THE DIVIDE (VALUES 
IN CENTIGRADE ARE OBTAINED BY MULTIPLYING THE NUMBERS BY 

A FACTOR OF 20) 

T(O,Z) 

Z Case I Case 2 Case 3 

0.0 -0.204 -0.237 -0.197 
0.05 -0.254 -0.287 -0.247 
0.1 -0.304 -0.337 -0.297 
0.15 -{).349 -{).383 -{).343 
0.2 -0 .388 -{).423 -0.382 
0.25 -0.419 -0.456 -0.414 
0.3 -0.444 -0.482 -0.439 
0.35 -0.462 -0.502 -0.457 
0.4 -{).474 -{).51 7 -{).470 
0.45 -{).483 -{).528 -{).480 
0.5 -{).489 -{).535 -{).486 
0.55 -{).492 -{).540 -{).490 
0.6 -0.495 -0.543 -0.493 
0.65 -0.497 -0.545 -0.496 
0.7 -0.498 -0.547 -0.497 
0.75 -0.499 -{) .548 -0.499 
0.8 -{).500 -{).549 -{).500 

0.85 -{).550 
0.9 -{).550 

-0.8 

-0.7 

-0.6 

-OS 

- 0.4 

- 0.3 

-0.2 

-0.1 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 = Ho 

Fig. 3. Distribution of the longitudinal stresses U x nnd Uz 
nt the divide. 

same case, functions Ux and Uz are shown in Figure 3, and 
Figure 4 illustrates function TII . These give an indication of 
the significance of the longitudinal stretching effects. 

The accuracy is governed by the accuracy of the 
shooting-method computation for determining the solution of 
the two-point boundary-value problem in Equations (l3c, d , 
and e) and (14a, b, and c) . The error at Z = HD was 
always about 10-6-10-7. 
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