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Abstract. The classical spaces �p+, 1 ≤ p < ∞, and Lp−, 1 < p ≤ ∞, are
countably normed, reflexive Fréchet spaces in which the Cesàro operator C acts
continuously. A detailed investigation is made of various operator theoretic
properties of C (e.g., spectrum, point spectrum, mean ergodicity) as well as certain
aspects concerning the dynamics of C (e.g., hypercyclic, supercyclic, chaos). This
complements the results of [3, 4], where C was studied in the spaces ��, Lp

loc(�
+)

for 1 < p < ∞ and C(�+), which belong to a very different collection of Fréchet
spaces, called quojections; these are automatically Banach spaces whenever they admit
a continuous norm.

2010 Mathematics Subject Classification. Primary: 47A10, 47A16, 47A35,
Secondary: 46A04, 47B34, 47B38.

1. Introduction. The Cesàro operator, whether acting on sequences or on
functions, is based on an averaging process. Many features of this classical operator
(e.g., continuity, spectrum, dynamics, mean ergodicity etc.) have been intensively
studied in a large variety of Banach spaces. Such investigations have also been extended
into the setting of Fréchet spaces, [11]. In [3], the Cesàro operator is analysed in the
Fréchet sequence space ω := �� and in [4] it is studied in the Fréchet function spaces
Lp

loc(�+), 1 < p < ∞, and in C(�+) when equipped with its compact convergence
topology in �+ := [0,∞). Each of the spaces ω, C(�+) and Lp

loc(�+) is a quojection
Fréchet space. In such spaces, special features arise which are not available for Fréchet
spaces in general. Our aim is to analyse the Cesàro operator in the classical reflexive
Fréchet sequence spaces �p+, 1 ≤ p < ∞, and in the reflexive Fréchet function spaces
Lp− := Lp−([0, 1]), 1 < p ≤ ∞. These are (non–Montel) countably normed Fréchet
spaces (i.e., which can be written as the intersection of a decreasing sequence of
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Banach spaces with continuous inclusions) and hence, they are “far away” from being
quojections. For more features of �p+ and Lp− see [19] and [8], respectively. It is time
to be more precise.

The discrete Cesàro operator C is defined on the linear space ω := �� (consisting
of all scalar sequences) by

C(x) := (x1,
x1 + x2

2
, . . . ,

x1 + x2 + · · · + xi

i
, . . .), x = (xj)∞j=1 ∈ ω. (1.1)

It is a linear (algebraic) isomorphism of ω onto itself with C−1 : ω → ω given by

C−1(y) := (jyj − (j − 1)yj−1)∞j=1, y = (yj)∞j=1 ∈ ω, (1.2)

where we set y0 := 0. The discrete Cesàro operator C is said to act in a vector subspace
X ⊆ ω if it maps X into itself. If X has a locally convex Hausdorff topology, then the
continuity of C : X → X also needs to be addressed.

Let p ∈ [1,∞). Recall that �p+ = ∩r>p�
r is a Fréchet space with respect to the

coarser locally convex topology on �p+ for which the inclusion map �p+ ↪→ �r is
continuous for all r > p. So, if pn ↓ p (so that pn > p for all n ∈ �), then �p+ = ∩∞

n=1�
pn

and its Fréchet topology is generated by the sequence of norms

‖x‖n :=
( ∞∑

i=1

|xi|pn

)1/pn

, x ∈ �p+, n ∈ �. (1.3)

Clearly the Banach space �p ⊆ �p+ continuously and �p+ ⊆ ��. It turns out (see Section
2) that C acts continuously in each Fréchet space �p+, 1 ≤ p < ∞, which we denote by
C(p+) : �p+ → �p+.

Analogously, for 1 < p ≤ ∞ the space Lp− = ∩1<r<pLr, which contains Lp :=
Lp([0, 1]) continuously, is a Fréchet space with respect to the coarser locally convex
topology on Lp− for which the inclusion map Lp− ↪→ Lr is continuous for each
1 < r < p. So, if 1 < pn ↑ p (so that 1 < pn < p for all n ∈ �), then Lp− = ∩∞

n=1Lpn

and its Fréchet topology is generated by the sequence of norms

‖f ‖n :=
(∫ 1

0
|f (t)|pn dt

)1/pn

, f ∈ Lp−, n ∈ �. (1.4)

The Cesàro operator C is defined pointwise by

Cf (x) := 1
x

∫ x

0
f (t) dt, x ∈ (0, 1], (1.5)

for each f ∈ L1. It turns out (see Section 3) that C acts continuously in each Fréchet
space Lp−, 1 < p ≤ ∞, which we denote by C(p−) : Lp− → Lp−.

An analysis of the operator C(p+) (resp., C(p−)) is carried out in Section 2 (resp.,
Section 3). To explain this in more detail, we require some further notation and
definitions. Let X be a locally convex Hausdorff space (briefly, lcHs) and �X be a
system of continuous semi-norms determining the topology of X . The strong operator
topology τs in the space L(X) of all continuous linear operators from X into itself
is determined by the semi-norms qx(S) := q(Sx), for S ∈ L(X), for each x ∈ X and
q ∈ �X , in which case we write Ls(X). Denote by B(X) the collection of all bounded
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subsets of X . The topology τb of uniform convergence on bounded sets is defined
in L(X) via the semi-norms qB(S) := supx∈B q(Sx), for S ∈ L(X), for each B ∈ B(X)
and q ∈ �X ; in this case we write Lb(X). For X a Banach space, τb is the operator
norm topology in L(X). If �X can be taken countable and X is complete, then X is
called a Fréchet space. The identity operator on a lcHs X is denoted by I . Finally,
the dual operator of T ∈ L(X) is denoted by T ′ : X ′ → X ′, where X ′ = L(X, �) is the
topological dual space of X . The strong topology in X (resp. X ′) is denoted by β(X, X ′)
(resp. β(X ′, X)) and we write Xβ (resp. X ′

β). If X is a Fréchet space, then Xβ = X . As
a general reference for lcHs’ see [18].

We say that T ∈ L(X), with X a lcHs, is power bounded if {Tn}∞n=1 is an
equicontinuous subset of L(X). For a Banach space X , this means precisely that
supn∈� ‖Tn‖op < ∞. Given T ∈ L(X), we can consider its sequence of averages

T[n] := 1
n

n∑
m=1

Tm, n ∈ �, (1.6)

called the Cesàro means of T . Then T is called mean ergodic (resp., uniformly mean
ergodic) if {T[n]}∞n=1 is a convergent sequence in Ls(X) (resp., in Lb(X)). It follows from
(1.6) that Tn

n = T[n] − n−1
n T[n−1], for n ≥ 2. Hence, τs-limn→∞ Tn

n = 0 whenever T is
mean ergodic. A relevant text is [13].

Concerning the dynamics of a continuous linear operator T defined on a separable
lcHs X , recall that T is hypercyclic if there exists x ∈ X whose orbit {Tnx : n ∈ �0} is
dense in X . If, for some x ∈ X , the projective orbit {λTnx : λ ∈ �, n ∈ �0} is dense
in X , then T is called supercyclic. Finally, T is called chaotic if it is hypercyclic and
the set of its periodic points {u ∈ X : ∃ n ∈ � with Tnu = u} is dense in X . As general
references, we refer to [5, 11].

For a Fréchet space X and T ∈ L(X), the resolvent set ρ(T) of T consists of all
λ ∈ � such that R(λ, T) := (λI − T)−1 exists in L(X). The set σ (T) := � \ ρ(T) is
called the spectrum of T . The point spectrum σpt(T) of T consists of all λ ∈ � such
that (λI − T) is not injective. If we need to stress the space X , then we also write
σ (T ; X), σpt(T ; X) and ρ(T ; X). Whenever λ,μ ∈ ρ(T) we have the resolvent identity
R(λ, T) − R(μ, T) = (μ − λ)R(λ, T)R(μ, T). Unlike for Banach spaces, it may happen
that ρ(T) = ∅ or that ρ(T) is not open in �. This is why some authors prefer the
subset ρ∗(T) of ρ(T) consisting of all λ ∈ � for which there exists δ > 0 such that each
μ ∈ B(λ, δ) := {z ∈ � : |z − λ| < δ} belongs to ρ(T) and the set {R(μ, T) : μ ∈ B(λ, δ)}
is equicontinuous in L(X). If X is a Fréchet space, then it is enough that this set is
bounded in Ls(X). The advantage of ρ∗(T), whenever it is non–empty, is that it is
open and the resolvent map R : λ �→ R(λ, T) is holomorphic from ρ∗(T) into Lb(X),
[2, Proposition 3.4]. Define σ ∗(T) := � \ ρ∗(T), which is a closed set containing σ (T).
If T ∈ L(X) with X a Banach space, then σ (T) = σ ∗(T). In [2, Remark 3.5(vi), p.265]
an example of a continuous linear operator T on a Fréchet space X is presented such
that σ (T) ⊂ σ ∗(T) properly. For the Cesàro operator this turns out not to be the case.

The mean ergodic properties and the dynamics of the Cesàro operators C(p+),
1 ≤ p < ∞ (resp., C(p−), 1 < p ≤ ∞) are presented in Section 2 (resp., Section 3) as is
the precise connection between the two notions of spectra σ (·) and σ ∗(·). Of interest is
the fact that both of the spectra σ (C(1+)) and σ ∗(C(1+)) are unbounded subsets of �,
whereas the spectra of C(p+), 1 < p < ∞, and C(p−), 1 < p ≤ ∞, are bounded subsets of
�. For purposes of comparison, the final Section 4 is devoted to an analysis of the two
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notions of spectra for the Cesàro operator acting in the quojection spaces ω, C(�+) and
Lp

loc(�
+), 1 < p < ∞. It turns out that σ (·) and σ ∗(·) coincide for C : C(�+) → C(�+)

and for C : Lp
loc(�+) → Lp

loc(�+), which suggests that this may always be true whenever
C acts in an appropriate quojection Fréchet space. That this is not so is illustrated by
C : ω → ω, for which it is shown that σ (C) ⊂ σ ∗(C) properly.

2. The Cesàro operator on the space �p+, 1 ≤ p < ∞. Fix 1 < p < ∞. It is known
that the discrete Cesàro operator maps the Banach space �p continuously into itself,
which we denote by C(p) : �p → �p, and that ‖C(p)‖op = q, where 1

p + 1
q = 1, [12,

Theorem 326, p. 239]. Consequently, the Cesàro operator maps the Fréchet space
�p+, 1 < p < ∞, continuously into itself. In fact, for a sequence pn ↓ p (so that pn > p
for all n ∈ �), consider the norms (1.3) and, for each n ∈ �, let Cn := C(pn) ∈ L(�pn ). If
we denote by in : �p+ ↪→ �pn and in,n+1 : �pn+1 ↪→ �pn the canonical inclusion maps (which
clearly have dense range), then in ◦ C(p+) = Cn ◦ in and also in,n+1 ◦ Cn+1 = Cn ◦ in,n+1

for all n ∈ �. Hence, for every n ∈ �, we have

‖C(p+)x‖n = ‖inC(p+)x‖n = ‖Cninx‖n = ‖Cnx‖n ≤ q‖x‖n, x ∈ �p+.

According to [14, p. 123], the dual operator (C(p))′ : �q → �q is given by

(C(p))′(x) =
( ∞∑

h=i

xh

h

)∞

i=1

, x = (xk)∞k=1 ∈ �q, 1 < p < ∞. (2.1)

The following result will be useful to study the spectrum of C(p+).

LEMMA 2.1. Let X = ⋂
n∈� Xn be a Fréchet space which is the intersection of a

sequence of Banach spaces (Xn, ||.||n), n ∈ �, satisfying Xn+1 ⊂ Xn with ||x||n ≤ ||x||n+1

for each n ∈ � and each x ∈ Xn+1. Let T ∈ L(X) satisfy the following condition:
(A) For each n there exists Tn ∈ L(Xn) such that the restriction of Tn to X (resp. of Tn

to Xn+1) coincides with T (resp. with Tn+1).
Then σ (T ; X) ⊆ ⋃

n∈� σ (Tn; Xn) and R(λ, T) coincides with the restriction of R(λ, Tn)
to X for each n ∈ � and each λ ∈ ⋂

n∈� ρ(Tn; Xn).
Moreover, if

⋃
n∈� σ (Tn; Xn) ⊆ σ (T ; X), then

σ ∗(T ; X) = σ (T ; X).

Proof. Let λ ∈ ∩∞
n=1ρ(Tn; Xn). To show that (λI − T) : X → X is injective, suppose

that (λI − T)x = 0 for some x ∈ X . Then, condition (A) yields (λI − T1)x = 0 in X1.
Since λ ∈ ρ(T1; X1), this implies that x = 0.

To check that (λI − T) : X → X is surjective, fix y ∈ X . For each n there is xn ∈ Xn

satisfying (λI − Tn)xn = y in Xn. By condition (A), for each n ∈ � the restriction of
Tn to Xn+1 is Tn+1. Hence, y = (λI − Tn)xn = (λI − Tn)xn+1 with the equality holding
in Xn. Since λ ∈ ρ(Tn; Xn), this yields xn = xn+1 for each n ∈ � and so x1 ∈ X with
(λI − T)x1 = y . Consequently, λ ∈ ρ(T ; X).

Since σ (T ; X) ⊆ σ ∗(T ; X) with σ ∗(T ; X) closed, we always have σ (T ; X) ⊆
σ ∗(T ; X). Suppose now that

⋃
n∈� σ (Tn; Xn) ⊆ σ (T ; X). Let λ ∈ � \ σ (T ; X) in which

case there exists ε > 0 such that B(λ, ε) ∩ σ (T ; X) = ∅. By our assumption, we
also have B(λ, ε) ⊆ ρ(Tn; Xn) for each n ∈ �. Suppose there exists x ∈ X such that
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{R(μ, T)x : μ ∈ B(λ, ε)} is an unbounded subset of X . Then there is n0 ∈ � such
that the set {R(μ, Tn0 )x : μ ∈ B(λ, ε)} is unbounded in Xn0 (as X ⊆ Xn0 and R(μ, T)
is the restriction of R(μ, Tn0 ) to X for μ ∈ B(λ, ε)). This is a contradiction as
B(λ, ε) ⊆ ρ(Tn0 ; Xn0 ) with Xn0 a Banach space. �

THEOREM 2.2. Let 1 < p < ∞ and q satisfy 1
p + 1

q = 1. Then

(i) σ (C(p+)) = {
λ ∈ � :

∣∣λ − q
2

∣∣ <
q
2

} ∪ {0}.
(ii) σpt(C(p+)) = ∅ and

{
λ ∈ � :

∣∣λ − q
2

∣∣ <
q
2

} ⊆ σpt((C(p+))′).
(iii) σ ∗(C(p+)) = {

λ ∈ � :
∣∣λ − q

2

∣∣ ≤ q
2

} = σ (C(p+)).

Moreover, for every non-zero λ ∈ σ (C(p+)) the subspace (λI − C(p+))(�p+) is closed in �p+

with codim(λI − C(p+))(�p+) = 1.

Proof. Fix pn ↓ p. Then the conjugate indices satisfy qn ↑ q (with qn < q for all
n ∈ �). Moreover, for every n ∈ �, it is known that

σ (Cn) =
{
λ ∈ � :

∣∣∣λ − qn

2

∣∣∣ ≤ qn

2

}
and σpt(Cn) = ∅, (2.2)

and, if λ ∈ � satisfies
∣∣λ − qn

2

∣∣ <
qn
2 , then (λI − Cn)(�pn ) is closed in �pn with codim(λI −

Cn)(�pn ) = 1; see [14, Theorem 1] and [10, Theorems 1& 2], respectively. Clearly
σpt(C(p+)) ⊆ σpt(Cn), for all n ∈ �, and so the first statement in part (ii) follows at
once. Since qn < q for all n ∈ �, it is clear via (2.2) that

σ (Cn) ⊂
{
λ ∈ � :

∣∣∣λ − q
2

∣∣∣ <
q
2

}
∪ {0}, n ∈ �.

According to Lemma 2.1, with Xn := �pn and Tn := Cn, for n ∈ �, we have that

σ (C(p+)) ⊂
⋃
n∈�

σ (Cn) =
{
λ ∈ � :

∣∣∣λ − q
2

∣∣∣ <
q
2

}
∪ {0},

and that R(λ, C(p+)) coincides with the restriction of R(λ, Cn) to �p+ for each n ∈ �

and each λ ∈ ⋂
n∈� ρ(Cn).

Since C : ω → ω is a bicontinuous (algebraic) isomorphism, it is clear that C(p+) is
injective. Moreover, C(p+) has dense range in �p+, which follows from the identities er =
rC(p+)(er − er+1), for r ∈ � (as C(p+)er = ∑∞

i=r
1
i ei, for r ∈ �). Here, er ∈ ω is the element

with 1 in the rth coordinate and 0 elsewhere, for each r ∈ �, in which case {er}∞r=1 ⊆ �s

for all 1 ≤ s ≤ ∞. But, C(p+) is not surjective in �p+. Indeed, y := ∑∞
i=1

1
(2i−1) e2i−1 ∈

�p+. However, by (1.2), the vector C−1(y) = (1,−1, 1,−1, 1,−1, . . .) ∈ �∞ \ c0. This
establishes that 0 ∈ σ (C(p+)).

Fix λ ∈ � with
∣∣λ − q

2

∣∣ <
q
2 . Since qn ↑ q, it follows that

∣∣λ − qn
2

∣∣ <
qn
2 for all

n ≥ n0 and some n0 ∈ �. So, as noted above, for every n ≥ n0 the operator (λI − Cn) is
injective with range (λI − Cn)(�pn ) closed in �pn and satisfies codim(λI − Cn)(�pn ) = 1.
This yields that (λI − C(p+))(�p+) is also a proper closed subspace of �p+. Indeed,
let {yj}∞j=1 ⊆ (λI − C(p+))(�p+) be a sequence which converges to some y in �p+. For
each j ∈ �, let xj ∈ �p+ satisfy yj = (λI − C(p+))xj. So, for every j ∈ �, it follows
that

yj = inyj = in(λI − C(p+))xj = (λI − Cn)inxj = (λI − Cn)xj ∈ (λI − Cn)(�pn ),
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with yj → y in �pn for each n ≥ n0. The closedness of (λI − Cn)(�pn ) in �pn implies that
y ∈ (λI − Cn)(�pn ), i.e., y = (λI − Cn)zn for some zn ∈ �pn and all n ≥ n0. As �pn+1 ⊆ �pn ,
we have zn+1 ∈ �pn and so, for n ≥ n0, it follows that

(λI − Cn)zn+1 = (λI − Cn)in,n+1zn+1 = in,n+1(λI − Cn+1)zn+1

= in,n+1y = y = (λI − Cn)zn.

The injectivity of the maps (λI − Cn) for n ≥ n0, then yields that zn+1 = zn for all
n ≥ n0. Setting z = zn0 , it follows that z = zn ∈ �pn for all n ≥ n0 and so z ∈ �p+ with
(λI − C(p+))z = y. Thus, (λI − C(p+))(�p+) is a closed subspace of �p+. Suppose that
(λI − C(p+))(�p+) = �p+. Then

�p+ = (λI − C(p+))(�p+) ⊆ (λI − Cn0 )(�pn0 ),

with (λI − Cn0 )(�pn0 ) closed in �pn0 . The density of �p+ in �pn0 implies that (λI −
Cn0 )(�pn0 ) = �pn0 ; a contradiction. So, the closed subspace (λI − C(p+))(�p+) of �p+

is
proper. In particular, λ ∈ σ (C(p+)). This establishes part (i).

Next, we prove that codim(λI − C(p+))(�p+) = 1, still assuming that
∣∣λ − q

2

∣∣ <
q
2 and hence,

∣∣λ − qn0
2

∣∣ <
qn0
2 for some n0 ∈ �. Observe that the dual operator

(C(p+))′ : �q− → �q− (with �q− := ∪∞
n=1�

qn being the strong dual (�p+)′β of �p+) is
given by the same formula as in (2.1). So, if (C(p+))′u = λu for some u ∈ �q− with
u �= 0, then ui+1 = u1

∏i
h=1

(
1 − 1

λh

)
for all i ∈ �, [14, p. 125]. This shows that

each eigenvalue of (C(p+))′ (if it exists) is necessarily simple, i.e., dim Ker(λI −
(C(p+))′) = 1. But,

∣∣λ − qn0
2

∣∣ <
qn0
2 implies, via [14, Theorem 1(b)], that there exists

a non-zero vector u ∈ �qn0 ⊆ �q− such that (Cn0 )′u = λu and so (C(p+))′u = λu.
Accordingly, since dim Ker(λI − (C(p+))′) = 1 and the dual of the quotient (�p+/(λI −
C(p+))(�p+))′ � Ker(λI − (C(p+))′) (algebraically; actually, also isomorphically), it
follows that codim (λI − C(p+))(�p+) = 1. Along the way it has also been verified that
λ ∈ σpt((C(p+))′), i.e.,

{
λ ∈ � :

∣∣λ − q
2

∣∣ <
q
2

} ⊆ σpt((C(p+))′). So part (ii) is completely
verified.

Finally, part (iii) follows from Lemma 2.1 as it was shown above in the proof of
part (i) that σ (C(p+)) = ⋃

n∈� σ (Cn). �

THEOREM 2.3. The Cesàro operator C(p+) : �p+ → �p+, 1 < p < ∞, is not mean
ergodic, not power bounded and not supercyclic.

Proof. By Theorem 2.2(ii) the number (1+q)
2 > 1 belongs to σpt((C(p+))′) and so

there exists a non-zero vector u ∈ �q− satisfying (C(p+))′u = (1+q)
2 u. Choose any x ∈ �p+

such that 〈x, u〉 �= 0. Then

〈
1
n

(C(p+))nx, u
〉

= 1
n
〈x, ((C(p+))′)nu〉 = 1

n

(
(1 + q)

2

)n

〈x, u〉, n ∈ �,

and so the set
{ 1

n (C(p+))nx : n ∈ �
}

is unbounded in �p+. In particular, the sequence{ 1
n (C(p+))n

}∞
n=1 does not converge to 0 inLs(�p+), thereby violating a necessary condition

for C(p+) to be mean ergodic; see Section 1. Since the power boundedness of C(p+) would
imply that 1

n (C(p+))n → 0 in Ls(�p+) for n → ∞, it also follows that C(p+) is not power
bounded.
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THE CESÀRO OPERATOR 279

Suppose that C(p+) is supercyclic. As �p+ is dense in the Fréchet space ω (see
Section 4) and C(p+) coincides with the restriction of C : ω → ω to �p+, it follows that
C : ω → ω is supercyclic. This contradicts Proposition 4.3 below. �

Since the Cesàro operator fails to map �1 into �1 (e.g., Ce1 = ( 1
n

)∞
n=1 /∈ �1) it is to

be expected that the situation is different for p = 1. Let pn ↓ 1 and equip �1+ = ∩∞
r>1�

r

with the lc-topology generated by the norms (1.3). Then �1+ is a reflexive Fréchet space
with strong dual �∞− := ∪q≥1�

q. The same argument given prior to Lemma 2.1 shows
that the Cesàro operator C(1+) : �1+ → �1+ is continuous. Unlike for p > 1, the spectra
σ (C(1+)) and σ ∗(C(1+)) are now unbounded subsets of �. The following result should
be compared with Theorem 2.2.

THEOREM 2.4. For p = 1 the following assertions hold.
(i) σ (C(1+)) = {

λ ∈ � : Re λ > 0
} ∪ {0}.

(ii) σpt(C(1+)) = ∅ and
{
λ ∈ � : Re λ > 0

} ⊆ σpt((C(1+))′).
(iii) σ ∗(C(1+)) = σ (C(1+)).

Moreover, for every non-zero λ ∈ σ (C(1+)) the subspace (λI − C(1+))(�1+) is closed in �1+

with codim(λI − C(1+))(�1+) = 1.

Proof. Fix pn ↓ 1. Then the conjugate indices satisfy qn ↑ ∞ (with 1 < qn < ∞ for
all n ∈ �). Moreover, for every n ∈ �, the identities (2.2) hold. So, via Lemma 2.1 with
Xn := �pn and Tn := Cn, for n ∈ �, we have that

σ (C(1+)) ⊂
⋃
n∈�

σ (Cn) ⊆ {
λ ∈ � : Re λ > 0

} ∪ {0},

and that R(λ, C(1+)) coincides with the restriction of R(λ, Cn) to �1+ for each n ∈ �

and each λ ∈ ⋂
n∈� ρ(Cn).

To prove the reverse containment let α ∈ {
λ ∈ � : Re λ > 0

}
. Then there exists n ∈

� such that
∣∣α − qn

2

∣∣ <
qn
2 . Hence, there exists u ∈ �qn \ {0} (and so u ∈ (�1+)′ = �∞−)

satisfying (Cn)′u = αu and hence, (C(1+))′u = αu. Then, for each x ∈ �1+, we have

〈(C(1+) − αI)x, u〉 = 〈x, ((C(1+))′ − αI)u〉 = 0.

Hence, 〈y, u〉 = 0 for every y in the range of (C(1+) − αI) with u �= 0 and so (C(1+) − αI)
cannot be surjective. This shows that

{
λ ∈ � : Re λ > 0

} ⊆ σ (C(1+)).
Adapting the proof of Theorem 2.2 it can be shown that C(1+) is injective, not

surjective and C(1+) has dense range in �1+. Part (i) is thereby established.
Fix λ ∈ � with Re λ > 0, i.e., λ ∈ σ (C(1+)) \ {0}. Since qn ↑ 0, there exists n0 ∈ �

such that
∣∣λ − qn

2

∣∣ <
qn
2 for all n ≥ n0. Then, arguing as in the proof of Theorem 2.2,

it can be shown that the subspace (λI − C(1+))(�1+) is closed in �1+ with codim(λI −
C(1+))(�1+) = 1. Actually, as in the proof of Theorem 2.2, it is established along the
way that also λ ∈ σpt((C(1+))′).

Finally, part (iii) follows from Lemma 2.1 as it was shown above in the proof of
part (i) that σ (C(1+)) = ⋃

n∈� σ (Cn). �
THEOREM 2.5. The Cesàro operator C(1+) : �1+ → �1+ is not mean ergodic, not power

bounded and not supercyclic.

Proof. Via the inclusion in Theorem 2.4(ii) it follows that 2 ∈ σpt((C(1+))′) and
so there exists u ∈ �∞− \ {0} satisfying (C(1+))′u = 2u. Choose any x ∈ �1+ such that
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〈x, u〉 �= 0. Then

〈1
n

(C(1+))nx, u〉 = 1
n
〈x, ((C(1+))′)nu〉 = 1

n
2n〈x, u〉, n ∈ �,

and so
{ 1

n (C(1+))nx : n ∈ �
}

is an unbounded subset of �1+. To complete the proof it
now suffices to argue as in the proof of Theorem 2.3. �

REMARK 2.6. (i) We point out that the range

(I − C(p+))(�p+) = span{er}r≥2 = {x ∈ �p+ : x1 = 0}.

Clearly (I − C(p+))(�p+) ⊆ {x ∈ �p+ : x1 = 0}. Since {er}∞r=1 is a basis of �p+, it is routine
to check that span{er}r≥2 = {x ∈ �p+ : x1 = 0}. In view of this observation and the fact
that (I − C(p+))(�p+) is closed in �p+ (by Theorem 2.2), it remains to show that er ∈
(I − C(p+))(�p+), for r ≥ 2. But, this follows from the identities er+1 = (I − C(p+))yr, for
r ∈ �, with

yr := er+1 − 1
r

r∑
k=1

ek ∈ �p+, r ∈ �.

A similar argument shows that also

(I − C(1+))(�1+) = span{er}r≥2 = {x ∈ �1+ : x1 = 0}.

(ii) We have seen that (I − C(p+))(�p+) is a (proper) closed subspace of �p+, but
Cp+ is not even mean ergodic. This fact should be compared with the equivalence of
uniform mean ergodicity of T ∈ L(X) with the closedness of the subspace (I − T)(X)
when X is a (pre)quojection Fréchet space and (1/n)Tn → 0 in Lb(X) for n → ∞, [3,
Theorem 3.5]. Of course, �p+ is not a (pre)quojection.

3. The Cesàro operator on the space Lp−, 1 < p ≤ ∞. We now consider the
“continuous” Cesàro operator C defined pointwise by (1.5). Hardy’s inequality, [12, p.
240], ensures that C maps each Banach space Lp, 1 < p ≤ ∞, continuously into itself.
We denote it by C(p) : Lp → Lp, in which case its operator norm satisfies ‖C(p)‖op = q
if 1 < p < ∞ (with 1

p + 1
q = 1) and ‖C(∞)‖op = 1. Accordingly, the Cesàro operator

maps the Fréchet space Lp− continuously into itself. In fact, if 1 < pn ↑ p (so that
1 < pn < p for all n ∈ �), then Lp− = ∩∞

n=1Lpn and its Fréchet topology is generated
by the sequence of norms (1.4). For each n ∈ �, let Cn := C(pn). If we denote by
in : Lp− ↪→ Lpn and in,n+1 : Lpn+1 ↪→ Lpn the canonical inclusion maps (which clearly
have dense range), then in ◦ C(p−) = Cn ◦ in and also in,n+1 ◦ Cn+1 = Cn ◦ in,n+1 for all
n ∈ �. Accordingly, for every n ∈ �, we have (with 1

pn
+ 1

qn
= 1) that

‖C(p−)f ‖n = ‖inC(p−)f ‖n = ‖Cninf ‖n = ‖Cnf ‖n ≤ qn‖f ‖n, f ∈ Lp−.

THEOREM 3.1. Let 1 < p ≤ ∞ and q satisfy 1
p + 1

q = 1. Then

(i) σ (C(p−)) = {
λ ∈ � :

∣∣λ − q
2

∣∣ ≤ q
2

} = σ ∗(C(p−)).
(ii) σpt(C(p−)) = {

λ ∈ � :
∣∣λ − q

2

∣∣ ≤ q
2

} \ {0}.
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Proof. Fix pn ↑ p. If 1
pn

+ 1
qn

= 1 for all n ∈ �, then qn ↓ q (so that qn > q for all
n ∈ �). Moreover, for every n ∈ �, we have

σ (Cn) =
{
λ ∈ � :

∣∣∣λ − qn

2

∣∣∣ ≤ qn

2

}
and σpt(Cn) =

{
λ ∈ � :

∣∣∣λ − qn

2

∣∣∣ <
qn

2

}
,

[15], [16, Theorem 1]. Accordingly, for each n ∈ � we have{
λ ∈ � :

∣∣∣λ − q
2

∣∣∣ ≤ q
2

}
⊆ σ (Cn) and

{
λ ∈ � :

∣∣∣λ − q
2

∣∣∣ <
q
2

}
⊆ σpt(Cn).

Fix λ ∈ � with
∣∣λ − q

2

∣∣ >
q
2 . Then

∣∣λ − qn
2

∣∣ >
qn
2 for all n ≥ n0 and some n0 ∈ � (as

qn ↓ q) and hence, λ ∈ ρ(Cn) for all n ≥ n0. Since we also have Lp− = ∩n≥n0 Lpn , Lemma
2.1 applied to T := C(p−) ∈ L(Lp−) with Xn := Lpn and Tn := Cn, for n ≥ n0, implies
that

⋂
n≥n0

{
z ∈ � :

∣∣z − qn
2

∣∣ >
qn
2

} ⊆ ρ(C(p−)) and hence, λ ∈ ρ(C(p−)). Accordingly,
σ (C(p−)) ⊆ {

λ ∈ � :
∣∣λ − q

2

∣∣ ≤ q
2

}
.

Now suppose that λ ∈ � \ {0} satisfies
∣∣λ − q

2

∣∣ ≤ q
2 or, equivalently, that Re

( 1
λ

) ≥
1
q , in which case Re

( 1
λ

) ≥ 1
q > 1

qn
for all n ∈ �. The claim is, for each n ∈ �, that the

function fλ(x) := x
1
λ
−1 belongs to Lpn and is an eigenvector of Cn associated to the

eigenvalue λ. To see this note that

‖fλ‖pn
n =

∫ 1

0
|fλ(x)|pn dx =

∫ 1

0
xpn(Re( 1

λ )−1)dx < ∞, n ∈ �,

as pn
(
Re

( 1
λ

) − 1
)

> pn

(
1
qn

− 1
)

= −1. Thus, fλ ∈ ∩∞
n=1Lpn = Lp−. It is routine to

check that Cnfλ = λfλ, for n ∈ �, and hence, C(p−)fλ = λfλ as in ◦ C(p−) = Cn ◦ in. This
shows that

{
λ ∈ � :

∣∣λ − q
2

∣∣ ≤ q
2

} \ {0} ⊆ σpt(C(p−)).
It follows from (1.5) that C(p−) is injective on Lp−. In particular, 0 �∈ σpt(C(p−)).

Moreover, C(p−) is not surjective, since the range of C(p−) contains only functions
which are continuous on (0, 1]. Thus, 0 ∈ σ (C(p−)) \ σpt(C(p−)). At this stage part (ii)
has been established, as has the first equality in part (i).

It remains to verify the statement in part (i) concerning σ ∗(C(p−)). From
the first equality in (i) and the fact that σ (T) ⊆ σ ∗(T) always holds we have{
λ ∈ � :

∣∣λ − q
2

∣∣ ≤ q
2

} ⊂ σ ∗(C(p−)). On the other hand, fix λ ∈ � such that
∣∣λ − q

2

∣∣ >
q
2 .

Then there exist ε > 0 and n0 ∈ � such that B(λ, ε) ⊆ ρ(Cn), for n ≥ n0. Assume that
there exists f ∈ Lp− for which the set {R(μ, C(p−))f : μ ∈ B(λ, ε)} is unbounded in Lp−.
Then there is n ≥ n0 such that {R(μ, C(p−))f : μ ∈ B(λ, ε)} is an unbounded subset
of Lpn . Since R(μ, C(p−)) coincides with the restriction of R(μ, Cn) to Lpn , the set
{R(μ, Cn)f : μ ∈ B(λ, ε)} is unbounded in Lpn . This contradicts the fact that λ ∈ ρ(Cn)
with Lpn a Banach space. Accordingly, {R(μ, C(p−)) : μ ∈ B(λ, ε)} is equicontinuous in
L(Lp−) and so λ ∈ σ ∗(C(p−)). �

PROPOSITION 3.2. Let 1 < p ≤ ∞. The Cesàro operator C(p−) : Lp− → Lp− is
hypercyclic, not power bounded and not mean ergodic. Moreover, C(p−) is chaotic only if
1 < p < ∞.

Proof. Let 1 < p < ∞. The operator C(p) : Lp → Lp is known to be hypercyclic
and chaotic, [17, Theorems 2.3 and 2.6]. Since Lp is separable and dense in Lp− and
the restriction of C(p−) to Lp coincides with C(p), it follows that C(p−) : Lp− → Lp− is
also hypercyclic and chaotic, [11, Propositions 2.24 and 1.31].
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Now let p = ∞. It is shown in [11, Example 12.20] that the Cesàro operator
C(∞−) is hypercyclic on the separable Fréchet space L∞−; see also [11, Corollary
12.19]. But, C(∞−) is not chaotic because, via Theorem 3.1, we know that σpt(C(∞−)) ={
λ ∈ � :

∣∣λ − 1
2

∣∣ ≤ 1
2

} \ {0} which contains only one root of unity, [11, Proposition
5.7].

Since C(p−) is hypercyclic, for 1 < p ≤ ∞, it cannot be power bounded.
Assume that C(p−) is mean ergodic in Lp−. Then

Lp− = Ker(I − C(p−)) ⊕ (I − C(p−))(Lp−),

[1, Theorem 2.4]. This means precisely that

Ker(I − C(p−)) ∩ (I − C(p−))(Lp−) = {0}

and that

Ker(I − C(p−)) + (I − C(p−))(Lp−) = Lp−.

But, dim Ker(I − C(p−)) = 1 (as the constant function 1 ∈ Ker(I − C(p−)) ⊆ Ker(I −
C(r)), for any 1 < r < p, with dim Ker(I − C(r)) = 1, [15, Theorem, p. 28]) and (I −
C(p−))(Lp−) is dense in Lp− as C(p−) is hypercyclic, [11, Lemma 6.3]. So, we have a
contradiction, i.e., C(p−) is not mean ergodic. �

4. The Cesàro operator in other classical Fréchet spaces. The lc-topology of each
Fréchet space �p+, 1 ≤ p < ∞, and Lp−, 1 < p ≤ ∞, is generated by a sequence of
norms. This is not so for the classical Fréchet space C(�+), equipped with the topology
generated by the semi-norms

qj(f ) := max
x∈[0,j]

|f (x)|, f ∈ C(�+), j ∈ �, (4.1)

nor for the Fréchet space Lp
loc(�+), 1 < p < ∞, consisting of all �-valued, measurable

functions f on �+ such that

pj(f ) :=
(∫ j

0
|f (x)|p dx

)1/p

< ∞, j ∈ �, (4.2)

endowed with the topology generated by the semi-norms {pj}j∈�. In fact, C(�+) and
Lp

loc(�
+), 1 < p < ∞, belong to the class of quojection Fréchet spaces which, whenever

they admit a continuous norm, are necessarily a Banach space, see [6, 20].
The Cesàro operator C : C(�+) → C(�+) defined, for every f ∈ C(�+), by

Cf (0) = f (0) and Cf (x) = 1
x

∫ x
0 f (t) dt, for x > 0, has been investigated in [4], where it

is shown that C is power bounded and mean ergodic but, not uniformly mean ergodic
and not supercyclic (hence, not hypercyclic). Moreover,

σ (C; C(�+)) =
{
λ ∈ � :

∣∣∣∣λ − 1
2

∣∣∣∣ ≤ 1
2

}
(4.3)

with σpt(C; C(�+)) = σ (C; C(�+)) \ {0}, [4, Theorem 3.1]. It remains to clarify the
connection between the two notions of spectra.
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PROPOSITION 4.1. For the Cesàro operator C : C(�+) → C(�+) we have

σ (C; C(�+)) = σ ∗(C; C(�+)).

Proof. Let λ ∈ � satisfy
∣∣λ − 1

2

∣∣ > 1
2 (equivalently, Re

( 1
λ

)
< 1) and define ξ := 1

λ
.

The linear operator Pξ which maps f ∈ C(�+) to the function

Pξ f : x ∈ �+ �→
∫ 1

0
s−ξ f (xs) ds ,

is a continuous operator on C(�+) such that ξI + ξ 2Pξ is the inverse of (λI −
C) on C(�+). Indeed, applying the dominated convergence theorem to calculate
limn→∞ Pξ f (xn), whenever f ∈ C(�+) and xn → x in �+ for n → ∞, it follows that
Pξ f ∈ C(�+). Moreover, the substitution s = e−t yields

Pξ f (x) =
∫ 1

0
s−ξ f (xs) ds =

∫ ∞

0
e−(1−ξ )tf (xe−t) dt, x ∈ �+,

which implies, for each j ∈ �, that

qj(Pξ f ) ≤
∫ ∞

0
e−Re(1−ξ )t max

x∈[0,j]
|f (xe−t)| dt ≤ 1

Re(1 − ξ )
qj(f ), f ∈ C(�+).

Accordingly, Pξ ∈ L(C(�+)). That ξI + ξ 2Pξ is the inverse of (λI − C) on C(�+)
follows as in [15, p. 29] (or, see the proof of [7, Lemma 2(a)]).

So, for every λ ∈ � such that
∣∣λ − 1

2

∣∣ > 1
2 , the operator

R(λ) := (λI − C)−1 = ξI + ξ 2Pξ , ξ := 1
λ

,

is the resolvent map of C at λ on C(�+) and satisfies the estimates

qj(R(λ)f ) ≤
(

|ξ | + |ξ |2
Re(1 − ξ )

)
qj(f ), j ∈ �, f ∈ C(�+). (4.4)

Fix λ0 ∈ � satisfying
∣∣λ0 − 1

2

∣∣ > 1
2 (i.e., λ ∈ ρ(C; C(�+))), and set ξ0 := 1

λ0
. Via the

resolvent equation we have

R(λ) = R(λ0) + (λ0 − λ)R(λ)R(λ0), λ ∈ ρ(C; C(�+)).

Then (4.4) yields, for every j ∈ � and f ∈ C(�+), that

qj(R(λ)f ) ≤
(

|ξ0| + |ξ0|2
Re(1 − ξ0)

) [
1 + |λ0 − λ|

(
|ξ | + |ξ |2

Re(1 − ξ )

)]
qj(f ). (4.5)

Observe, with ξ := 1
λ

, that �(λ) := 1 + |λ0 − λ|
(
|ξ | + |ξ |2

Re(1−ξ )

)
is defined and

continuous on � \ {
μ ∈ � :

∣∣μ − 1
2

∣∣ = 1
2

}
. Via (4.3) there is r > 0 such that D(λ0, r) :=

{λ ∈ � : |λ − λ0| ≤ r} ⊆ ρ(C; C(�+)). Then (4.5) yields that

qj(R(λ)f ) ≤ M
(

|ξ0| + |ξ0|2
Re(1 − ξ0)

)
qj(f ), j ∈ �, f ∈ C(�+),

https://doi.org/10.1017/S001708951600015X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951600015X


284 ANGELA A. ALBANESE, JOSÉ BONET AND WERNER J. RICKER

with M := maxλ∈D(λ0,r) �(λ) < ∞, i.e., {R(λ) : λ ∈ D(λ0, r)} is equicontinuous in
L(C(�+)). This shows that λ0 ∈ ρ∗(C; C(�+)). By the arbitrariness of λ0 we have
ρ(C; C(�+)) ⊆ ρ∗(C; C(�+)), by which the proof is complete. �

We now address the spectra of the Cesàro operator C : Lp
loc(�

+) → Lp
loc(�+)

given by Cf (x) := 1
x

∫ x
0 f (t) dt, for x > 0 and all f ∈ Lp

loc(�+), which is well defined
as Lp([0, x]) ⊆ L1([0, x]) for each x > 0. By Hardy’s inequality, [12, p. 240], the
linear operator C is continuous on Lp

loc(�
+). It is known, for each 1 < p < ∞,

that C : Lp
loc(�+) → Lp

loc(�+) is not power bounded and not mean ergodic but, it
is hypercyclic, chaotic and satisfies

σ (C; Lp
loc(�+)) =

{
λ ∈ � :

∣∣∣λ − q
2

∣∣∣ ≤ q
2

}
(4.6)

with σpt(C; Lp
loc(�+)) = {

λ ∈ � :
∣∣λ − q

2

∣∣ <
q
2

}
, [4, Theorem 4.2].

PROPOSITION 4.2. For the Cesàro operator C : Lp
loc(�+) → Lp

loc(�+) we have

σ (C; Lp
loc(�+)) = σ ∗(C; Lp

loc(�+)).

Proof. Let λ ∈ � satisfy
∣∣λ − q

2

∣∣ >
q
2 (equivalently, Re

( 1
λ

)
< 1

q ) and set ξ := 1
λ

. The

linear operator Qξ which maps f ∈ Lp
loc(�+) to the function

Qξ f : x ∈ �+ �→
∫ 1

0
s−ξ f (xs) ds ,

is a continuous operator on Lp
loc(�+) such that ξI + ξ 2Qξ is the inverse

of (λI − C) on Lp
loc(�

+). Indeed, fix f ∈ Lp
loc(�+). For j ∈ � set g := f χ[0,j].

Then g ∈ Lp(�+) and hence, by [7, Lemma 1(a)], the function Qξ g ∈ Lp(�+)

and satisfies ‖Qξ g‖p := (∫ ∞
0 |Qξ g(t)|p dt

)1/p ≤
(

1
q − Reξ

)−1
‖g‖p. Since f (x) = g(x)

and Qξ f (x) = Qξ g(x) whenever x ∈ [0, j], it follows (with pj given by (4.2))
that

pj(Qξ f ) = pj(Qξ g) ≤ ‖Qξ g‖p ≤
(

1
q

− Reξ
)−1

‖g‖p =
(

1
q

− Reξ
)−1

pj(f ).

Since j ∈ � is arbitrary, we have Qξ ∈ L(Lp
loc(�+)). That ξI + ξ 2Qξ is the inverse of

(λI − C) on Lp
loc(�+) follows as in the proof of [7, Lemma 2(a)].

Therefore, for every λ ∈ � satisfying
∣∣λ − q

2

∣∣ >
q
2 , the operator

R(λ) := (λI − C)−1 = ξI + ξ 2Qξ , ξ := 1
λ

,

is the resolvent map of C at λ on Lp
loc(�+) and satisfies the estimates

pj(R(λ)f ) ≤
(

|ξ | + |ξ |2
(

1
q

− Reξ
)−1

)
pj(f ), j ∈ �, f ∈ Lp

loc(�+). (4.7)
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Fix λ0 ∈ � satisfying
∣∣λ0 − q

2

∣∣ >
q
2 (i.e., λ ∈ ρ(C; Lp

loc(�+))), and set ξ0 := 1
λ0

. Via the
resolvent equation we have

R(λ) = R(λ0) + (λ0 − λ)R(λ)R(λ0), λ ∈ ρ(C; Lp
loc(�+)).

It follows from (4.7), for every j ∈ � and f ∈ Lp
loc(�+), that

pj(R(λ)f ) ≤ (4.8)(
|ξ0| + |ξ0|2

(
1
q

− Reξ0

)−1
)[

1 + |λ0 − λ|
(

|ξ | + |ξ |2
(

1
q

− Reξ
)−1

)]
pj(f ).

Observe, with ξ := 1
λ

, that �(λ) := 1 + |λ0 − λ|
(

|ξ | + |ξ |2
(

1
q − Reξ

)−1
)

is defined

and continuous on � \ {
μ ∈ � :

∣∣μ − q
2

∣∣ = q
2

}
. According to (4.6) there exists r > 0

such that D(λ0, r) ⊆ ρ(C; Lp
loc(�+)). It then follows from (4.8) that

pj(R(λ)f ) ≤ L

(
|ξ0| + |ξ0|2

(
1
q

− Reξ0

)−1
)

pj(f ), j ∈ �, f ∈ Lp
loc(�+),

with L := maxλ∈D(λ0,r) �(λ) < ∞, i.e., {R(λ) : λ ∈ D(λ0, r)} is equicontinuous in
L(Lp

loc(�+)). This shows that λ0 ∈ ρ∗(C; Lp
loc(�+)). By the arbitrariness of λ0 we have

ρ(C; Lp
loc(�+)) ⊆ ρ∗(C; Lp

loc(�+)), by which the proof is complete. �
Consider now the Cesàro operator C : ω → ω as given by (1.1). As an increasing

sequence of semi-norms defining the Fréchet topology in ω = �� we take rk : ω →
[0,∞), k ∈ �, where rk(x) = max1≤j≤k |xj|, for x = (xi)∞i=1 ∈ ω. Clearly, C ∈ L(ω). In
fact,

rk(Cnx) ≤ rk(x), x ∈ ω, k, n ∈ �. (4.9)

Its dual operator C′ : ϕ → ϕ is continuous on ϕ := (ω)′β and is given by

C′(x) =
( ∞∑

h=i

xh

h

)∞

i=1

, x = (xi)∞i=1 ∈ ϕ. (4.10)

The linear operator C is a bicontinuous (topological) isomorphism of ω onto itself
with C−1 : ω → ω given by (1.2). Denote by 1 the constant sequence (1, 1, . . .) ∈ ω.
The following result, with the exception of the statement about supercyclicity, occurs
in [3, Proposition 4.1]. The supercyclicity can be deduced from [9, Lema 11]; we include
a direct proof.

PROPOSITION 4.3. The Cesàro operator C : ω → ω is power bounded (hence,
satisfies Cn

n → 0 in Lb(ω) as n → ∞) and uniformly mean ergodic but, it is not
supercyclic. Moreover, Ker(I − C) = span{1} and the range (I − C)(ω) = {x ∈ ω : x1 =
0} = span{er}r≥2 is closed.

Proof. To show that C : ω → ω is not supercyclic we proceed by contradiction.
So, assume the existence of x = (xi)∞i=1 ∈ ω such that {λCix : λ ∈ �, i ∈ �0} is dense
in ω. Since the 1-st coordinate (Cix)1 = x1, for every i ∈ �, it follows that x1 �= 0. On
the other hand, there exists a set {μk : k ∈ �} ⊂ � and a strictly increasing sequence
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(jk)k ⊆ �0 such that μkCjk x → e2 as k → ∞. Considering the 1-st coordinate and
recalling that x1 �= 0, we may conclude that μk → 0 as k → ∞. Consequently, for
all k ∈ �, the inequality (4.9) implies that 0 ≤ r2(μkCjk x) ≤ |μk|r2(x) → 0 as k → ∞.
But, r2(μkCjk x) → r2(e2) = 1 as k → ∞, which is a contradiction. �

PROPOSITION 4.4. The spectra of the Cesàro operator C : ω → ω are given by

σ (C) = σpt(C) = {1/k : k ∈ �}
and

σ ∗(C) = {0} ∪ σ (C) = σ (C).

Proof. As observed above, 0 ∈ ρ(C). Moreover, 1 ∈ σpt(C) ⊆ σ (C) by Proposition
4.3. For λ ∈ � \ {0} the claim is that (λI − C) is injective if and only if λ �∈ {1/k : k ∈ �}.

To establish the claim, fix λ ∈ � \ {0} and consider the equation (λI − C)x = 0 with
x = (xn)n∈� ∈ ω. Then x1 = λx1 and (2λ − 1)x2 = x1 and (nλ − 1)xn = λ(n − 1)xn−1

for all n ≥ 3. If m ∈ � denotes the smallest positive integer satisfying xm �= 0, then it
follows that λ = 1

m and so xn = n−1
n−m xn−1 for all n > m. This implies that

xn = xm+(n−m) = (n − 1)!
(m − 1)!(n − m)!

xm, n > m.

Then x =
(

0, . . . , 0, xm, mxm,
m(m+1)

2 xm, . . .
)

∈ ω satisfies Cx = 1
m x with x �= 0 for any

choice of xm �= 0. This proves the claim.
According to the established claim we have σpt(C) = {1/k : k ∈ �} ⊆ σ (C) ⊆

σ ∗(C) with σ ∗(C) closed, and so 0 ∈ σ ∗(C).
It remains to show that every λ /∈ {0} ∪ {1/k : k ∈ �} belongs to ρ∗(C). To see this,

fix λ /∈ {0} ∪ {1/k : k ∈ �}. The formula for the resolvent operator (C − λI)−1 : ω → ω

is a matrix which has the entries in it’s ith row given by

ai,j = −1

iλ2
∏i

h=j(1 − 1
hλ

)
= −λi−j−1

i
∏i

h=j(λ − 1
h )

, 1 ≤ j < i, (4.11)

ai,j = 1/(1/ i − λ), i = j,

with all the other entries being 0, [21, p. 266]. Select δ > 0 such that the distance ε of
B(λ, δ) to the compact set {0} ∪ {1/k : k ∈ �} is strictly positive. Using the form (4.11)
of the matrix for the resolvent operator it follows, for each k ∈ �, that there is Mk > 0
such that rk((C − μI)−1x) ≤ Mkrk(x) for each μ ∈ B(λ, δ) and each x ∈ ω. This implies
that {(C − μI)−1 : μ ∈ B(λ, δ)} is equicontinuous in L(ω) and so λ ∈ ρ∗(C). �
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type operators, Math. Nachr. 282 (2009), 764–773.

18. R. Meise and D. Vogt, Introduction to functional analysis, Oxford Graduate Texts in
Mathematics, vol. 2 (The Clarendon Press, Oxford University Press, New York, 1997).

19. G. Metafune and V. B. Moscatelli, On the space �p+ = ∩q>p�
q, Math. Nachr. 147 (1990),

7–12.
20. G. Metafune and V. B. Moscatelli, Quojections and prequojections, in Advances in the
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