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SUMMARY

Rainfall variability, both within and between seasons, is reflected in highly variable crop growth and yields in
rainfed agriculture in sub-Saharan Africa and results in varying degrees of weather-induced risk associated
with a wide range of crop, soil and water management innovations. In addition there is both growing
evidence and concern that changes in rainfall patterns associated with global warming may substantively
affect the nature of such risk. Eighty-nine years of daily rainfall data from a site in southern Zambia are
analysed. The analyses illustrate approaches to assessing the extent of possible trends in rainfall patterns
and the calculation of weather-induced risk associated with the inter- and intra-seasonal variability of the
rainfall amounts. Trend analyses use monthly rainfall totals and the number of rain days in each month.
No simple trends were found. The daily data were then processed to examine important rain dependent
aspects of crop production such as the date of the start of the rains and the risk of a long dry spell, both
following planting and around flowering. The same approach is used to assess the risk of examples of crop
disease in instances when a ‘weather trigger’ for the disease can be specified. A crop water satisfaction index
is also used to compare risks from choices of crops with different maturity lengths and cropping strategies.
Finally a different approach to the calculations of these risks fits a Markov chain model to the occurrence
of rain, with results then derived from this model. The analyses shows the relevance of this latter approach
when relatively short daily rainfall records are available and is illustrated through a comparison of the
effects of El Nifio, La Nifia and Ordinary years on rainfall distribution patterns.

INTRODUCTION

In sub-Saharan Africa (SSA), the rainfed agricultural sector is of the utmost
importance. Currently it produces nearly 90% of SSA’s food and feed and is likely to
continue to do so (Rosegrant et al., 2002). It also provides the principal source of
livelihood for nearly 70% of the human population in SSA, most of whom are
amongst the poorest and most vulnerable communities in the continent. Added to
the constraints imposed by extreme poverty and often a degrading resource base is the
inherent risk caused by the within and between season variability of rainfall amounts
and distribution. This variability poses challenges for farming communities who have
to make investment decisions each year without a clear knowledge as to how the season
will evolve and the yields they are likely to achieve. It is also a challenge for researchers
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who are seeking to identify innovations which will improve farm productivity whilst
at the same time reduce climate-induced risk.

Dixit et al. (2011) draw attention to the time constraints that often faces agronomic
researchers who for a range of reasons may not be able to undertake their agronomic
field research for more than three to four years. This relatively short time span raises the
challenge of capturing the spectrum of rainfall variability that is likely to be experienced
by farmers, and hence its impact on the longer-term performance of the innovation
under investigation. In their paper, they illustrate how the use of complex crop growth
simulation models such as the Agricultural Production Systems Simulator (APSIM)
together with long-term climate data can help address this challenge. While such
models arguably provide the most comprehensive approach to assessing the climate-
induced risk associated with a wide range of soil and crop management options, they
also require a great deal of detailed crop, soil and climate information as well as the
necessary skills to use them effectively (Keating et al. 2003).

Simpler rainfall analyses using long-term rainfall records can focus on the
probability of events, or sequences of events, of known importance to farmers and
their support agents. These include the start of the growing season, the frequency
of dry spells within the season, the frequency of high intensity erosive rainfall
events, the impact of prolonged wet spells on plant disease or the length of the
growing season (Cooper ¢t al., 2008). Such analyses are becoming increasingly easy
to undertake as initiatives to provide more user-friendly software, and the training
to go with it, take place. The outputs of such analyses are an adjunct to field-based
agronomic research. They provide a useful framework for making medium-term
strategic choices concerning agricultural practices that are directly influenced by
single or a combination of climatic events as well as providing ex ante guidance to
researchers in setting their priorities and in interpreting their results.

Various studies in the 1980s (e.g. Stern ¢t al., 1982a, Sivakumar, 1988) described
the importance of having access to long-term daily rainfall records to enable
such analyses to be tailored to the needs of different groups of users. Without
access to such records, the probability of occurrence and impact of important
weather events, or sequences or events, cannot be determined and hence the risk
of success or failure of weather-dependent innovations over the longer term cannot be
assessed.

More recently, the issue of possible changes in rainfall patterns associated with
global warming has added a further dimension, emphasizing the need to also
establish whether or not such changes are evident in the rainfall records. Without
first confirming that no major changes have occurred in recent years, it could be
misleading to use long-term records going back 50 to 60 years to help characterize
the climate-induced risk that farmers face today.

In this paper we use an actual case study from Zambia with the objective of
illustrating the use of new and user-friendly climate analysis software to undertake
contrasting types of analyses that examine the following aspects of weather induced
risk associated with the inter and intra-seasonal variability of rainfall amounts and
distribution:
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e liirst, using both monthly rainfall totals as well as daily rainfall values, we examine
the evidence (or lack of it) for any clear trends in rainfall amounts or their
distribution.

e Using a maize crop as an example, we then use daily rainfall values for the 89 years
to illustrate a range of risk analyses that include the date of the start of the season,
the probability of dry spells both following planting and those that might occur
during flowering.

e We also illustrate how the risk of important crop diseases, such as root rot in beans
and aflatoxin in groundnuts could be assessed when a knowledge of a likely ‘weather
trigger’ of the disease is available.

e Having examined the probability of events triggered by individual or a sequence of
rainfall events, we illustrate how a simple crop water satisfaction index can be used
to assess the relative performances and suitability of crops of different durations.

e Tinally, we illustrate a different analytical approach to rainfall risk analyses. In all
of the above approaches, the daily data are first summarized and then modelled,
but in this last approach, the ‘order’ is reversed by first fitting a model to the daily
data and then deriving risk analyses results from the fitted model.

The results presented focus solely on the analyses and use of rainfall data. We
emphasize that this is not to dismiss the reality of the widely documented increasing
temperatures (e.g. IPCC., 2007, Van de Steeg ¢t al., 2009) and the impacts that this
may have in the longer term, especially on crop performance and, indeed, crop and
variety choice (Cooper ¢t al., 2009) . However, whilst such increases are real, they are
currently small. In addition, for rainfed agriculture, season to season variability in
rainfall and possible changes in the pattern and in the variability are likely to be of
more immediate concern to farmers.

MATERIALS AND METHODS

The case study conlext

This study uses data from Moorings Station in southern Zambia to illustrate
appropriate methods of analysis. The issue in Zambia was that farmers were
emigrating from southern Zambia, citing climate change as the reason they could no
longer farm as they used to. A local non-governmental organization (NGO) accepted
the evidence for climate change in temperatures and that farming in southern Zambia
is risky, because of rainfall variability. But it was of the view that the evidence for change
in the pattern of rainfall, and hence for different farming practices, was not so clear.
The analysis in Zambia was just of rainfall data and the principal station used was
Moorings (27.32°E; 16.15°S).

The source of the data

The daily data for Moorings were initially from February 1922 to early 2004. They
were provided by the Zambia Meteorological Department. They were complete to
the 1950s, but the later years had some gaps. Fortunately the Moorings Farm had a
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complete record since the 1950s, though they did not have the daily records for the
early years. They also provided a file with monthly totals that had been computerized
separately, 1.e. the daily records had been totalled ‘by hand’ and the monthly totals
then computerized. The existence of the monthly totals helped greatly in the checking
process, described in Kurji ez al. (2006). The checked and now complete data were
shared with the Moorings Farm and the Zambia Meteorological Department, who
have since provided the updated values to June 2010. The time needed to collect and
check this daily data set was considerable. It is a step we find is often needed.

Analysing the monthly total for possible trends

The first set of analyses used monthly summaries. June to September is usually
completely dry, so the analyses were for the eight months from October to May.
The summary that is usually provided is the total rainfall for each month. This was
plotted and ordinary linear regression models were fitted with the monthly totals as
the dependent variable and the year as the independent variable. A separate curve
was fitted to the data for each month, but they were all fitted together to test for an
interaction between the month and the trend. The interaction tests whether the trend
is the same in each month.

Trends were fitted in two ways. The first used a polynomial trend, as far as cubic
terms. The second was to use non-parametric spline functions of the same complexity
as the polynomials. The software package used was Genstat (VSN International, 2010),
but any other standard statistics package that includes powerful regression modelling
could equally be used. In each case we chose the function that explained more of the
variability.

Analysing the number of rain days for possible trends

In this analysis we examined both the number of rainy days per month and the
rainfall amounts per rainy day. The daily data, from which the monthly totals are
calculated, contains a mixture of zero values (dry days) plus those with rain. In all
these cases it 1s usual to split the analysis into two parts. The first part is a study of the
zeros, 1.e. the days with no rain. The second part is to examine the non-zero values,
here the rainfall amounts on rainy days.

One slight complication with the rainfall data is to define the threshold for rain.
The smallest amounts recorded are 0.1 mm, and in some countries, including this
record in the early years, the lower limit was 0.01 inches. Below this value, days could
be recorded as having trace rainfall. The ideal would be to record all non-zero values,
L.e. to set the limit as ‘trace and above’. However, we chose a slightly higher limit,
and a rain day was defined as one with more than 0.85 mm. This seemingly arbitrary
value avoids complications at sites that are inconsistent in their recording of very small
rainfalls, and also helps overcome possible complications in the original use of inches
and mm in the recordings.

The trend analysis for the number of rain days used the same regression methods
as the monthly rainfall totals, except that a generalized linear model was used. The
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dependent variable was the number of rain days in the month and this was modelled
as of binomial type as a fraction of the total number of days in the month.

Dividing the monthly total by the number of rainy days gives the mean rain per
rain day. Other summaries of the amounts have to be calculated from the daily data
and we also examined the median rainfall and the number of days with heavy rainfall,
which we defined as 20 mm or more.

Weather-induced risk analyses

The simple statistics package, Instat (University of Reading, 2008) was used, as
it has a climatic menu, designed to provide the summaries described below. Once
the summaries have been calculated, then any statistics package may be used for the
further analyses, i.e. to assess evidence of a trend in the starting dates, and to calculate
risks. Both Instat and Genstat were used.

The start of the season

While monthly summaries are often supplied by meteorological services, they are
rarely demanded by users. The next set of analyses therefore examined examples of
summaries from the daily data, where the precise definition may be tailored to the
needs of particular users. In this case, farmers had stated that the pattern of rainfall
was changing in ways that affected their farming practices. The start of the season for
cropping is one key event as are problems of long dry spells during the season. Hence
these were produced and analysed.

One example was to define the date of the start of the season thus:

The first occasion from 15 November with 20 mm or more within a 3-day period and
no dry spell exceeding 70 days in the following 30 days.

This approach defines a single date for the earliest possible successful planting each
year. Hence the daily data are summarized to give a set of 89 values (one for each
year). In addition we calculated the risk of post planting dry spells that might cause
seedling death across a range of potential planting dates.

Dry spells during the flowering period of maize

Dry spells occur during any rainy season in SSA and dry spells during flowering
are an especially critical event for most crops. Maize 1s the mostly widely grown crop
in Zambia, and farmers close to Moorings advised us that that flowering usually starts
about 65 days post planting and extends over a 20-day window for the 125-day variety
that they plant. To examine the risk of drought during flowering we looked at the
probability of dry spells during the flowering period across a range of possible planting
dates.

The risk of root rot in beans

Farrow et al. (2011) considered heavy rainfall events that may correspond to the
development of risk of root rot disease in beans. Here we used the same definition of
planting as described above, namely the first occasion with more than 20 mm in a
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three-day period and no dry spell exceeding 10 days in the next 30 days. Then after
a two-and-half week period to account for germination and seedling establishment,
taken as day 17, a high rainfall of more than 50 mm in a two-day period in the next 21
days was taken as a possible trigger for the bean root rot. A more stringent criterion
was of more than 100 mm in a three-day spell.

The risk of aflatoxin in groundnuts

The second crop disease example was of the type of event that might lead to a
season in which groundnuts had a high risk of aflatoxin. Terminal drought periods
can greatly exacerbate aflatoxin infestation of groundnut pods (Hill ¢f al., 1983; Wilson
and Stansell, 1983). For a 120-day groundnut variety this was taken to be a drought
period in the last 30 days. This would cause the pod casing to dry and split, and hence
allow access for the fungus. The event specified here was of less than 5 mm rain in any
(running) 15-day period between days 90 and 120 following planting:

The crop water satisfaction index

The third set of results used a simple water balance index. Other papers in this
issue (Dixit et al., 2011; Rao et al., 2011) use a comprehensive crop model, APSIM, to
investigate the integrated effects of variable rainfall, temperature and solar radiation
on crop growth and yield under contrasting crop management options However, such
models require substantial weather, crop and soil data input and skill to use (Keating
et al., 2003). However, a simpler ‘water balance’ model is available that has been fully
described by Frere and Popov (1986) and more recently by Brown (2008). It has been
widely used in SSA, for example in Zimbabwe (Senay and Verdin, 2003) and Ethiopia
(Verdin and Klaver, 2002).

The model calculates a water balance from a knowledge of the water input (rainfall)
and the crop evapotranspiration (£7).

Etis calculated according to the equation:

Et=Fo x K¢

where:

FEo = the average potential evaporation, either calculated using the Penman-
Monteith formula or by assuming an appropriate value for the location under study.

K¢ = a crop coefficient that is related to its leaf area development and thus its
changing water demands at different stages of growth.

Table 1 gives the coeflicients and durations for two alternative maize varieties, that
have growing periods of 105 and 125 days.

The water balance throughout the life of the crop is related to a crop water
satisfaction index (CGCWSI) which is set at 100 at the start of the season. If the rainfall
is sufficient throughout the season, then the final CWSI remains at 100, and this
would be a year with no water stress. When the rain is insufficient, the CWSI drops
by an amount that is proportional to the water balance shortfall. This calculation also
includes a measure of soil water-holding capacity since water stored in rooting depth
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Table 1. The crop coefficients (Kc) for two contrasting duration
maize varieties (Allen ez al., 1998).

Crop stages Crop durations and indices for
two varieties of maize

125 day 105 day Kce
Initial 20 days 15 days 0.3
Development 35 days 25 days 0.3-1.2
Mid-season 40 days 40 days 1.2
Late 30 days 25 days 1.2-0.4

of the soil profile will act as a buffer to the onset of stress. This might be as little as
60 mm for sandy soils and over 150 mm for deep clay soils. If the soil profile is ever
full then any further rainfall is assumed lost to the crop, through runoff and deep
percolation beyond the root zone.

Whilst the model is very simple it has the value that it is transparent, easy to use and
flexible. In this paper we assume that only daily rainfall data are available and also
assume a constant value for £o of 5 mm d~'. We show how a simple ex ante investigation
of the effects of maize maturity length (105 v. 125 days) and soil water-holding capacity
(60 v. 100 v. 150 mm) can guide a researcher with regard to the need for more detailed
investigations, either through more complex modelling or through field trials. We also
looked at the effects of date of planting. In this analysis, the criterion for planting
corresponded as closely as we could to the criterion some farmers close to Moorings
told us that they used. They would plant in early November, but only if there was
very high rainfall, which we took to be more than 40 mm in a three-day period. From
15 November this was relaxed to a total of 20 mm, and further reduced to 15 mm
from 1 December. With this definition we found that there was always a planting
opportunity by mid-December and this corresponded to the farmers’ stated practice.

A modelling approach to rainfall analyses

The key feature of all the methods described above is that the daily data are first
summarized and then modelled. For example, the monthly analyses, first calculates
the total rainfall or number of rain days, each month, and then analyses these totals.
For each month, the analysis is of the 89 totals. Similarly the start of the rains calculates
the starting date for each of the 89 years, and then processes these dates. The length
of the data to process is simply the number of years of data.

The final analyses use a different approach. They reverse the order by first fitting
a model to the pattern of rainfall on a daily basis, and then deriving results from the
fitted model.

The model is in two parts, because of the zeros in the daily data. The first part is a
model of the occurrence of rain. We described above how it is natural to look at the
number of rainy days in the month. We now take this idea further and look at the
chance of rain on each day of the year.
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If there is no trend in the data then this type of analysis can proceed by first
calculating the number of rain days for each day of the year. For example, 15 December
had rain in 44 of the 88 years. Hence the proportion of rainy days was 0.5. A curve
can be fitted to this chance of rain, using standard regression methods, e.g. Woolhiser
and Pegram (1979), McCullagh and Nelder (1989). The basic data are binary (rain or
no-rain) hence the fitting uses standard generalised linear models.

If the data are left in their time-series order, a model can be fitted to the occurrence
of rain that also permits the year number to be included in the model and hence
allow for a test for a possible trend in the chance of rain. Thus we fit a regression
model to the original binary data, using the daily series of roughly 89 (years) by
365 observations per year, i.e. 32 272 values. The model has two parts, one for the
trend and the second for the seasonality. Splitting data into trend and seasonality is
a standard feature of time-series analyses. There is however one important difference
from the time series modelling described earlier. When the data were summarized, e.g
to give monthly totals, before fitting the model, there is no real reason to consider the
serial correlations between the successive observations, because they are a year apart.
Hence simple regression models were used. This is often not the case when modelling
the daily data, because in many places, if a given day is rainy, the next day is more
likely to be rainy also. Thus rainy spells have a tendency to continue. Similarly dry
spells have a tendency to continue, e.g. Jones and Thornton, 2002. So, rather than
modelling just the chance of rain, we model the chance of rain given the previous day
is dry, 1.e. the chance that a dry spell continues, and also the chance of rain given the
previous day is rainy, i.e. the chance that a rain spell continues.

If just the previous day is considered, this is called a Markov chain model of order
1. If the trend is ignored, this implies that two curves are fitted to the data, one for
the chance of rain after dry days (i.e. the chance that a dry spell does not continue)
and the second for the chance of rain after rain (i.e. the chance that a rain spell does
continue). If both the two previous days are considered, then the Markov chain model
is of order 2, and so on.

For the Zambia data a Markov chain model of order one was adequate for the
chance of rain continuing, but a second-order chain was needed when the previous
days were dry. Hence three curves were fitted to the data.

This type of model is used within various climatic modelling packages such as
MarkSim (Jones and Thornton, 2000). It has been described in many papers since
Gabriel and Neumann (1962), e.g. Gates and Tong (1976), Haan et al., (1976),
Woolhiser and Pegram (1979), Stern et al. (1982b). Stern and Coe (1984) showed
how results, such as the chance of a long dry spell, could be calculated from the model.

The data were fitted in their original time-series order to examine the evidence for
trend in the data. The quantification of an El Nifio effect was also examined. The El
Nifio is explained as follows:

“The NINO3.4 SST index is sea surface temperature anomalies averaged over
the region bounded by 5°N to 5°S and 170°W to 120°W in the eastern-central
equatorial Pacific. It is one of several standard SST indices associated with the El
Nifio /Southern Oscillation (ENSO), but considered the one that is considered most
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closely correlated with the behavior of ENSO!.” (Source: unpublished correspondence
with James Hansen, IRI, 2009.)

For the analysis, each year was categorized into one of three alternatives, as
follows. The average temperature anomaly from November to January was taken
to characterize each year. A year was defined as El Nifio if this temperature anomaly
was less than minus 1. It was defined as La Niiia if the anomaly was more than plus
| and ‘Ordinary’ otherwise. The data were then analysed separately for each of these
three types of year.

The modelling of the daily data also permits the results calculated in the previous
sections of this paper to be derived. Because the method makes fuller use of the data,
it can be used with shorter records. To illustrate the potential equivalent dry-spell risks
are also calculated, both from the full record and also based on a very short record,
from 2004 to 2009.

RESULTS

Analysing monthly data for possible trends

To gain a broad overview of possible trends in rainfall patterns, we first looked at
the monthly totals. The overall pattern is shown in Iigure 1.

A visual inspection of the monthly totals in Figure 1 indicates four important points
as follows:

1. This graph does not give any evidence, from the monthly rainfall data, of climate
change that would suggest that farmers should be changing their farming practices.
They may have to change their practices for other reasons, like declining soil fertility
or changes in input and output markets, but not particularly because of a change
in the pattern of rainfall.

1. This lack of major change is also a first indication that the long records of data may
be used to estimate the comparative probability of success of different cropping
strategies through a range of rainfall-induced risk analyses.

1. Climate change can either be a change in the average or a change in the variability.
An increase in variability would imply that farmers now have more extremes to
contend with, than was the case previously. In Figure 1 this would indicate that
recent years are more variable than those previously. Neither a visual inspection
of Figure 1 nor the calculation of the standard deviation of the data for three
successive 30-year periods indicated this.

iv. Fitting a model to assess evidence for change, i.e. a trend, was not statistically
significant.

The lack of evidence of a trend is either because there is no change or because the
large variability makes it difficult to detect, even with the long record. The variability
of the monthly totals is because of the variability in the number of days with rain and
also the variability of the rainfall amounts on those days.

! Available from http://iridl.ldeo.columbia.edu/SOURCES/ Indices/.nino/ . EXTENDED/.NINO34/
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Figure 1. Monthly rainfall totals (mm) at Moorings, Zambia (1922-2010).

We therefore also examined the number of rain days per month. The results are
given in Figure 2 which shows the number of rain days each month, together with
fitted curves. The chance of rain has not remained constant over the 89 years. The
fitted curves are not straight lines, and a spline was fitted with four degrees of freedom.
This fitted better than a model with no trend (p < 0.001).

There was no evidence that the trend was seasonally dependent, i.e. the fitted
‘curves’ shown in Figure 2 for each month, may be parallel. (The data are counts
of rainy days and so were fitted to be parallel on a logit scale.) As the trend in the
different months could be the same, Figure 3 shows the ‘trend” more clearly for the
total number of rain days in the main rainy season from December to April.

The trend is highly non-linear and this has important implications. In Zambia and
elsewhere in SSA, many stations opened between 1950 and 1960. Hence analyses a
few years ago, for example for the years 1950 to 2000, might have seemed to indicate a
decrease in rainfall. However, when records available are as long as those for Moorings,
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Figure 2. Monthly total number of rain days at Moorings, Zambia (1922-2010) with fitted curves.

the situation is seen to be more complex. The recent trend in Figure 3, is also upwards,
not indicating the decrease that is sometimes claimed by farmers.

The monthly summaries of the rainfall amounts per rain day were also assessed for
a trend. From the monthly analyses, i.e. the equivalent of Figure 2, there was some
indication, though not conclusive, of a change (p = 0.015) with the mean rain per rain
day, rising slightly over the past 40 years. The very large variability in rainfall amounts
per rain day meant that this trend was not detectable when analysing on an annual
basis, 1.e. the equivalent of Figure 3.

The main messages, from Figure 1 to Figure 3, are first that any trend in the pattern
of rainfall, from the monthly data, is not a simple one. Second, shown most clearly
in Figure 1, is that almost all the variability in rainfall is inter-annual. Rainfall is
extremely variable from year to year, and the cropping systems have to be able to cope
with this variability. Third is that the large year-to-year variation, and possible trends
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Figure 3. Number of rain days in the main season at Moorings, Zambia (1922-2009) with fitted curve.

are not new. They constitute the variability farmers have always had to cope with over
the years.

Given the importance of this inter-annual variability of rainfall combined with the
observation that there does not appear to be clear evidence of directional changes
in rainfall patterns, the remainder of the paper concentrates mainly on examples of
rainfall risk analyses. However, time series graphs are included as a check that it is
reasonable to use the full series to calculate these risks.

Weather-induced risk analyses

The start of the season and the risk of dry a spell following planting. 'The analyses above
used the availability of the daily data to some extent in order to process the monthly
number of rain days, and the mean rain per rain day, as well as the monthly total
rainfall. However, there is much more that can be done with access to the daily records
due to the fact that crops (and their management) are often sensitive to single or a
combination of rainfall events at specific stages during the cropping cycle. Hence, with
access to daily data, it is possible to tailor the analyses to specific situations that are
of particular concern to farmers and researchers. For example, due to the investment
required in seedbed preparation, seed purchase and planting, a widespread concern
amongst farmers across Africa is the date of the start of the rains and hence when
a successful planting can be achieved. In many countries with a well-defined rainy
season, there is considerable advantage to being able to plant early, but this opportunity
has often to be offset because early planting might have a higher risk of being followed
by a long dry spell resulting in seedling death and the need to re-plant. Farmers will be
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Figure 4. Date of the start of the rain, at Moorings, Zambia (1922-2009).

influenced by several factors in deciding when the rains have started. Amongst these
will be their own degree of risk aversion, the frequency and amounts of early rainfall
events as well as the texture of their soil which will determine how deep any sequence
of rainfall events will penetrate and be stored in the soil. Clearly, even within any given
village, there will be variability in farmers’ objectives and the soils they farm. These
must be understood for any analyses to be of use.

As an example, Figure 4 shows the date of the start of the rains for one possible
definition of the start of the rains. This is the first occasion, from 15 November that
has at least 20 mm within a three-day period. However, this is combined with a
second part of the definition: there should also not be a dry spell of more than 10 days
in the 30 days following planting. With the inclusion of the dry-spell condition this
might be termed a ‘successful planting date’ in that it identifies planting dates when
a subsequent dry spell does not result in seedling death. Figure 4 thus shows the date
when the first planting took place each year and in which of those years a dry spell
occurred that necessitated re-planting. There are 12 such occasions, indicating a risk
of not succeeding with early planting, i.e. possibly replanting, of 12/88, so about 14%
or one year in seven.

Visually, from Figure 4, and from a simple regression analysis, there was no
indication of a trend in the data, i.e. that planting dates had a tendency to be either
later or earlier, in recent years.

If the dry spell following planting condition is changed to 12 days length, (not
shown) then the risk dropped to 8 years in the 88, or about 9%. This indicates the
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Figure 5. Dry spells following different planting dates at Moorings, Zambia (1922-2009).

improvement that might be achieved with a more drought-tolerant crop, or with
simple moisture conservation measures such as soil surface mulching.

The results in Figure 4 provide the risk of seedling death from a given planting
strategy that identified the earliest possible planting date each season, but not the risk
from planting across a range of potential planting dates. This is shown in Figure 5
which gives the percentage of years that had a dry spell longer than 10, 12 or 15 days
during the 30 days following planting dates ranging from mid October to the end of
December conditional on the initial day being rainy. The top curve in Figure 5 shows
that for a crop planted on 1 November, the risk is 45%, almost one year in two, of a
dry spell of 10 days or more, sometime in November, 1.e in the next 30 days. This risk
is only about 15%, or one year in six, of a 15-day dry spell.

By planting in mid-November the risk of a 10-day dry spell has halved, to one year
in four, and shortly after the risk has reached a plateau. Hence someone wishing to
minimize their risk could be advised to wait, if they were considering planting in early
November, but there is no point in missing a planting opportunity from about 20
November, because the risk does not decrease further, but the chance of a damaging
dry spell later in the season might increase. This possibility is examined in the next
section.

Dry spells during the flowering period of maize. To examine the risk of drought during
flowering, Figure 6 shows the percentage of years in which there is a long dry spell
in successive 20-day periods. The results in Figure 6 are from an ‘unconditional’
analysis, 1.e. there is no initial condition of rain, as there was in producing the results
in Figure 5. Hence the risks in Figure 6 could include a dry spell that starts before
the specified date and continues into the 20-day window. The result from Figure 6 is
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Figure 6. Percentage of years at Moorings, Zambia with a long dry spell during January to March.

clear for Moorings: the risk of a long dry spell during the 20-day flowering period can
never be discounted, i.e. no curve drops to zero, but the risk remains roughly constant
until the end of January, in other words it remains roughly constant for crops planted
up until about the end of November. For maize planted later during December and
onwards and which flowers from early February onwards, the risk of a dry spell during
flowering increases substantially. Reference to Figure 4 suggests that planting may not
occur until early December (or later) in about 30 out of the 88 seasons, so moisture
stress during flowering is certainly an issue to be considered at Moorings.

Risk of root rots in beans. Figure 7 shows the maximum two-day and three-day totals
for each year during the 21-day early growth period of beans as specified earlier in the
methods section. From these data, Table 2 shows almost half the years (45%) had a
two-day rainfall with more than 50 mm, but just one year in 10 had a three-day total
of more than 100 mm. The values of 50 mm and 100 mm are relatively arbitrary,
and Table 2 also shows how these risks change with a different threshold. For example
changing the 50 mm value to 40 mm changes the risk to about 7 years in 10.

Given that root rot disease in beans can completely wipe out the crop in seasons of
severe infestation (Farrow et al., 2011), this analysis would suggest that detailed studies
aimed at more clearly identifying rainfall threshold values should be considered in
locations surrounding Moorings.

The risk of aflatoxin in groundnut. This and the root rot problem both lend themselves to
either an ‘unconditional’ or a ‘conditional’ analysis. The conditional analysis calculates
the risk, conditional on planting on a specific date. This can be done for a series of

https://doi.org/10.1017/S0014479711000081 Published online by Cambridge University Press


https://doi.org/10.1017/S0014479711000081

256 R. D. STERN AND P. J. M. COOPER

Table 2. Percentage of years at Moorings, Zambia with rainfall greater than a given
threshold during the three-week period that could be sensitive for bean root rot.

Threshold (mm) % of years using % of years using
two-day totals three-day totals

40 71 80

50 46 63

60 34 47

80 13 26

100 5 9

120 3 6

Values in bold correspond to the thresholds used by Farrow et al., 2011.
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Figure 7. Maximum two and three-day total rainfalls at Moorings, Zambia from criteria in Farrow et al., 2011) that
indicate possible bean root rot infestation.

potential planting dates. The calculated risks then compare the risks for the different
possible planting dates at a given site. This is illustrated in Figure 8 for the aflatoxin
problem.

The result shows that the risk of the trigger event (less than 5 mm in any 15-day
period, within the last 30 days of crop growth, i.e. 90 days post planting for this 120-
day variety) is about 0.2, or one year in five, if the 90th day is in mid-February, 1.e. if
planting was by about 20 November. A delay of planting, by one month, increases the
risk of this event to about four years in five. The same increase in risk would be caused
if alonger season variety were used. As in the analysis for the risk of dry spells following
planting (Figure 5) and the risk of dry spells during flowering in maize (Figure 6), this
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Figure 8. Risk of late season dry spells that could cause aflatoxin in groundnuts at Moorings, Zambia.

Table 3. Frequencies of water satisfaction index for
125-day maize grown at Moorings, Zambia.

Soil water-holding capacity

Final index 60 mm 100 mm 150 mm
Less than 60 2 2 2
60-70 11 0 0
70-80 17 11 2
80-90 14 16 10
90-95 18 11 11
95-99.9 17 15 13
100 8 32 49

analysis suggests that planting crops towards the end of November around Moorings
balances the risk of crop damage caused by both early and later dry spells.

The crop waler satisfaction index

In this section, we examine how the distribution and amounts of rainfall in each
of the full 88 seasons can be related to the crop water requirements of maize grown
at Moorings through a simple water balance model as described earlier. Table 3 gives
the values of the final CWSI for the 88 years at Moorings for an early planted 125-
day maize variety. The ‘farmer derived’ criteria for planting, described earlier, were
used to identify the earliest planting date in these analyses. The results indicate the
sensitivity of the index to the water-holding capacity. With a soil of 60 mm water-
holding capacity there are just eight years where the index remained at 100, i.e. no
water stress occurred, with just under half the years having a final index of over 90. In
contrast, with a soil of high water-holding capacity of 150 mm, over half the years had
an index of 100, and all but 14 years, i.e. 85% of the years had a final index of over 90.

While farmers have relatively little choice of the soil, they are able to choose what
is cultivated on any particular soil type. Given the few years that a farmer with a soil
of 60 mm water-holding capacity (either a sandy soil or a heavier textured but shallow
soil) has a high index, we then examined whether such a farmer might benefit from
considering a shorter-season variety. The results in Figure 9 compare the index for
the 125-day variety with the values for a 105-day maize. The results indicate that the
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Figure 9. Crop water satisfaction index at Moorings, Zambia for two varieties of maize. (Joined line is for a 125-day
crop and vertical lines are for a 105-day crop).

shorter-season variety usually, but not always, has a higher index. With the 105-day
variety there are now 15 years (compared to eight for the 125-day crop) with a final
index of 100. This is one year in five for the shorter crop, compared to one in ten for
the 125-day maize. There were 69, i.e. four years in five, (compared to 57 for the 125
day crop) with an index of over 80. Note that visually from this graph, and a simple
regression analysis, again do not show any evidence for a trend in the relative values of
the two maturity types that would indicate a change in the seasonal pattern of rainfall
through the record.

A tentative conclusion from Figure 9 is that the benefits from the risk reduction
with the shorter-season variety of maize are evident but not large. Note that the index
of 100 means that the crop has reached its full yield potential on the assumption that
no other factors such as weeds or nutrients are limiting. However this yield potential
will usually be higher for a longer-season maize. So a farmer should only switch to the
shorter variety with a lower potential yield if it substantially reduces the risk. This does
not seem apparent for the example considered. Although the CWSI is not an index
of yield directly, a lower index generally implies lower yield (Frere and Popov, 1986.)

Table 4 compares the final CWSI of a 105-day variety to that of a 125-day variety
of maize, for different dates of planting that were achieved according to the planting
rules used in the analyses above. The index is defined as similar when it is within two
units. Overall the index is larger for the 105-day variety in about half the years, and
smaller in about a quarter.
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Table 4. Relative value of index for 105-day maize compared to 125-day variety at
Moorings, Zambia.

Final CWSI Planting date

3-14 Nov 15-30 Nov 1-12 Dec Overall
Lower 6 9 6 21
Similar 4 12 5 21
Higher 7 27 12 46
Overall 17 48 23 88

Table 5. Frequencies of the final CWSI at Moorings,
Zambia for 125-day maize planted on 15 November with
different soil water contents on 31 January.

Final CWSI Available water in soil profile
on 31 January
50 mm 100 mm
Less than 60 0 0
60-70 0 0
70-80 4 0
80-90 15 4
90-95 10 7
95-99.9 16 19
100 42 57

In Table 4 one feature is that the comparative advantage of the 105-day variety
seems less for the early planting. This is disappointing, because the early planting
opportunity for the short-season crop reaches maturity in February and permits the
possibility of planting a second legume crop. Examination of the data for individual
years confirms that the occasional increased risk for the short-season crop is due to the
larger water requirement for that variety in December (see Table 1) when dry spells
can still be an issue at Moorings.

These, and the more complex crop models, can also be used as early warning
indicators. This analysis takes the conditional risk ideas related to early planting above
(Table 4), a step further. For example, suppose planting of the 125-day maize in the
current year took place on 15 November and the index was still at 100 after 77 days,
i.e. at the end of January. The results in Table 5 show the estimated values of the
final index for two different levels of available soil water still in the profile. The soil
water-holding capacity was taken as 100 mm.

If the soil profile was full (last column in Table 5) then 76 out of 87 years, i.e. close
to 90% would have had a final index of 95 or higher, promising an excellent chance
of a good harvest. In contrast, with a half full profile, only 58 out of 87 years (66%)
would have a final index of 95 or greater, which might be a cause for concern.
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Figure 10. The estimated chance of rain following a rainy day (top curve), a single dry day (middle curve) and a dry
spell of two or more days (bottom curve).

A modelling approach

One difficulty with the rainfall analyses, so far, is that the large inter-annual variation
means that a long record is needed to estimate risks well or to investigate climate
change.

Thus the lack of evidence for change in the pattern of the monthly rainfall totals,
apparent in Figure 1, despite the long record, is either because there is not yet a clear
picture, or because the picture is hidden, due to the large inter-annual variability.
Figures 2 and 3 showed the picture was clarified by breaking the analyses of the
rainfall totals into the number of rain days in the month, and the mean rain per
rain day. This topic is investigated further in this section by using a more ‘sensitive’,
1.e. more precise, method of analysis of the rainfall data, that would therefore have a
chance of detecting smaller changes in the pattern of rainfall.

The analyses in the previous sections have always first summarized the daily data,
and then processed the resulting summaries. Here we reverse the process. The first
stage 1s to fit a model to the pattern of rainfall, using the daily data themselves. Then
results are derived, from the resulting model.

The model is in two parts. The first is shown in Figure 10 and is a model for the
chance of rain. There are three curves, because the chance of rain depends on whether
the previous day had rain or was dry.

The top curve in Figure 10 is the chance of rain when the previous day also had
rain. This is therefore the chance that a rainy spell continues for a further day. In
January, the middle of the rainy season, this is over 0.6, i.e. about 2/3 of rainy days
continued and had rain on the next day.

The bottom curve in Figure 10 shows the chance of rain after a dry spell of two
or more days. This is therefore the chance that a dry spell (of longer than one day)
is broken. This is a smaller probability than the chance of a rain spell continuing,
rising to about 1/3 in January. The middle curve in Figure 10 is the chance of rain
if yesterday was dry, but the day before that was rainy, i.e. the chance of rain after a
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Figure 11. The mean rain per rain day (mm).

single dry day. The difference between this curve and the bottom curve shows that
then the chance of rain ‘returning’ is greater after just a single dry day, than if a dry
spell has been in force for two days or more.

The model that has been fitted to the chance of rain might therefore be thought of as
having a ‘memory’ of two days, if the previous day is dry. This is called a second-order
Markov chain. The ‘memory’ is only a single day if the previous day had rain.

When there is rain, the rainfall amounts on a rainy day have a mean that is estimated
by the curve shown in Figure 11. The mean rain per rain day is over 12 mm in the
peak of the rainy season. Rainfall amounts are very variable and are usually modelled
by a gamma distribution. The second parameter, i.e. the ‘shape’ parameter of the
gamma is also needed to derive results from the model.

The models fitted in Figure 10 and Figure 11 have used all the daily data in the
climatic record for Moorings. If this model is appropriate it can now be used to
calculate any of the same ‘events’, such as the start of the rains, and risk of dry spells,
that have been modelled in the previous sections. For simple events, such as the risk of
a long dry spell, results can be calculated probabilistically as described in Stern and
Coe (1984). Otherwise simulation (of many years) is used, as for example by Marksim
(Jones and Thornton, 2000).

As an example, Figure 12 shows the chance of a long dry spell in the 30 days
following a potential planting date. This is estimating the same characteristics as
shown using the simple methods of analysis in Figure 5. The results are similar though
the results from the Markov chain model slightly underestimate the risks as the season
progresses.

One benefit from the modelling approach is that it can be used on shorter records
than is possible with the simple methods of analysis. As an extreme example the
same Markov chain model was fitted to just the last six years of data at Moorings
(2004-2009). The results from fitting this model (not shown) were similar to Figure 10
but the lowest curve, i.e. the chance of rain given the two previous days were dry, was
larger, i.e. close to a probability of 0.4 in January, compared to 0.3 for the full record.
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Figure 12. Dry spell following planting, from Markov chain model to data from Moorings, Zambia (1922-2009).

This implies a smaller risk of a long dry spell. In Figure 13 we present the same plot
as Figure 12, but just derived from the last six years of data.

For Moorings, with a long record, the extra precision from this modelling approach
is of relatively little value, if climate change is ignored. The value of the method shown
here is clearer when shorter records are all that are available, or when a record is split,
to investigate climate change.

Here we illustrate splitting the record, by fitting a separate model to the data from
El Nifio years (17), La Nifia years (13) and Ordinary years (58) identified in the record
as described earlier.

As an example, we have taken the bottom curve from Figure 10 (the chance of rain
following two or more dry days) and split it into three for the El Nifio, Ordinary and
La Nifa years (Figure 14). There was no evidence of an interaction with the time of
year, hence these curves are parallel. (The analysis was on the logit scale, so it is on
this scale that the curves are parallel.) The difference, i.e. the need for three curves
was statistically highly significant (p<0.001). The results in Figure 14 shows that the
chance of a dry-spell being broken is considerably lower in El Nifio years, compared
to La Nifla, with the Ordinary years being intermediate.

The other curves in Figure 10 and the rainfall amounts were processed in a similar
way. In summary, the El Nifio effect was much less evident. Our conclusion for
Moorings is that there is a clear El Nifio effect. Rain spells are less likely to start in
El Nifio years, 1.e. dry spells are longer. They are more likely in La Nifia years than
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Figure 13. Dry spells as Figure 12, but based on data fitted only from 2004 to 2009.
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Figure 14. The estimated chance of rain after a dry-spell of two or more days, for El Nifio, Ordinary and La Nina
years.

in Ordinary years. Once a rain spell starts then its duration and the rainfall amounts
have essentially the same pattern for any of the types of years.

This type of result is of some relevance for the seasonal forecast, discussed in Hansen
et al. (2011). For example, for Moorings, if an El Nifio year is expected, then estimates
of the risk of planting, and of dry spells in the season, can use the appropriate model,
and can provide a quantification of the effect of El Nifio, etc., on any aspect of this
risk demanded by farmers, e.g. start of the rains or of dry spells.
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A further use of the modelling approach is to identify aspects of the pattern of rainfall
that can then be studied further by the simpler approach to the analyses, described
in previous sections of this paper. For example, further analysis of the bottom curve
in Figure 14 (probability of rain after two or more dry days) did not imply an overall
trend, but did indicate an interaction between the trend and the type of year. Hence
the evidence for a trend in the data could be obscured by the El Niiio effect, and a
simple solution is to analyse the data, e.g. monthly totals, Figure 1 or number of rain
days, Figure 3, for just the Ordinary years, i.e. omitting the El Nifio and La Nifia
years.

As a second example, the largest El Nifio effect in the model was of the bottom
curve in Figure 10, which corresponds to the risk of a long dry spell. This effect was
confirmed by calculating the length of the longest dry spell in the January to March
period, split by the type of year. The longest spell in El Nifio years averaged 14 days,
compared with 12 in Ordinary years and just 10 days in La Nifia years.

CONCLUSIONS

This paper is intended as an illustration of methods of analysis, rather than a report
on the climatology of the Moorings station. One should always be cautious when
reporting the results from any single station. Much of the work reported here was
initially undertaken as an FAO-funded study for the conservation farming NGO. We
were fortunate to work closely with the Zambia Meteorological Department and had
full access to further stations from Southern Zambia to check the consistency of the
results obtained.

Our examples focus on rain (the most commonly available data) because rainfall
events are so important in rainfed agriculture and have an impact on a wide range
of crop-related issues. However exactly the same kind of analyses can be done on
other weather parameters (if the data is available) such as the risk of an impact of
super-optimal temperatures during critical crop stages or the possible impact of low
solar radiation levels, shown by Dixit ez al. (2011) to be important in influencing early
maize growth at Kitale, Kenya.

The evidence for change in the pattern of rainfall is more complicated than the
overwhelming evidence for rises in temperatures. This lack of solid evidence is clearly
partly due to the very large inter-annual variability of the rainfall amounts, and hence
the difficulty of detecting a small change.

We were fortunate to have 89 years data here, but 30-40 years of available data is
more common and can be used in exactly the same way as we have shown. We have
also shown that even shorter records can be usefully analysed using a Markov-chain
type modelling approach. This is especially important if an initial analysis shows that
there is indeed evidence of a change in weather patterns, and thus that there is a need
to consider only more recent years, or just a particular type of year, e.g. El Nino years,
in an analysis of climate induced risk.

However climate change is likely to continue for many years and we must therefore
recognize that if; say, just the past 15 years are analysed as representing a ‘new state
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of affairs’, the change is likely to continue, so repeated monitoring and analyses at
reasonable intervals may be needed.

There is much more that can be done. For example the monthly El Nifio data
from the International Research Institute for Climate and Society (IRI) is provided
as a value that we have relatively arbitrarily categorized into three groups. It could,
instead, be used as provided or categorized more finely.

The results from the Markov chain analyses also have possible implications for the
data used in seasonal forecasting (see Hansen et al., 2011). The data usually used
is the three-month rainfall totals. However the analysis above indicates that the El
Nifio effect (which forms part of the seasonal forecast, even if indirectly) is sometimes
apparent through the changed risk of dry spells, and that rainfall totals on rainy days
are largely unaffected. Hence there should be a better ‘signal’ if the rainfall event used
is the number of rain days, or some function of dry spells, rather than the monthly
rainfall totals. When using the totals, the rainfall amounts are likely to be adding
unnecessary ‘noise’ to the data, and hence diluting the evidence for the forecast.

Lastly one must recognize that while the kind of ex ante analyses we have illustrated
can help greatly in identifying and prioritizing field-based research, it merely provides
an additional tool. It adds to, but does not replace the need for experimental and
survey-based research, and for the many uses of detailed crop simulation models.
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