ANOTHER REMARK ON A RESULT OF K. GOLDBERG

Marvin Marcus

(received January 14, 1962)

Abstract

In [3] K. Goldberg showed that if A is a $0-1$ matrix that satisfies $$
\begin{equation*} A A^{*}=s A \tag{1} \end{equation*}
$$ then for some permutation matrix $P, P A P$ * is a direct sum of matrices each of which is either zero or consists only of ones. More recently J. L. Brenner [1] proved that if $A \geq 0$ (i.e. A has non-negative entries) and satisfies (1) then there exists a permutation matrix P such that $P A P^{*}=A_{1} \oplus \ldots \oplus A_{n}$ in which each A_{i} is either 0 or all positive, $A_{i}>0$, and satisfies (1) as well.

In this note we exhibit an argument that is somewhat different from those used by the above authors and which yields a generalization of both results. We then specialize sufficiently to obtain Brenner's theorem.

Observe first that if.(1) is satisfied for $A \geq 0$ then in fact A is symmetric and (1) becomes $p(A)=0$ where $p(\lambda)=\lambda(\lambda-s)$. Notice that in this simple case the only root of $p(\lambda)$ of maximum modulus s is s itself. It is this property of $p(\lambda)$ that is significant here.

We recall that a primitive non-negative matrix B is one for which $B^{k}>0$ for some positive integer k.

Canad. Math. Bull. vol. 6, no.1, January 1963.

THEOREM.

(1)

Suppose A is a non-negative normal matrix satisfying

$$
\begin{equation*}
p(A)=0 \tag{2}
\end{equation*}
$$

in which $p(\lambda)$ is a monic polynomial no two of whose non-zero roots have the same modulus. Then there exists a permutation matrix P such that PAP^{*} is a direct sum,

$$
\operatorname{PAP}^{*}=A_{1} \oplus \ldots \oplus A_{m}
$$

in which each A_{i} is either 0 or primitive.
Proof. Since A^{*} is a polynomial in A it follows that if P is unitary and $P A P *$ is a subdirect sum it must in fact be a direct sum. Now either A is irreducible [2: p. 75] or the re exists a permatation matrix P such that

$$
\operatorname{PAP}^{*}=\left(\begin{array}{cccc}
A_{11} & 0 & \cdots & 0 \\
A_{21} & A_{22} & \cdots & 0 \\
\cdot & \cdot & \cdots & \\
A_{m 1} & \cdots & A_{m-1, m} & A_{m m}
\end{array}\right)
$$

where each $A_{i i}$ is either 0 or irreducible. By the above remark $A_{i j}=0$ for $i>j$ and if we set $A_{i i}=A_{i}, i=1, \ldots, m$, we have

$$
\mathrm{PAP}^{*}=\mathrm{A}_{1} \oplus \cdots \oplus \mathrm{~A}_{\mathrm{m}}
$$

Now $p(A)=0$ clearly implies that $p\left(A_{i}\right)=0, i=1, \ldots, m$, and moreover each A_{i} is normal. The distinct characteristic roots of A_{i} are then roots of the polynomial $p(\lambda)=0$ (not counting multiplicities, of course). If $A_{i} \neq 0$ then it is
(1) The author wishes to thank the referee for pointing out an error in the original version of this result.
irreducible and has a simple positive root r. Moreover the conditions on $p(\lambda)$ ensure that r is the only root of $p(\lambda)$ of modulus r.

It follows [2: p. 80] that A_{i} is primitive and the proof is complete.

Now let $p(\lambda)=\lambda^{k}(\lambda-s)$ where $s>0$ and k is a positive integer. Then s is the only root of $p(\lambda)$ of modulus s. But we know more: $p(A)=0$ implies that each non-zero A_{i} has only s as a simple root and 0 as a possible maltiple root. Hence A_{i} has rank 1 (since it is normal and in fact symmetric) and is thus of the form $A_{i}=\left(u_{\alpha} u_{\beta}\right)$. Now, A_{i} is irreducible so no $u_{\alpha}=0$, otherwise A_{i} would have a zero row and column. Thus no element of $A_{i} \geq 0$ is 0 and hence $A_{i}>0$ and has rank 1 .

Brenner's case is $k=1$.

REFERENCES

1. J. L. Brenner, The matrix equation $A A^{*}=s A$. Amer. Math. Monthly, v. 68, 9, (1961), p. 895.
2. F.R. Gantmacher, The Theory of Matrices, v. II. Chelsea Publishing Company, New York (1959).
3. K. Goldberg, The incidence equation $A A^{T}=s A$. Amer. Math. Monthly, v.67, (1960), p. 367.

University of California, Santa Barbara

