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ALMOST BAIRE CLASS ONE MULTIFUNCTIONS

P. MARITZ

In this paper we employ quasi-continuous multifunctions and

introduce almost Baire class 1 multifunctions in order to

generalize a theorem of Kuratowski and also to answer a

question posed by him concerning Baire class 1 multifunctions.

We also show that certain multifunctions can be decomposed

into mutually singular multifunctions.

1. Notation and preliminary results

Throughout this paper X and Y will be fixed non-empty topological

spaces. Let P(D , W(J) , C(Y) and KlY) be the classes of all

subsets, all non-empty subsets, all non-empty closed subsets and all non-

empty closed compact subsets, respectively, of I. A function I1: X •* P(Y)

is called a multifunction and the set D(Y\ = {x e x\lXx) ? 0} is the

effective domain of r . For A £ X , let rU) = u V(x) ; the set
xeA
+

V(X) is called the range of r . For B £ Y , let r (5)

= {x e X\T(x) c 5} and T~ (B) = {x e. X\ T(x) n B ? 0} . The closure,

interior and the boundary of a set A. <= X will be denoted by A , Int(.4)

and Fr(i4) , respectively, where FrCA) = A n X\A = A\lnt(A) . Obviously,

FrC4) = Fr{X\A) .
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298 P. Maritz

Let A £ X; recall that A is of the first Baire category (meagre)

in X if A is a countable union of nowhere dense subsets of X , A i s

of the second Baire category (non-meagre) in X if A is not of the f i rs t

Baire category in X and that A is residual in X if X\A is of the

f i r s t Baire category in ^ . A non-empty class of subsets of X is an

ideal (a a-ideal) if i t i s hereditary and additive (a-additive) , see

[ 6 ] , pp.6, 12. Let I denote the ideal of all nowhere dense sets and J

the a-ideal of a l l f i r s t Baire category sets in X . Let A denote the

symmetric difference operator on ?(X) .

DEFINITION 1.1. Let A and B be subsets of X .

(1) ([6 , p . i l ] ) . A i s said to be congruent to B modulo I , denoted

by A ~ B mod I, if A A B e I , or equivalently, if A\B e I and B\A e I .

(2) ([6 , p.87]) . A i s said to be open (closed) modulo J if there is

an open (closed) set G £ X such that A ~ G mod J .

(3) A i s said to be G~ modulo J , denoted by A ~ G mod J , if there

exists a G.-set G <^ X such that A ~ G mod J .
o —

(.41 A i s said to be FQ modulo J , denoted by A ~ F mod J , if there

exists an F -set F c. X such that /} ~ F mod J .a —

(5) ([2, p.388]). If A = ff A P , where G is open in X and P e J ,

then 4 i s said to be a Baire set in X .

Let

A = {A £ X|i4 is open modulo J}, B = U c jf|4 is a Baire set in X} ,

C = {A £ X|i4 is closed modulo J}, F = U £ * U is FQ modulo J} and

G = {A £ X|/l is G& modulo J}.

LEMMA 1.2. (1) A e A if and only if A is of the form

A = (G\P) u R t where G is open and P } R e J .

(2) If T is the topology of X 3 then 8 is the

a-algebra generated by the class T u J .

(3) A = B = C = F = G .

P r o o f . ( 1 ) : See 16, p . 8 7 ] ; ( 2 ) : s e e [ H , p . 1 9 ] .
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(3): For A = C , see [6, p.69] and for A = 8 , see [2, p.388]. I t i s

obvious that Ac F and A £ G . Let A e G . Then A ~ G mod J , and
since G e A (A being a a-algebra), i t follows that G ~ 0 mod J ,
where 0 is open in X . By [6, p.11, VIII (1)], i t follows that A ~ 0
mod J , thus 4 e A . We deduce that G £ A and consequently A = G.
Similarly, A = F . This completes the proof.

The role played by Baire sets in topology is analogous to that of
measurable sets in analysis.

DEFINITION 1.3. Let A be a subset of X .

(1) (19, p.36]). A i s said to be semi-open if there exists an open set

U in X such that U £ A £ U .

(2) ([3, p.99]). A i s said to be semi-closed if X\A is semi-open.

REMARK 1.4. (1) Every open and every closed subset of X i s
semi-open.

(2) From (1) above we deduce that every open and every
closed subset of X i s semi-closed.

(3) A non-empty semi-open subset of X contains a non-
empty open set .

PROPOSITION 1.5. Let A be a subset of X.

(1) A is semi-open if and only if A £ lnt(A) ,
(2) If A is open then A\A is nowhere dense.
(3) A is semi-closed if and only if there exists a closed set C £ X
such that int(C) £ A £ C .
(4) If A is open and B is semi-open in X } then A n B is semi-open.

(.5) A is semi-open if and only if A = int(A).
(6) A is semi-open if and only if A = (lnt(A)) u B , where B c Fr(A) .
(7) If A is semi-open (or semi-closed)s then Fr(A) is nowhere dense.
(8) If A is semi-closed then A = 0 u Bj where 0 is open , B is
nowhere dense and 0 n B = 0

Proof. (1) and ( 2 ) : see 19, p p . 3 6 , 3 7 ] ; (3) and ( 4 ) : see [ 3 ,

pp .100 , 1 0 1 ] ; (5) and ( 6 ) : see [4, p . 6 9 ] .

(7): I f A i s semi-open, then Fr{A) = i4\IntM) = Int(4) \IntC4) from (5) .

I t follows from (2) that Fr(A) i s nowhere dense. If A i s semi-closed,
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then since Fr(A) = Fr(X\A) , i t follows that Fr(A) is nowhere dense.

(8) : If 4 i s semi-closed there exists , by (3), a closed set C £ X

such that Int(C) £ A £ C . Then A = (Int(O) u W\Int(C)). Put

0 = Int(C) and B = A\Int{C) . Since B £ C\Int(C) , i t i s nowhere dense.

DEFINITION 1.6. A multifunction r: X •*• W(Y) is said to be upper-

quasi-continuous, briefly u-q-c (lower-quasi-continuous, briefly 1-q-c)

at a point x e X if for any open set V in Y satisfying

r(a: ) c V (V(x ) n V ? 0) and for any open neighbourhood U of x in X,

there exis ts a non-empty open set G c U such that G £ V (V) (G £ T <V)) .

A multifunction T: X •*• hl(Y) is u-q-c (1-q-c) on X if i t i s

u-q-c (1-q-c) a t every point of X and r is quasi-continuous at a point

x e X (on X ) if i t i s both u-q-c and 1-q-c at x e X (on X ) .

PROPOSITION 1.7. A multifunction V: X •*• bl(Y) is u-q-c (l-q-c)

on X if and only if for any open set V £ Y the set T+(V) (V~(V))

is semi-open in X .

Proof. We prove the case of u-q-c T , the other case i s similar.

Let r be u-q-c and le t V be any open set in Y . If T (.V) = & ,

then r (V) is semi-open. So, l e t T (V) ^ 0, x e V {V) and U be any

open neighbourhood of a: in X . There exists a non-empty open set

G <= U such that C c r+(V) . Then G = Int(G) c lnt(r+(t0) , hence

U n Int(X+(J0) jt 0 . Then XQ e Int(r+(t0) , thus T+(V) £ l n t ( r + ( W )

and r (7) is semi-open by 1.5(1). Conversely, l e t r (V) be semi-open

in X for every open set V in Y . Let x e X , V open in Y such

that r(x ) £ V and le t U be any open neighbourhood of x . The set

U n T (Fl i s non-empty and i s , from 1.5(4), semi-open. From 1.4(3) we

have a non-empty open set G £ U n V (71 , hence G £ r (10 . This proves the

upper-quasi-continuity of r at a;

DEFINITION 1.8. ( [ ! ] ) . A multifunction r : X -> N{Y) i s said to

be upper-semi-continuous, briefly u-s-c (lower-semi-continuous, briefly

1-s-c) on X if for any open set Vc Y the set r+(l0 (Y~(V)) is open in
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X , and T i s semi-continuous on X i f i t is both u-s-c and 1-s-c on X .

I t i s clear that every semi-continuous multifunction on X is also

quasi-continuous on X . To see that the converse i s not true, consider

the multifunction T: R ->• R2 , defined by V(x) = {(0,0)} if a: > 0 and

V(x) = {(—- , -1) } if x < 0 .
\x\

2. Main results

We employ the Vietoris (or exponential topology) as developed by

Michael [JO]. The collection V(Y) of all classes of the form

(i) [0 ,0 ,...,0 1 = {A e C m \A c .%0.,A n 0. * 0; i = 1,2,..., n],

with 0 JOJF.-.F0n all open in Y , is a base for the Vietoris topology

on C(Y) . A subbase for this topology is the collection S(Y) consisting

of all classes having one of the following forms:

(ii) 0+ = {A £ C(Y) \A £ 0}, 0" = {A e C(Y) U n 0 ji 0} ,

with 0 open in Y . If B e V(Y), then by (i) and (ii) above,

(iii) B = [O.,O_,...,O ] = 0+ nC.^oT), where 0 = ,un0. .1 2 n ^=l ̂  i=l t

Consider Km , with the relative Vietoris topology, as a subspace of

LEMMA 2 . 1 . Let (%dj fee a metric space and Y: X -*•

on X . Then T~C C) ~ G mod J / o r euerz/ set C e C(Y) .

Proof. Let C e C(Y) and put p<2/,C) = inf d(y,c) where y e X .
cec

For t h e open s e t s 0 = {y e j | p (i/,C) < —} , where « = 1 , 2 , 3 , , it

follows tha t C = {z/ e j |p (y ,C) = 0 ) ^ 0 for each n; consequently,

r (C) <= n. T (0 ) . To es tabl i sh the converse inclusion, l e t— n=± n

x e a^ r (0 ) and u e T(x) n 0 , where n = 1 , 2 , 3 , . . . . Then

P( j / M ' ^ < ̂  where « = 1 , 2 , 3 , . . . Since r(a;) e K(Y) , there ex i s t s a

subsequence Q/, ) of (z/ ) such tha t y, + y e r (x) as n -*• <= .

Since nlim«, P (^fe ' C ) = P(J /O '^ = 0 , i t follows tha t r (x) n C ¥ 0 ,
n
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00 —
so X e F (C) ; consequently, n V (O ) £ V (C) . Now,

T (C) = n, f (0 ) , each set r (0 ) is semi-open and by 1.5(6),
n=x n n

T~(0n) = (Int(r~(On)))u Bn , with (Int(r~(On)))n Bn = 0 and

B £ F r ( r ~ ( O ) ) . By 1.5(7), B i s nowhere dense for every n . Put

A = ln t (T (0 )) for every n . Then V (C) = „£-,(& u B ) , which can be

— 00

written in the form V (C) = ( n A ) u B , where B is of the first Baire

category in X . The result follows by putting G = n A .

COROLLARY 2.2. Let (Jad) be a metric space and V: X -»• K(Y) be

l-s-o on X . Then T~(C) is a G.-set for> each closed set C e C(Y) .

Proof. This follows from the fact that each set T~(0 ) in the

proof of 2.1 is open in X .

Kuratowski [7], p.70 shows that if X and Y are metric, with Y

in addition compact, and if r: X •* C(Y) is semi-continuous, then F is

of Baire class 1 (that is, inverse images of open sets are F -sets). We

accept the following more lenient definition.

DEFINITION 2.3. (1) Let r: X ->- N(.Y) be a multifunction. Then Y

is said to be of Baire class 1 if r~ (0) is an F -set in X for each
a

open 0 £ K(Y). Furthermore, T is said to be almost of Baire class 1

if r~a(0) ~ F mod J for each open 0 £ K(Y).

(2) If A £ B £ X , then A is said to be an
F -set (a Gr-set) relative to B if A is the intersection of B with
an F -set (a G^-set) in X .

(3) Let r: X •*• ?{Y) be a multifunction. Then V

is said to be of Baire class 1 relative to a set T c D{T) if F"1^)

is an Fa~set relative to T for each open 0 £ K{Y) . Furthermore, Y

is said to be empty almost everywhere on X if there exists a residual set

A £ X such that V (A) = 0 .

The usage of the term "almost everywhere" in 2.3(3) above is motivated

by the fact that in numerous problems of topology the notion of a set of
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the first Baire category is analogous to that of a set of measure zero in

analysis.

PROPOSITION 2.4. Let X and Y be such that every closed subset
of each of them is a G^-set. Suppose further that Y is a T^ and

second countable space. If r: X •* Mffj is u-q-c on X } then r is
almost of Baire class 1.

Proof. Let 0 be open in K(Y) and le t V(Y) be a countable base

for K(Y) , see [70, p.162]. Put 0 = y B , where B e V(Y) for each

n . Then r^COl = u. r"1(B^) . By (i i i) , B^ = (0(M) )+n (JQI (ojM))") ,

where n = 1,2,3,..., with O(M)= 5j. oin) , and ojn ) is open in Y ,

where i = 1,2,3,..,pn ; n = 1,2,3,.... Then

Civ) r^o) =nu1[r
1((o(M))+) n (^^((of5)")] .

Since r~1((0(n))+) = r+(O(M)) , O(M) is open in Y and T is u-q-c on

X , it follows that r~1((0(n))+) is semi-open in X . Hence, by 1.5(6)

and (.71 ,

(v) r ^ K O ^ V ) = [Int(.r+(0(M)))]u5(n)

where B( M ) £ Fr(r+(O<"))), B( n ) is nowhere dense and [lnt(r+(O(n)))]

n B - 0 . By assumption, each O. is an F -set in Y ; put

°i")= fell ck\ ' where each cfe"i is closed in J • Then

^ ( ( 0 ^ ) ) - r ( o f ) =feux r i c ) .

Since r"(C^"l) is semi-closed, i t follows from 1.5(8) that

where J/̂  '. is open in X, D} . is nowhere dense and U-, . n DI . = 0

It follows from (iv), (v), (vi) and (vii) that
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Since each open subset of X is an F -set and J is an a-ideal, one

easily sees that F (0) can be written in the form F (0) = F u M ,

where F is an F -set and M e 3 . Clearly, r (0) ~ F mod J . This

is the desired result.

The term "mutually singular" in the next definition is motivated by

the usage of this term in measure theory; for mutually singular integrals,

see [J3, p.242].

DEFINITION 2.5. (1) The raulti functions 1^: X •+ P(Y) and

r_: X •*• P(Y) are said to be mutually singular, denoted by r, l r_,

whenever there exist two disjoint subsets A and B of X such that

X = A U B and T^A) = T2(X\A) = 0 .

(2) The multifunction r: X -> P(Y) is said to be

decomposable if it can be written in the form F = T u V , where

rlS x - ?(X), r2: x -* P(j) and r1 x r2 .

PROPOSITION 2.6. Let X and Y satisfy the hypotheses of

proposition 2. 4.

(1) If V: X •*• U(Y) is u-s-o on X 3 then F is of Baire class 1.

(2) If T: X •*• K(J) is u-q-c on X , then r can be decomposed into

two mutually singular multifunctions F^: X •*• ?(Y) and l^: X •*• ?(Y)

such that r* is of Baire class 1 relative to a residual subset of X

and r2 is empty almost everywhere on X .

Proof. (1): We refer to the proof of proposition 2.4. Since

F"1((0(n))+) is open, each set B(M) in (v) is empty. Since F~(ciM).)

is closed, each set T~ ((oj )~) in (vi) is an F -set. It follows from
I* O

(iv) that F (0) is an F -set, which proves the result.

o

(2): Let A = {x e X\v is not u-s-c at x) . Then A is

of the first Baire category, see [4], p.72, theorem 15. Consequently,

B = X\A is residual. Define T^-. X •*•?(.!) and F2: X •*• P(Y) respectively
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by

' 0 if x e A (r(x) if x e A
and rte) = |

rte) if x e B [0 if x £ B.

Then r = I\ u r_ and r. ± r . Since the restriction Tt = r..|B is

u.s.c. on B , it follows from (1) that TA is of Baire class 1 on B .

Consequently, if 0 is non-empty in K(Y) , then r, (0) = Tt (0)

= u , F = B n ( U, F ) , where F is closed in B and F

closed in X . If 0 is empty in K(Y) , then obviously r. (O) is an

F -set relative to B . In either case, T.. is of Baire class 1 relative

to B . It is clear that r2 is empty almost everywhere on X .

PROPOSITION 2.7. Let X be such that every closed subset is a

G.-set and let Y be a separable metric space. If Y: X -*• K(Y) is

l-q-c on X , then V is almost of Baire class 1.

Proof. The first part of the proof of Proposition 2.4 can be

carried over to the present situation:

(viii) T (0) = U. [T ((O ) ) n (fnY ((O. ) )] ,

with 0 open in K(D and 0*n) open in Y . Now, r~1((O(M))+)
1s

= r+(O(M)) = nr~(T\O(W)) . since Y\0W is closed in Y and T is

l-q-c on X , it follows from 2.1 that T~{Y\0W) ~ GM mod J . This

yields X\T~(Y\0{n)) ~ (X\G{H)) mod J , consequently

(ix) r"1((0<"))+) ~ (X\G{H)) mod J .

Also, T ((O. ) ) = r (O. ) , which is semi-open in X . Hence by

1.5(6) and (7) ,

(x) r"1((ojW))") = [Int(r(o!w ))] u BJM) ,
Is % Is

where BJn) c ^ ( r " ( o j n ) ) , [Int(r~(ofW)) ] n j ! " 1 = 0 and B^W) is
1s % % 1s Is
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nowhere dense in X . Since Int(F (0. )) is an F -set in X and the

class of a l l nowhere dense subsets of X i s an ideal, i t follows that

ft. r - 1 ( < o i ' V ) can b e w r i t t e n i n t h e form ft Y^ (io{.n))~) = F ( n ) u B{n) ,
'Is — S. 1s 1s~" X. Is

where F i s an F - s e t and B i s nowhere dense. Consequently,

(xi) .n. T ( (0 . ) ) ~ F mod J .

I t follows from (v i i i ) - (xi) above and from [63, p .12, §2, VIII formulae

(2) and (41 tha t

r " 1 (0) ~ F.mod J ,

where F = v^Z (X\G ) n F 3 . This completes the proof.

COROLLARY 2.8. Let X and I satisfy the hypotheses of proposition

2.7.

(1) If Y: X -v K(Y) is l-s-c on Xt then Y is of Baire class 1.

(2) If Y: X -*• K(Y) is l-q-c on Xa then Y can be decomposed into

two mutually singular multifunctions T • X •*• V(Y) and T.: X -»• V(Y)

such that T- is of Baire class 1 relative to a residual subset of X

and ?„ ^s empty almost everywhere on X .

Proof. (1) : We refer to the proof of proposit ion 2.7. I t follows

from 2.2 that each s e t r~ ((O )+) in (ix) i s an F - s e t in X . Also,
a

since each set r ((O. ) ) in (x) i s open, i t i s F by hypothesis.

v a

Hence by (viii) , Y (0) is an F -subset of X , which proves the result.

(2) : The proof is similar to that of 2.6.(2), with the

exception that we use [4, p.72, Theorem 16] to find a first Baire category

set A.

If we combine the corresponding results in Propositions 2.4 and 2.7,

and in proposition 2.6 and corollary 2.8, then we have the following

theorem.

THEOREM 2.9. Let X be such that every closed subset is a G^-set

and let Y be a separable metric space.
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CD If r: X -v K(Y) is quasi-continuous on X > then r is almost of

Baire class 1 and V can be decomposed as described in Proposition 2.6(2)

and in Corollary 2.8(2).

(2) If V: X -s- K(Y) is semi-continuous on X , then r is of Baire

class 1.

REMARK 2.10. (1) If we employ Kenderov's ([5, p.150]) less

stringent definition of semi-continuity, in which T(as) is allowed to be

empty for some x e X , then Prop. 2.6(2) and Coroll. 2.8(2), and conse-

quently Theorem 2.9(1), can be generalized correspondingly to the effect that

both multifunctions 1^ and ?2 in the decomposition of r are u.s.c. on X .

(2) It was stated just below Corollary 2.2 that

Kuratowski [7, p.70] shows that if X and Y are metric and Y also

compact, and if T; X •*• C(J) is semi-continuous on X , then F is of

Baire class 1. In [S, p.47] Kuratowski posed the following question:

Can metrizability and compactness of the spaces X and Y respectively

be replaced by weaker assumptions? Surely, Theorem 2.9 shows that this

can be done. For an example of a non-metrizable space X satisfying

the requirements of Theorem 2.9, let X be the set of all natural numbers

and equip X with the finite complement topology, see [72, p.49].
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