NIL IDEALS OF POWER SERIES RINGS

EDMUND R. PUCZYŁOWSKI

(Received 2 October 1981; revised 25 March 1982)

Communicated by R. Lidl

Abstract

Some characterizations of nil radical and nil semisimple power series rings are given. The upper nil radical of a power series ring in an uncountable set of non-commutative indeterminates is completely described.

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 05, 16 A 21, 16 A 22.

1. Introduction

In this paper we investigate nil ideals of an associative power series ring $R\{X\}$ in a set X of non-commutative indeterminates commuting with coefficients from R. We begin in Section 2 with a characterization of nil one-sided ideals of $R\{X\}$ for X of cardinality ≥ 2 , showing that such ideals are contained in $N(R)\{X\}$, where N(R) is the sum of all nilpotent ideals of R. It implies immediately that semiprime power series rings in non-commutative indeterminates are nil semisimple. This result and some of its applications have been obtained by the author (1980) for infinite X. A stronger result is proved in Section 3 for uncountable X. It asserts that a series s belongs to a nil ideal of $R\{X\}$ if and only if the ideal of R generated by the coefficients of s is nilpotent. In the final section we present a result characterizing nil power series rings of one indeterminate.

All results of the paper are stated and proved for right ideals. By analogous arguments or using the fact that if L is a nil left ideal of A and $a \in L$ then the right ideal of A generated by a is nil, one can transfer all obtained results to left ideals.

[©] Copyright Australian Mathematical Society 1983

The following simple observation will be very useful in our investigations.

LEMMA 1. The ideal $\langle A \rangle$ of R generated by a subset A is nilpotent if and only if for any denumerable subset B of R the set AB is nilpotent.

PROOF. If the ideal $\langle A \rangle$ is not nilpotent then for any n = 1, 2, ... there exist elements $a_{n1}, ..., a_{nn} \in A$, $b_{n_1}, ..., b_{nn} \in R$ such that $a_{n1}b_{n1} \cdots a_{nn}b_{nn} \neq 0$. Of course $B = \{b_{ij}\}$ is such a denumerable subset of R that the set AB is not nilpotent. This proves the part "only if". The part "if" is clear.

Throughout Sections 2 and 3, P(X) will be the free (non-abelian) semigroup with unity generated by the set X of cardinality ≥ 2 . If $p \in P(X)$ and $x \in X$ then l(p) and $l_x(p)$ will denote the degree and x-degree of p respectively. The elements of $R\{X\}$ are the formal series $a = \sum a_p p$, where $a_p \in R$, $p \in P(X)$. For any $a \in R\{X\}$ we denote supp $a = \{p \in P(X) | a_p \neq 0\}$.

2. Semisimplicity of power series rings

We begin with an auxiliary lemma concerning the semigroup P(X).

LEMMA 2. Let $x, y \in X, x \neq y$ and $Y = \{xyx, xy^2x, ...\} \subseteq P(X)$. Then a) if $p, q \in P(X), r, t \in Y$ and prq = t then p = q = 1; b) if for $1 \le i \le n$, $p_i, q_i \in P(X), r_i, t_i \in Y$, $l(p_i) \ge l(q_i)$ and $p_1r_1 \cdots p_nr_n = q_1t_1 \cdots q_nt_n$ then $p_i = q_i, r_i = t_i$ for $1 \le i \le n$.

PROOF. The part a) follows immediately from the definition of Y. To prove b) we proceed by induction on n. If n = 1 then $p_1r_1 = q_1t_1$. But $l(p_1) \ge l(q_1)$, so $p_1 = q_1s$ for some $s \in P(X)$. Thus $sr_1 = t_1$ and by a) s = 1. Hence $r_1 = t_1$ and $p_1 = q_1$.

Let us assume now that b) is valid for $n \le k$ and $p_1r_1 \cdots p_{k+1}r_{k+1} = q_1t_1$ $\cdots q_{k+1}t_{k+1}$. Let $p'_1 = p_1r_1p_2$ and $q'_1 = q_1t_1q_2$. We will show that $l(p'_1) \ge l(q'_1)$. Since $l(p_1) \ge l(q_1)$ then $p_1 = q_1$ for some $s \in P(X)$. Thus

(1)
$$sr_1p_2\cdots r_{k+1} = t_1q_2\cdots q_{k+1}t_{k+1}$$

By the assumption $l(q_2) \le l(p_2)$, so if $l(p'_1) \le l(q'_1)$ then $l(sr_1) \le l(t_1)$. Now (1) implies that $sr_1w = t_1$ for some $w \in P(X)$. Hence by a) s = w = 1 and, in consequence, $r_1 = t_1$. This contradiction shows that $l(p'_1) \ge l(q'_1)$. Thus, using the induction argument, we obtain $r_i = t_i$ for $2 \le i \le k + 1$, $p_i = q_i$ for $3 \le i \le k + 1$ and $p_1r_1p_2 = q_1t_1q_2$. The last equality and $l(p_1) \ge l(q_1)$, $l(p_2) \ge l(q_2)$ give

289

 $p_1 = q_1 s$ and $p_2 = wq_2$ for some $s, w \in P(X)$. Therefore $sr_1w = t_1$ and by a) s = w = 1. This proves the lemma.

THEOREM 1. Let I be a nil right ideal of $R\{X\}$. If $a = \sum a_p p \in I$ then the ideal of R generated by $A = \{a_p | p \in \text{supp } a \text{ has the minimal degree in supp } a\}$ is nilpotent.

PROOF. Let $b_1, b_2, \ldots \in R$ and $x, y \in X, x \neq y$. Using Lemma 2 we obtain that if p_i for $1 \le i \le n$ have the minimal degree in supp *a* then the coefficient at $p_1xy^{k_1}x \cdots p_nxy^{k_n}x$ in the series $(a(b_1xyx + b_2xy^2x + \cdots))^n$ is equal to $a_{p_1}b_{k_1}$ $\cdots a_{p_n}b_{n_n}$. So if $(a(b_1xyx + b_2xy^2x + \cdots))^n = 0$ then $(A \cdot \{b_i | i = 1, 2, \ldots\})^n = 0$ and Lemma 1 ends the proof.

For any ring R let N(R) denote the sum of all nilpotent ideals of R. Similarly as for infinite X (Puczyłowski (1980), Corollary 3) we obtain

COROLLARY 1. If I is a nil right ideal of $R\{X\}$ and $a \in I$ then for any integer $k \ge 0$ the ideal of R generated by $A_k = \{a_p | p \in \text{supp } a, l(p) = k\}$ is nilpotent. In particular $I \subseteq N(R)\{X\}$.

Let K be the nil radical class and S the lower strong radical determined by K. It is well known (Divinsky, Krempa and Sulinski (1971)) that a ring R is S-semisimple if and only if R contains no non-zero nil right ideals. Thus by Theorem 1 we obtain immediately

COROLLARY 2. For any ring R the following conditions are equivalent:
(i) R is semiprime;
(ii) R{X} is semiprime;
(iii) K(R{X}) = 0;
(iv) S(R{X}) = 0.

3. Special cases

In this section we investigate nil ideals of $R{X}$ in some special cases. We start from a result on nil right ideals of bounded index.

LEMMA 3. If $x, y \in X, x \neq y, p_1, \dots, p_n, q_1, \dots, q_n \in P(X),$ $\max(l(p_1), \dots, l(p_n)) = k$ and (2) $p_1 y x^{n(k+1)} \cdots p_n y x^{n(k+1)} = q_1 y x^{n(k+1)} \cdots q_n y x^{n(k+1)}$

then $p_1 = q_1, \ldots, p_n = q_n$.

PROOF. The equality (2) implies that for some $m \in P(X)$, $q_1 = p_1 m$ or $p_1 = q_1 m$. If $p_1 = q_1 m$ then $myx^{n(k+1)} \cdots p_n yx^{n(k+1)} = yx^{n(k+1)} \cdots q_n yx^{n(k+1)}$. But if $m \neq 1$ - then $m = yx^{n(k+1)}r$ for some $r \in P(X)$. This is impossible as then $l(p_1) > n(k+1) > k$. If $q_1 = p_1 m$ then $yx^{n(k+1)} \cdots p_n yx^{n(k+1)} = myx^{n(k+1)} \cdots q_n yx^{n(k+1)}$. If $m \neq 1$ then $m = yx^{n(k+1)}r$ for some $r \in P(X)$. This implies that $l_x(q_1) \ge n(k+1)$ and, in consequence, $l_x(q_1yx^{n(k+1)} \cdots q_nyx^{n(k+1)}) \ge n(n+1)(k+1)$. On the other hand $l_x(p_1yx^{n(k+1)} \cdots p_nyx^{n(k+1)}) \le l(p_1) + \cdots + l(p_n) + n^2(k+1) \le kn + n^2(k+1) < n(n+1)(k+1)$, a contradiction.

THEOREM 2. If I is a nil right ideal of $R\{X\}$ satisfying the identity $a^n = 0$ and $\langle A \rangle$ is the ideal of R generated by $A = \{a_p | p \in \text{supp } a, a \in I\}$ then $\langle A \rangle^{2n} = 0$ and, when $1 \in R$, $\langle A \rangle^n = 0$.

PROOF. Let $x, y \in X, x \neq y, a, \ldots, a_n \in A$ and $b_1, \ldots, b_n \in R$. The definition of A implies that there exist $s_1, \ldots, s_n \in I$ and $q_1 \in \text{supp } s_1, \ldots, q_n \in \text{supp } s_n$ such that a_i is the coefficient at q_i in s_i for $i = 1, \ldots, n$. Since for $i \neq j, 1 \leq i, j \leq n$, $\text{supp } s_i b_i xy^i x \cap \text{supp } s_j b_j xy^j x = \emptyset$ then $a_i b_i$ is the coefficient at $p_i = q_j xy^i x$ in $s = s_1 b_1 xyx + \cdots + s_n b_n xy^n x$. Now if $k = \max(l(p_1), \ldots, l(p_n))$ then by Lemma $3 a_1 b_2 \cdots a_n b_n$ is the coefficient at $p_1 yx^{n(k+1)} \cdots p_n yx^{n(k+1)}$ in $(syx^{n(k+1)})^n$. But $syx^{n(k+1)} \in I$, so $(syx^{n(k+1)})^n = 0$. This shows that for any $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in R, a_1 b_1 \cdots a_n b_n = 0$. Hence if K is the right ideal of R generated by AR then $K^n = 0$. But if J is the right ideal of R generated by A then J = Kwhenever $1 \in R$ and $J^2 \subseteq K$ otherwise. This and the fact that indexes of nilpotency of J and $\langle A \rangle$ are equal end the proof.

In particular Theorem 2 gives immediately

COROLLARY 3. An ideal I of $R{X}$ is nilpotent if and only if the ideal of R generated by coefficients of all elements of I is nilpotent.

Now we will describe nil right ideals of $R{X}$ for uncountable X.

LEMMA 4. Let $a = \sum a_p p \in R\{X\}$. If p_1, \ldots, p_m are such elements of supp a that for some $x \in X$, $(ax)^m = 0$ and $p_1, \ldots, p_m \in P(X \setminus \{x\})$, then $a_{p_1} \cdots a_{p_m} = 0$.

PROOF. Let us observe first that if $q_1, \ldots, q_m \in P(X)$ the equality $p_1 x \cdots p_m x$ = $q_1 x \cdots q_m x$ implies $p_1 = q_1, \ldots, p_m = q_m$. Indeed, since $l_x(p_1) = \cdots = l_x(p_m)$ = 0 then $l_x(q_1) + \cdots + l_x(q_m) + m = l_x(q_1 x \cdots q_m x) = l_x(p_1 x \cdots p_m x) = m$. Hence $l_x(q_1) = \cdots = l_x(q_m) = 0$. Now the equality $p_1 x \cdots p_m x = q_1 x \cdots q_m x$ implies that for some $r \in P$, $p_1 = q_1 r$ or $q_1 = p_1 r$. But then $rxp_2x \cdots p_m x = xq_2x \cdots q_m x$ or $xp_2x \cdots p_m x = rxq_2x \cdots q_m x$. In both cases the condition $l_x(r) = 0$ implies that r = 1, so $p_1 = q_1$. Now $p_2x \cdots p_m x = q_2x \cdots q_m x$ and, analogously, we obtain that $p_2 = q_2, \ldots, p_2 = q_2, \ldots, p_m = q_m$. We conclude from the foregoing that the coefficient at $p_1x \cdots p_m x$ in the series $(ax)^m$ is equal to $a_{p_1} \cdots a_{p_m}$, so $a_{p_1} \cdots a_{p_m} = 0$.

THEOREM 3. If the set X is uncountable and I is a nil right ideal of $R{X}$ then the ideal of R generated by coefficients of an element of I is nilpotent.

PROOF. Let $x, y \in X$, $x \neq y$ and $b_1, b_2, \ldots \in R$. It can be easily seen that if $a = \sum a_p p \in I$ and $p \in \text{supp } a$ then the coefficient at pxy^kx in $a(b_1xyx + p_2xy^2x + \cdots)$ is equal to a_pb_k . The fact that I is a nil right ideal of $R\{X\}$ implies that $\bigcup X_n = X$, where $X_n = \{z \in X \mid (a(b_1xyz + b_2xy^2x + \ldots)z)^n = 0\}$. Thus for some m the set X_m is uncountable. In particular for any $p_1, \ldots, p_m \in \text{supp } a$ and any natural numbers k_1, \ldots, k_m there exists $z \in X_m$ such that $p_1xy^{k_1}x, \ldots, p_mxy^{k_m}x \in P(X \setminus \{z\})$. Hence from Lemma 4, $a_{p_1}b_{k_1} \cdots a_{p_m}b_{k_m} = 0$. Now Lemma 1 ends the proof.

COROLLARY 4. If the set X is uncountable then $S(R{X}) = K(R{X}) = N(R{X})$.

PROOF. Of course $S(R\{X\}) \supset K(R\{X\}) \supset N(R\{X\})$. By Theorem 3 the sum W of all nil right ideals of $R\{X\}$ is equal to $N(R\{X\})$ so $W = N(R\{X\}) = K(R\{X\})$. Now if $I/K(R\{X\})$ is a nil right ideal of $R\{X\}/K(R\{X\})$ then I is a nil right ideal of $R\{X\}$, so $I \subseteq W = K(R\{X\})$. Thus $R\{X\}/K(R\{X\})$ is S-semisimple. In consequence $S(R\{X\}) = K(R\{X\})$.

4. The case of one indeterminate

It is known (Puczyłowski (1980), Corollary 2) that if X is a set of cardinality ≥ 2 then $R\{X\}$ is nil if and only if R is nilpotent or, equivalently, $R\{X\}$ is nilpotent. This is not true for power series rings $R\{x\}$ of one indeterminate x. Namely, let P be the polynomial ring of commutative indeterminates $x_1, x_2,...$ over a finite field of p elements and let I be the ideal of P generated by $x_1^p, x_2^p,...$ Since P is a commutative algebra over a field of characteristic p then for any $\sum a_{i_1\cdots i_k}x_{i_1}$ $\cdots x_{i_k} \in P$, $(\sum a_{i_1\cdots i_k}x_{i_1}\cdots x_{i_k})^p = \sum a_{i_1\cdots i_k}^p x_{i_1}^p \cdots x_{i_k}^p \in I$. Now if $\sum a_i x^i \in$ $(P/I)\{x\}$ then $(\sum a_i x^i)^p = \sum a_i^p x^{pi} = 0$. Hence $(P/I)\{x\}$ is nil and P/I is not nilpotent as for any n, $x_1 \cdots x_n \notin I$.

[6]

Gardner and Stewart (1976) have observed that the class $\overline{K} = \{R \mid R\{x\} \text{ is nil}\}$ is not radical. Now we will describe the class \overline{K} more exactly.

THEOREM 4. Any ring of the class \overline{K} is nil of bounded index.

PROOF. If a ring R is not nil of bounded index then for any n = 1, 2, ... there exists $a_n \in R$, $a_n^n \neq 0$. Let $\{k_n\}$ be the sequence of integers defined by induction as follows

$$k_1 = 1, \quad k_{n+1} = nk_n + 1.$$

Certainly if l > n then $k_l \ge k_{n+1} = nk_n + 1$. Thus if $k_{i_1} + \cdots + k_{i_n} = nk_n$ then $i_r \le n$ for $1 \le r \le n$. But since $k_{i_r} \le k_n$ and $k_{i_r} = k_n$ if and only if $i_r = n$, then the equality $k_{i_1} + \cdots + k_{i_n} = nk_n$ implies $i_1 = \cdots = i_n = n$. Using this fact we obtain that the coefficient at x^{nk_n} in the series $(\sum a_i x^{k_i})^n$ is equal to $a_n^n \ne 0$. Thus the series $\sum a_i x^{k_i}$ is not nilpotent.

REMARK. The Nagata-Higman Theorem (Jacobson (1964), page 274) and Theorem 4 imply that members of \overline{K} which are algebras over a field of characteristic zero are nilpotent.

References

- N. Divinsky, J. Krempa and A. Sulinski (1971), "Strong radical properties of alternative and associative rings," J. Algebra 17, 369-388.
- B. J. Gardner and P. N. Stewart (1976), "Reflected radical classes," Acta Math. Acad. Sci. Hungar. 28, 293–298.
- N. Jacobson (1964), Structure of rings (A. M. S. Colloquium Publications, Providence, R.I.).
- E. R. Puczyłowski (1980), "Radical of polynomial rings, power series rings and tensor products," Comm. Algebra 8, 1699-1709.

Institute of Mathematics University of Warsaw 00-901 Warsaw Poland