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THE PALM-DUALITY FOR RANDOM
SUBSETS OF d-DIMENSIONAL GRIDS
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Abstract

The Palm version of a stationary random subset of a d-dimensional grid is contructed using
the two-step change-of-origin and change-of-measure method. An elementary proof is
given of the fact that the Palm version is characterized by point-stationarity (distributional
invariance under bijective shifts of the origin from a point of the set to another point of
the set).
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1. Introduction

Let d > 1 be an integer and G be a d-dimensional grid, that is, a locally finite additive
subgroup of Rd . The standard example is G = Zd . Note that Qd is not a grid.

This paper presents a particular approach to the Palm theory of stationary simple point
processes on G or, in other words, the Palm theory of stationary random subsets of G. It is
the discrete counterpart of Thorisson (1999), (2000, Chapter 9), where the duality between
a stationary point process in Rd and its ‘point-stationary’ Palm version is established using
a two-step change-of-measure and change-of-origin method. Recall that the Palm version is
obtained by conditioning the point process on having a point at the origin. Palm theory is of
importance in fields such as queueing theory and stochastic geometry; for extensive expositions
see Matthes et al. (1978), Neveu (1977), Daley and Vere-Jones (1988), and Kallenberg (2002).

Palm theory admits a considerable simplification in the present discrete context, in particular,
in the treatment of point-stationarity. Point-stationarity formalizes the intuitive idea of a random
set for which the behavior relative to a given point of the set is independent of the point selected
as the origin; the point at the origin is a typical point. Note that this is different from stationarity
which means that the behavior relative to a given nonrandom location is independent of the
location selected as the origin; the origin is a typical location. A simple example of a stationary
set in one dimension is the set of heads obtained by doubly infinite independent and identically
distributed coin tosses. Whereas, if we condition on there being a head (a point) at the origin
then the set of heads turns from being stationary to being point-stationary, since shifting to
the nth head on the right (or left) does not change its distribution. Note that, in this example,
choosing the nth head on the right is reversible; we can go back to the point we came from by
choosing the nth head on the left. Also, note that the shift is bijective.

In Thorisson (1999), point-stationarity was defined to be ‘distributional invariance under
bijective point-shifts against any independent stationary background’, and proved to be the
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characterizing property of the Palm version of a stationary point process in Rd . The fact that
the Palm version is distributionally invariant under bijective point-shifts is actually implicit
in Mecke (1975), as pointed out by Heveling and Last (2005). For further background, see
Thorisson (2000) and Heveling and Last (2005).

For some years now there has been considerable research activity related to removing
the independent stationary background from the above definition of point-stationarity; see
Ferrari et al. (2004), Holroyd and Peres (2003), and Timar (2004). Finally, Heveling and Last
(2005) proved that this could be done. They proved that the Palm version of a stationary point
process in Rd is characterized by distributional invariance under bijective point-shifts without
the external randomization.

In this paper we shall show that, in the context of random subsets of G, the above point-
stationarity problem is almost trivial. It should be possible to extend these results to general
discrete groups, but the approach here relies heavily on the the structure of Rd , in particular the
proof of Theorem 4.1.

The plan of the paper is as follows. In Section 2, we consider the Palm version and introduce
the change-of-measure and change-of-origin. In Section 3, we show that the Palm version is
point-stationary in the sense of being distributionally invariant under shifts induced by reversible
point maps. In Section 4, we show that a random subset point-stationary in this sense becomes
stationary after the inverse change of measure and origin.

It should be noted that here we only treat the standard Palm duality where the point-stationary
dual is the stationary set conditioned on having a point at the origin, and not the other Palm
duality where the point-stationary dual is the stationary set seen from a typical point. It should
also be noted that it is straightforward to extend the treatment here to random fields associated
with the random set.

2. The Palm version of a stationary random set

A random set of points in G is easiest to represent as a collection of 0–1 valued random
variables

X = (Xs : s ∈ G)

defined on a probability space (�, F , P). The random field X can also be viewed as a random
element in (H, H), whereH = {0, 1}G andH is the productσ -algebra making all the projection
maps taking (xs : s ∈ G) in H to xi in {0, 1}, i ∈ G, measurable.

Define the shift maps θi , shifting the origin of X to a new location i ∈ G, by

θix := (xi+s : s ∈ G), x ∈ H.

The random field X is stationary if

θiX
d= X, i ∈ G (the origin is a typical location),

where ‘
d=’ denotes identity in distribution.

Call an element i of G a location and (with x ∈ H given) call i a point only if xi = 1.
Also, call a d-dimensional random variable T taking values in G a point if XT = 1 identically.
Assume throughout the paper that there is at least one point. Associate to each point a subset
of G – called a cell – in some shift-invariant way so that the cells are disjoint and cover G. For
instance, we can take the cells to be the Voronoi cells. These are defined by associating to each
point the locations in G that are closer to that point than to any other point. If there is a choice
between two or more points, choose the one with the lowest lexicographic order.
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Put
C = C(X) := the cell containing the origin 0,

� = �(X) := the point of C.

We are now ready for the following change-of-origin:

X◦ := θ�X = (X�+s : s ∈ G),

C◦ := C − � = the cell C seen from its point,

S = S(X) := −� = the location of the original origin in C◦.

Note that
|C◦| = |C| = the number of elements in C.

Theorem 2.1. If X is stationary and has at least one point then, for all nonnegative
H -measurable functions f and all i ∈ G,

E[1{S=i} f (X◦)] = E[1{i∈C◦} 1{X0=1} f (X)], (2.1)

E[f (X◦)] = E[|C| 1{X0=1} f (X)], (2.2)

E[1{S=i} f (X◦)] = E

[
1{i∈C◦} f (X◦)

|C◦|
]
. (2.3)

Proof. Fix a nonnegative H -measurable function f and an i ∈ G. Let gi be the function
defined on H by

gi(X) = 1{S=i} f (θ−iX)

and note that (since S = i implies θ−iX = X◦)

gi(X) = 1{S=i} f (X◦),

and that (since {S(θiX) = i} = {i ∈ C◦, X0 = 1})
gi(θiX) = 1{i∈C◦} 1{X0=1} f (X).

Since θiX
d= X, this yields (2.1). Summing over i ∈ G in (2.1), yields (2.2). Note that

taking f = 1 in (2.2) yields 1 = E[|C| 1{X0=1}] and, thus, |C| is almost surely finite on
{X0 = 1}. This (and the fact that |C◦| = |C|) allows us to apply (2.2) with f (X◦) replaced by
1{i∈C◦} f (X◦)/|C◦| to obtain

E

[
1{i∈C◦} f (X◦)

|C◦|
]

= E[1{i∈C◦} 1{X0=1} f (X)].

Compare this with (2.1) to obtain (2.3).

Corollary 2.1. If X is stationary and has at least one point then P(|C| < ∞) = 1 and the
conditional distribution of S given X◦ is uniform on |C◦|, i.e.

P(S = i | X◦) = 1

|C◦| , i ∈ C◦. (2.4)
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Proof. Put f (X◦) = 1{|C|=∞} in (2.3) to obtain

E[1{S=i} 1{|C|=∞}] = 0,

and sum over i ∈ G to obtain P(|C| = ∞) = 0. Furthermore, (2.4) follows from (2.3) by the
definition of conditional probabilities.

We are now ready for the change-of-measure. Define a new probability measure P◦ on
(�, F ) by

dP◦ = 1

|C| E[1/|C|] dP. (2.5)

Corollary 2.2. If X is stationary and has at least one point, then

P(X0 = 1) = E

[
1

|C|
]

= 1

E◦[|C◦|] , (2.6)

and X◦ under P◦ is the Palm version of X, that is,

P(X ∈ A | X0 = 1) = P◦(X◦ ∈ A), A ∈ H . (2.7)

Proof. Put f (X◦) = f (X) = 1/|C| in (2.2) to obtain the first identity in (2.6), and use (2.5)
to obtain the second. In order to establish (2.7), replace f (X) in (2.2) by f (X)/|C| and f (X◦)
by f (X◦)/|C| to obtain

E[1{X0=1} f (X)] = E

[
f (X◦)

|C|
]
,

and divide by P(X0 = 1) = E[1/|C|] to obtain the first identity in

E[f (X) | X0 = 1] = E[f (X◦)/|C|]
E[1/|C|] = E◦[f (X◦)],

while the second identity follows from (2.5). Take f = 1A to obtain (2.7).

3. The Palm version is point-stationary

Put
H ◦ = {x ∈ H : x0 = 1} and H◦ = H ∩ H ◦.

Call an H◦-measurable map π from H ◦ to G a point-map if

xπ(x) = 1, x ∈ H ◦.

Define the associated point-shift θπ from H ◦ to H ◦ by

θπx = θπ(x)x, x ∈ H ◦.

Call π and θπ reversible if there is a point-map ν such that

ν(θπx) = −π(x), x ∈ H ◦.

Note that then θπ is a bijection with inverse θν , i.e.

π(θνx) = −ν(x), x ∈ H ◦,
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and note that
{Xi = 1, i + π(θiX) = 0} = {X0 = 1, ν(X◦) = i}. (3.1)

Also, note that with x ∈ H ◦ fixed the mapping from the set of points {s : xs = 1} to itself,
taking i to i + π(θix) is a bijection if and only if π is reversible.

Definition 3.1. Say that a random field X◦ is point-stationary if X◦
0 = 1 identically and, for

all reversible π ,
θπX◦ d= X◦ (the origin is a typical point).

Theorem 3.1. If X is stationary under P and has at least one point, then X◦ := θ�X is
point-stationary (in the sense of Definition 3.1) under P◦ defined in (2.5).

Proof. Take π reversible, f nonnegative H◦-measurable, and i ∈ G. Note that if g is the
function defined by

g(X) = 1{X0=1} 1{π(X◦)=−i} f (θπX),

then
g(θiX) = 1{Xi=1} 1{i+π(θiX)=0} f (θπθiX).

Since X and θiX have the same distribution under P, this yields the first identity in

E[1{X0=1} 1{π(X◦)=−i} f (θπX)] = E[1{Xi=1} 1{i+π(θiX)=0} f (θπθiX)]
= E[1{X0=1} 1{ν(X◦)=i} f (X)],

while the second follows from (3.1) and the fact that

f (θπθiX) = f (X) on {Xi = 1, i + π(θiX) = 0}.
Sum over i ∈ G to obtain

E[1{X0=1} f (θπX)] = E[1{X0=1} f (X)].
Divide by P(X0 = 1) on both sides and compare with (2.7) to obtain

E◦[f (θπX◦)] = E◦[f (X◦)],
that is, the distribution of θπX◦ under P◦ does not depend on π .

4. From point-stationarity back to stationarity

In this section we shall reverse Theorem 3.1 to show that a point-stationary random subset
is the Palm version of a stationary one provided the expected number of elements in the cell
containing the origin is finite. The following theorem is the key result.

Theorem 4.1. Let X◦ = (X◦
s : s ∈ G) be a family of zero-one variables defined on a probability

space (�, F , P◦) with X◦
0 = 1 identically. Let C◦ be the cell containing the origin. If X◦ is

point-stationary (in the sense of Definition 3.1) then

E◦
[ ∑

s∈i+C◦
f (θsX

◦)
]

= E◦
[∑

s∈C◦
f (θsX

◦)
]
, (4.1)

for all nonnegative H◦-measurable f and all i ∈ G.
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Proof. Let K be the subset of G consisting of the vectors k = (k1, . . . , kd) such that k is
not in nG for any integer n ≥ 2 and such that the first nonzero kj is positive. Since G is locally
finite, the set K is nonempty and G is the disjoint union of {0} and the half-lines −Nk and Nk,
k ∈ K , where N = {1, 2, . . .}. With k ∈ K , order the elements of Zk in the natural way so
that, with m and n integers, mk < nk denotes that m < n.

Define reversible point-maps πk
n , n ∈ Z, by ordering the points on the two-sided lines Zk

as follows. For fixed k ∈ K and x ∈ H ◦, put

πk
0 (x) = 0,

a =
∑

s∈−Nk

xs = number of points on the half-line − Nk,

b =
∑
s∈Nk

xs = number of points on the half-line Nk,

c = a + b + 1 = number of points on the two-sided line Zk.

If a = b = ∞, define recursively, for n ∈ N,

πk
n (x) = inf{s ∈ Nk : s > πk

n−1(x) and xs = 1},
πk−n(x) = sup{s ∈ −Nk : s < πk−n+1(x) and xs = 1}.

If a < ∞ and b = ∞, put

pk
0 (x) := inf{s ∈ Zk : xs = 1} = the lowest point on the line Zk, (4.2)

and recursively, for n ∈ N, define

pk
n(x) = inf{s ∈ Zk : s > pk

n−1(x) and xs = 1}, (4.3)

and then put, for n ∈ N,

qk
0 (x) = pk

0 (x), qk
n (x) = pk

2n(x), and qk−n(x) = pk
2n−1(x),

to obtain a two-sided sequence as follows: let α be such that qk
α(x) = 0 and put

πk
n (x) = qk

α+n(x), n ∈ Z.

If a = ∞ and b < ∞, proceed in an analogous way to the case when a < ∞ and b = ∞.
Finally, if a < ∞ and b < ∞, define pk

n(x), 0 ≤ n < c, by (4.2) and (4.3), and then put

πk
n (x) = pk

(a+n) (mod c)(x), n ∈ Z.

Note that in this last case the two-sided sequence πk
n (x), n ∈ Z, repeats itself with period c.

Note also that in all the above cases, πk−n is the reverse of πk
n .

Now, take k ∈ K and n ∈ Z and put

Ck
n = the cell of X◦ containing πk

n (X◦),

Ak =
⋃
n�=0

Ck
n ,

A =
⋃
k∈K

Ak = G \ C◦.
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Take 1 ≤ m ≤ ∞, i ∈ G, and f nonnegative H◦-measurable. Let

I k
m be the indicator of the event

{ ∑
s∈Zk

X◦
s = m

}
,

and note that if g is the function defined by

g(X◦) = I k
m

∑
s∈(i+C◦)∩Ck

n

f (θsX
◦),

then
g(θπk−n

X◦) = I k
m

∑
s∈(i+Ck−n)∩C◦

f (θsX
◦).

Since X◦ and θπk−n
X◦ have the same distribution under P◦, we obtain

E◦
[
I k
m

∑
s∈(i+C◦)∩Ck

n

f (θsX
◦)

]
= E◦

[
I k
m

∑
s∈(i+Ck−n)∩C◦

f (θsX
◦)

]
.

Sum over n �= 0 if m = ∞ and over 0 < n < m if m < ∞, to obtain

E◦
[
I k
m

∑
s∈(i+C◦)∩Ak

f (θsX
◦)

]
= E◦

[
I k
m

∑
s∈(i+Ak)∩C◦

f (θsX
◦)

]
.

Next, sum over 1 ≤ m ≤ ∞ to get rid of I k
m on both sides, and then over k ∈ K to obtain

E◦
[ ∑

s∈(i+C◦)∩A

f (θsX
◦)

]
= E◦

[ ∑
s∈(i+A)∩C◦

f (θsX
◦)

]
.

Finally, add E◦[∑s∈(i+C◦)∩C◦ f (θsX
◦)] to both sides to obtain (4.1).

Corollary 4.1. Let E◦[|C◦|] < ∞ and let the conditional distribution of S given X◦ be uniform
on C◦. If X◦ is point-stationary (in the sense of Definition 3.1) then

X := θSX◦ (the inverse change-of-origin), (4.4)

is stationary under the probability measure P defined on (�, F ) by

dP := |C◦|
E◦[|C◦|] dP◦ (the inverse change-of-measure). (4.5)

Proof. Take f nonnegative H◦-measurable and i ∈ G and apply (4.4) and (4.5) to obtain

E[f (θiX)] = E◦[|C◦|f (θi+SX◦)]
E◦[|C◦|] .

Since S is uniform on C◦ we obtain

E[f (θiX)] = E◦[∑s∈i+C◦ f (θsX
◦)]

E◦[|C◦|] .

Apply (4.1) to obtain

E[f (θiX)] = E◦[∑s∈C◦ f (θsX
◦)]

E◦[|C◦|] .

This means that the distribution of θiX under P does not depend on i.
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