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LIPSCHITZ CONTINUITY OF SPECTRAL MEASURES

W E R N E R J. RICKER

A characterisation is given of all (finitely additive) spectral measures in a Banach
space (and defined on an algebra of sets) which satisfy a Lipschitz condition. This
also corrects (slightly) an analogous result in the more specialised setting of resolutions
of the identity of scalar-type spectral operators (due to C.A. McCarthy).

We denote by C(X) the space of continuous linear operators on a Banach space X
and use CU(X) when it is to be considered equipped with the uniform operator topology.
A set function P : E —>• CU(X) is called multiplicative if P(E n F) = P{E)P(F), for
all E, F e E. If, in addition, P is finitely additive and satisfies P(0) = 0 and P(fi) = /
(the identity operator on X), then P is called a finitely additive spectral measure. Here
E is a <T-algebra of subsets of some set fi ^ 0. A finitely additive spectral measure
is simply called a spectral measure if it is countably additive for the strong operator
topology. Such measures are natural extensions to the Banach space setting of resolutions
of the identity of normal operators in Hilbert spaces. A result in [2, p.2082] (credited to
C.A. Me Carthy) states if E is the a-algebra of Borel subsets of some subset of the complex
plane, then no spectral measure P : E —> C(X) can satisfy a Lipschitz condition, that is,
there is no a-additive measure /j,: E —> [0, oo) and M > 0 such that ||P(.E)|| ^ M[i(E)
for all E e E. The proof given there rests on the existence of Bade functionals, [2,
p.2205], a relatively sophisticated result concerning spectral measures and more general
Boolean algebras of projections.

The aim of this note is firstly to point out that McCarthy's result is not quite
correct as it is formulated; there do exist spectral measures which satisfy a Lipschitz
condition. These are completely characterised in Proposition 1. Moreover, there exist
Banach spaces X in which every spectral measure satisfies a Lipschitz condition; see
Proposition 2. Our second aim is to provide a more elementary proof of (the correct
formulation of) McCarthy's result. It is based on some simple facts about projection
operators; no use is made of Bade functionals.

It turns out that McCarthy's result remains valid in a slightly more general context.
So, we assume henceforth that E is merely an algebra of subsets of some non-empty set
Q.
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DEFINITION. A finitely additive spectral measure P : E —> C,{X) is said to satisfy
a Lipschitz condition if there exists a constant M > 0 and a bounded, finitely additive
measure (i: E —> [0, oo) such that

(1) \\P(E)\\^Mn{E), £eE.

Recall that a commuting family of projections B C C(X) which contains 0 and /
is called a Boolean algebra of projections if it is a Boolean algebra with respect to the
partial order defined by Q < R if and only if QX C RX. A projection Q € B is an atom
if it has the property that B € {0, Q} whenever B € B satisfies B ̂  Q.

Finally, a Banach space-valued vector measure m : E —> Y is said to be strongly
oo

additive [1, p.7] if the series ^Z m(En) converges in Y whenever {En}™=l is a pairwise
n=l

disjoint sequence of sets from E.

For the definition of the variation of a Banach space-valued measure we refer to

[1, p.2].
PROPOSITION 1 . Let X be a Banach space and P : E —> C{X) be a finitely

additive spectral measure defined on an algebra of sets E. The following statements are
equivalent.

(i) P satisfies a Lipschitz condition.

(ii) The range P(E) of P is a finite subset ofC(X).

(iii) P : E —> C,U{X) has finite variation.

(iv) P is strongly additive in CU(X).

(v) There exists a finite partition {Ej}j=l C E of tt such that each projection
P(Ej), 1 ̂  j ^ k, is an atom of the Boolean algebra P(E) and

(2) P{F) = YJP(Fr\Ej), Fen.

There exist Banach spaces X with the property that every spectral measure (based
on a cr-algebra) in C(X) necessarily has finite range, [3, 4]. This can be combined with
Proposition 1 to yield the following result.

PROPOSITI ON 2 . Let X be a Grothendieck space with the Dunford-Pettis prop-
erty or let X be a hereditarily indecomposable Banacb space. Then every spectral mea-
sure in C(X) based on a a-algebra satisfies a Lipschitz condition.

The proof of Proposition 1 will require the following fact.

LEMMA 1 . Let X be a Banach space and P : E — t C(X) be a Snitely additive
spectral measure defined on algebra of sets S. If -P(E) :— {P(E) : E € E} is an infinite
subset of C(X), then there exists a sequence {En}^ of pairwise disjoint sets in E such
that P(En) ^ 0 for each n ̂  1.
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P R O O F : Let B :- P ( E ) . Choose any Px G £ \ { 0 , / } , in which case Px = P{E{) for

some set Ex € E. Then P2 :- P{E2), where E2 :- £l\Eu satisfies Px + P2 = I and

P2 e B\{0,I}. Since P(F) = P(FnE1) +P{FnE2), for every F e E, and B is infinite,
it follows that P restricted to E\ or P restricted to E2 (or both) must have range an
infinite subset of C(X). We can repeat the above argument and find disjoint sets from
E, say Fr, F2 in Ex (or in E2) with Fx U F2 - Ex (or Fx U F2 = E2) and 0 < P(Fj) < Px

(or 0 < P{Fj) < P2). Since B is infinite it again follows that P restricted to at least one
of Fx or F2 or £l\(Fx U F2) must have range an infinite subset of C(X). Continuing by
induction gives the desired conclusion. D

The proof of the following useful fact is trivial.

LEMMA 2 . Let X be a Banach space. Then every non-zero projection Q € C(X)
satisfies ||Q|| ^ 1.

PROOF OF PROPOSITION 1: (i)=>(ii). Let M > 0 and /J : E —>• [0,oo) be a
bounded, finitely additive measure satisfying (1). Lemma 2 implies that /J,(E) ^ M~l

whenever P{E) ^ 0 and hence, by finite additivity and boundedness of n, there cannot
exist an infinite sequence {En}^ C E of pairwise disjoint sets such that P{En) ^ 0 for
all n ^ 1. Then Lemma 1 implies that P(E) is a finite subset of C(X).

(ii)=>(i). By hypothesis P(E) is & finite Boolean algebra. Accordingly, there exist
atoms Px, • • • , Pn in P(E) such that every element in P(E) is a partial sum of {P,}"=1.

n
Using the fact that PjPk = 0 = PkPj whenever k ^ j , that J2 pj = I, a n d that

P : E —> P(E) is a Boolean algebra homomorphism of the Boolean algebra £ onto the
Boolean algebra of projections P(E), it is routine to verify that there exists a partition
of ft into E-measurable sets {£,}" = 1 such that P{Ej) = Pj, 1 ^ j ^ n. Then (2) follows
easily.

It is clear from (2) and the fact that P(F l~l Ej) € {0, Pj} for each 1 ^ j < n, that
P(E) is a uniformly bounded subset of C(X). Let E eT, and {Fr}™=l be any E-partition
off1. Then

(3)

Define sets JT •= {k : P{Fr n Ek) - Pk}, for 1 ^ r ^ m. It turns out that Jr n J, = 0
whenever j ^ r. Accordingly, (3) implies that

m m

^ _ ^ I I ^ ' I I ^_^ ^_^ " " l ^ i ' ^ n
r = l r = l A:6Jr ^ ^

If \P\ denotes the variation measure of P : E —> CU{X), then we have just shown that
\P\{E) < n- max ||P,|| < oo. But, E € E is arbitrary. So, ^ := \P\ is a bounded, finitely

additive measure /j.: E —> [0, oo) satisfying (1) with M = 1.
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ii). It is clear from (1) and the definition of variation measure that |P|(£7) ^
Mn{E), for E € E. Hence, P : E —> CU{X) has finite variation.

(iii)=»(i). This is immediate by choosing fi := \P\.
(iv)=»(ii). Let {En}™^ C E be pairwise disjoint sets. By hypothesis the se-
oo

ries X) P(En) converges in CU{X). In particular, jĵ *(£7^)|j —> 0 as n -> oo. By
n=l

Lemma 2 only finitely many of the projections {P(En)}™=l can be non-zero. It follows
from Lemma 1 that P ( E ) is a finite subset of C(X).

( i i)=>(iv). Since (i i)=>(i) it suffices to show that (i)=>(iv). Let /i : E —> [0, oo)
be a bounded, finitely additive measure satisfying (1). Let {En}^.l C E be pairwise
disjoint sets. It follows from (1) that

oo

M ^2 fi{E,
n = l

„) = Msup
N

N

n = l
< oo.

I * •"' II ' ' ' • - --' R - ' ' A- • \ \ ^ •- J

n=l

, N x

(£„) = Msup/i( (J En)

Hence, D̂ P(En) is absolutely convergent in the complete space JCU(^) and so converges
n=l

in CU{X). This shows that P is strongly additive.
(ii)=>(v). This was established in the proof of (ii) =>(i).
(v)=>(ii). Since P(F D Ej) € {0, P(Ej)}, for each 1 ̂  j ^ k, it is immediate from

(2) that P(E) is a finite subset of £{X). U
REMARK. In McCarthy's original formulation of the Lipschitz condition the set function
P : E —> C(X) was actually a spectral measure defined on a a-algebra E and the scalar
measure fi : E —> [0, oo) satisfying (1) was required to be countably additive. Under
these additional restrictions the equivalences in Proposition 1 are also equivalent to the
requirement:

(vi) P : E —y CU(X) is countably additive.
Indeed, if (i) holds for a countably additive measure n : E —t [0, oo) then it is clear

from (1) that P is countably additive in CU(X), that is, P(En) —> 0 in CU(X) whenever
{^n}^-! C E decreases to 0. On the other hand, (vi)=>-(iv) since every countably
additive, Banach space-valued measure defined on a tr-algebra is clearly strongly additive.

In view of Proposition 1 (especially the equivalence (i)<=>(ii)) we conclude with a
correct version of McCarthy's original result.

THEOREM 1. Let B(K) be the Boiel a-algebra of some compact set K C C and
P : B(K) —> £{X) be a spectral measure. Then there exists a a-additive measure
H : B(K) —> [0, oo) and M > 0 satisfying \\P{E)\\ < Mfj,(E), for E € B(K), if and only
if the range P(B(K)) of P is a Bnite subset of C{X).
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