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Abstract
This paper applies the common stochastic trends representation approach to the time series of total factor
productivity (TFP) and the relative price of investment (RPI) to investigate the modeling of neutral tech-
nology (NT) and investment-specific technology (IST) and its econometric ramifications on the analysis
of general equilibrium model. The permanent and transitory movements in both series are estimated effi-
ciently via Markov chain Monte Carlo methods using band matrix algorithms. The results indicate that
TFP and the RPI are, each, well represented by a differenced first-order autoregressive process. In addi-
tion, their time series share a common trend component that we interpret as reflecting changes in general
purpose technology. These results are consistent with studies that suggest that (1) the traditional view of
assuming that NT and IST follow independent processes is not supported by the features of the time series
and (2) improper specification of secular trends may distort estimation and inference. Notably, the find-
ings provide some guidance to minimize the effect of idiosyncratic and common trend misspecifications
on the analysis of impulse dynamics and propagation mechanisms in macroeconomic models.
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1. Introduction
Real business cycle (RBC) models and their modern versions in dynamic stochastic general equi-
librium (DSGE) models have enjoyed a great deal of success since they were first introduced to
the literature by Kydland and Prescott (1982). These models are the standard framework used
by academics and policymakers to understand economic fluctuations and analyze the effects of
monetary and fiscal policies on the macroeconomy. They typically feature rational optimizing
agents and various sources of random disturbances to preferences, technology, government pur-
chases, monetary policy rules, and/or international trade. Two notable disturbances, that are now
considered standard, are shocks to neutral technology (NT) and shocks to investment-specific
technology (IST). NT shocks make both labor and existing capital more productive. On the other
hand, IST shocks have no impact on the productivity of old capital goods, but they make new
capital goods more productive and less expensive.

Nonetheless, the modeling of these two types of technology in many DSGEmodels often varies
greatly from a stationary process to an integrated smooth trend process, with each choice having
different implications for the variations in economic activity and the analysis of macro variables.
In this paper, we revisit the question of the specification of NT and IST via the lens of an unob-
served components (UCs) model of the total factor productivity (TFP) and the relative price of
investment (RPI). Specifically, the approach allows us to decompose a series into two unobserved
components: one UC that reflects permanent or trend movements in the series, and the other
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that captures transitory movements in the series. In addition, based on the stock of evidence from
Schmitt-Grohé and Uribè (2011), Benati (2013), Basu et al. (2003), Chen and Wemy (2015), and
other studies that appear to indicate that the two series are related in the long run, we specify
that RPI and TFP share a common unobserved trend component. We label this component as
general purpose technology (GPT), and we argue that it reflects spillover effects from innova-
tions in information and communication technologies to aggregate productivity. As demonstrated
in other studies, we contend that such an analysis of the time series properties of TFP and
RPI must be the foundation for the choice of the stochastic processes of NT and IST in DSGE
models.

The UC framework offers ample flexibility and greater benefits. First, our framework nests all
competing theories of the univariate and bivariate properties of RPI and TFP. In fact, the frame-
work incorporates Schmitt-Grohé and Uribè (2011)’s result of co-integration and Benati (2013)’s
findings of the long-run positive comovement as special cases. In that sense, we are able to evaluate
the validity of all the proposed specifications of NT and IST in the DSGE literature. Furthermore,
the UC structure yields a quantitative estimate, in addition to the qualitative measure in Benati
(2013), of potential scale differences between the trends of RPI and TFP. Last, but not least, it
is grounded on economic theory. In particular, we demonstrate that our UC framework may be
derived from the neoclassical growth model used by studies in the growth accounting literature,
for example, Greenwood et al. (1997a, 1997b), Oulton (2007), and Greenwood and Krusell (2007),
to investigate the contribution of embodiment in the growth of aggregate productivity. As such,
we may easily interpret the idiosyncratic UC of RPI and TFP, and their potential interaction from
the lenses of a well-defined economic structure.

Using the time series of the logarithm of (the inverse of) RPI and TFP from 1959.II to 2019.II
in the USA, we estimate our UC model through Markov chain Monte Carlo methods developed
by Chan and Jeliazkov (2009) and Grant and Chan (2017). A novel feature of this approach is that
it builds upon the band and sparse matrix algorithms for state space models, which are shown to
be more efficient than the conventional Kalman filter-based algorithms. Two points emerge from
our estimation results.

First, our findings indicate that the idiosyncratic trend component in RPI and TFP is better cap-
tured by a differenced first-order autoregressive, ARIMA(1,1,0), process; a result which suggests
that NT and IST should each be modeled as following an ARIMA(1,1,0) process. While several
papers like Justiniano et al. (2011a, 2011b), Schmitt-Grohé and Uribè (2011), and Kaihatsu and
Kurozumi (2014) adopt an ARIMA(1,1,0) specification, other notable studies such as Smets and
Wouters (2007) and Fisher (2006) impose either a trend stationary ARMA(1,0) process or an inte-
grated ARIMA(0,1,0) process, respectively. Through our exploration of the literature, we find that
this disconnected practice is complicated by two important facts. The first fact is that it is not easy
to establish whether highly persistent macro data are trend stationary or difference stationary in
finite sample. Since the models are expected to fit the data along this dimension, researchers typ-
ically take a stand on the specification of the trend in DSGE models by arbitrarily building into
these models stationary or nonstationary components of NT and IST. Then, the series are trans-
formed accordingly in the same fashion prior to the estimation of the parameters of the models.
However, several studies demonstrate that this approach may create various issues such as gener-
ating spurious cycles and correlations in the filtered series, and/or altering the persistence and the
volatility of the original series. The second fact, which is closely related to the first, is that DSGE
models must rely on impulse dynamics to match the periodicity of output as such models have
weak amplification mechanisms. In DSGE models, periodicity is typically measured by the auto-
correlation function of output. Many studies document that output growth is positively correlated
over short horizons. Consequently, if technology follows a differenced first-order autoregressive,
ARIMA(1,1,0), process, the model will approximately mimic the dynamics of output growth in
the data. Therefore, our results serve to reduce idiosyncratic trend misspecification which may
lead to erroneous conclusions about the dynamics of macroeconomic variables.
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The second point is that while the idiosyncratic trend component in each (the inverse of RPI
and TFP) is not common to both series, it appears that the variables share a common stochastic
trend component which captures a positive long-run covariation between the series. We argue
that the common stochastic trend component is a reflection of GPT progress from innovations in
information and communications technologies. In fact, using industry-level and aggregate-level
data, several studies, such as Cummins andViolante (2002), Basu et al. (2003), and Jorgenson et al.
(2007), document that improvements in information communication technologies contributed to
productivity growth in the 1990s and the 2000s in essentially every industry in the USA. Through
our results, we are also able to confirm that changes in the trend of RPI have lasting impact on
the long-run developments of TFP. In addition, errors associated with the misspecification of
common trend between NT and IST may bias conclusions about the source of business cycle fluc-
tuations in macroeconomic variables. For instance, Schmitt-Grohé and Uribè (2011) shows that
when NT and IST are co-integrated, then the shocks to the common stochastic trend become the
major source of fluctuations of output, investment, and hours. This challenges results in several
studies which demonstrate that exogenous disturbances in either NT or IST, may individually,
account for the majority of the business cycle variability in economic variables. Therefore, our
results suggest that researchers might need to modify DSGE models to consider the possibil-
ity of the existence of this long-run relationship observed in the data and its potential effect on
fluctuations.

2. The model
Fundamentally, there are multiple potential representations of the relationship between the trend
components and the transitory components in RPI and TFP. We adopt the UC approach which
stipulates that RPI and TFP can each be represented as the sum of a permanent component, an
idiosyncratic component, and a transitory component in the following fashion:

zt = τt + cz,t , (1)

xt = γ τt + τx,t + cx,t , (2)

where zt is the logarithm of RPI, xt is the logarithm of TFP, τt is the common trend component in
RPI and TFP, τx,t is the idiosyncratic trend component in TFP, and cz,t and cx,t are the correspond-
ing idiosyncratic transitory components. The parameter γ captures the relationship between the
trends in RPI and TFP.

The first differences of the trend components are modeled as following stationary processes:

�τt = (1− ϕμ)ζ11(t < TB)+ (1− ϕμ)ζ21(t ≥ TB)+ ϕμ�τt−1 + ηt , (3)

�τx,t = (1− ϕμx)ζx,11(t < TB)+ (1− ϕμx)ζx,21(t ≥ t0)+ ϕμx�τx,t−1 + ηx,t , (4)

where ηt ∼N (0, σ 2
η ) and ηx,t ∼N (0, σ 2

ηx) are independent of each other at all leads and lags, 1(A)
is the indicator function for the event A, and TB is the index corresponding to the time of the
break at 1982.I.

Finally, following Morley et al. (2003) and Grant and Chan (2017), the transitory components
are assumed to follow AR(2) processes:

cz,t = φz,1cz,t + φz,2cz,t + εz,t , (5)

cx,t = φx,1cx,t + φx,2cx,t + εx,t , (6)

where εz,t ∼N (0, σ 2
z ), εx,t ∼N (0, σ 2

x ), and corr(εz,t , εx,t)= 0.1
The presence of the common stochastic trend component in RPI and TFP captures the argu-

ment that innovations in information technologies are GPT, and they have been the main driver
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of the trend in RPI and a major source of the growth in productivity in the USA. Simply put,
GPT can be defined as a newmethod that leads to fundamental changes in the production process
of industries using it, and it is important enough to have a protracted aggregate impact on the
economy. As discussed extensively in Jovanovic and Rousseau (2005), electrification and infor-
mation technology (IT) are probably the most recent GPTs so far. In fact, using industry-level
data, Cummins and Violante (2002) and Basu et al. (2003) find that improvements in information
communication technologies contributed to productivity growth in the 1990s in essentially every
industry in the USA. Moreover, Jorgenson et al. (2007) show that much of the TFP gain in the
USA in the 2000s originated in industries that are the most intensive users of IT. Specifically, the
authors look at the contribution to the growth rate of value-added and aggregate TFP in the USA
in 85 industries. They find that the four IT-producing industries (computer and office equipment,
communication equipment, electronic components, and computer services) accounted for nearly
all of the acceleration of aggregate TFP in 1995–2000. Furthermore, IT-using industries, which
engaged in great IT investment in the period 1995–2000, picked up the momentum and con-
tributed almost half of the aggregate acceleration in 2000–2005. Overall, the authors assert that
IT-related industries made significant contributions to the growth rate of TFP in the period 1960–
2005. Similarly, Gordon (1990) and Cummins and Violante (2002) have argued that technological
progress in areas such as equipment and software have contributed to a faster rate of decline in
RPI, a fact that has also been documented in Fisher (2006) and Justiniano et al. (2011a, 2011b).

A complementary interpretation of the framework originates from the growth accounting lit-
erature associated with the relative importance of embodiment in the growth of technology. In
particular, Greenwood et al. (1997a, 1997b), Greenwood and Krusell (2007), and Oulton (2007)
show that the nonstationary component in TFP is a combination of the trend in NT and the trend
in IST. In that case, we may interpret the common component, τt , as the trend in IST, τx,t as the
trend in NT, and the parameter γ as the current price share of investment in the value of output.
In Appendix A.1, we show that our UC framework may be derived from a simple neoclassical
growth model.

Furthermore, this UC framework offers more flexibility as it nests all the univariate and
bivariate specifications of NT and IST in the literature. Specifically, let us consider the following
cases:

1. If γ = 0, then trends in RPI and TFP are independent of each other, and this amounts to
the specifications adopted in Justiniano et al. (2011a, 2011b) and Kaihatsu and Kurozumi
(2014).

2. If γ = 0, ϕμ = 0, and ϕμx = 0, then the trend components follow a random walk plus drift,
and the resulting specification is equivalent to the assumptions found in Fisher (2006).

3. If we pre-multiply equation (1) by γ , and subtract the result from equation (2), we obtain

xt − γ zt = τx,t + cxz,t (7)

where cxz,t = cx,t − γ cz,t .

(a) If γ �= 0, ϕμx = 0, and σηx = 0, then RPI and TFP are co-integrated, with co-
integrating vector (− γ , 1), as argued in Schmitt-Grohé and Uribè (2011).

(b) If, in addition, ζx �= 0, then τx,t is a linear deterministic trend, and RPI and TFP are
co-integrated around a linear deterministic trend.

(c) If, otherwise, ζx = 0, the RPI and TFP are co-integrated around a constant term.
4. If γ > 0 (γ < 0), then the common trend component has a positive effect on both RPI and

TFP (a positive effect on RPI and a negative effect on TFP), which would imply a positive
(negative) covariation between the two series. This is essentially the argument in Benati
(2013).
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5. If ϕμ = 1 and ϕμx = 1. This gives rise to the following smooth evolving processes for the
trend:

�τt = ζ11(t < TB)+ ζ21(t ≥ TB)+ �τt−1 + ηt , (8)

�τx,t = ζx,11(t < TB)+ ζx,21(t ≥ t0)+ �τx,t−1 + ηx,t . (9)

Through a model comparison exercise, we are able to properly assess the validity of each of
these competing assumptions and their implications for estimation and inference in order to shed
light on the appropriate representation between NT and IST.

3. Bayesian estimation
In this section, we provide the details of the priors and outline the Bayesian estimation of the
unobserved components model in equations (1)–(6). In particular, we highlight how the model
can be estimated efficiently using band matrix algorithms instead of conventional Kalman filter-
based methods.

We assume proper but relatively noninformative priors for the model parameters γ ,
φ = (φz,1, φz,2, φx,1, φx,2)′, ϕ = (ϕμ, ϕμx)′, ζ = (ζ1, ζ2, ζx,1, ζx,2)′, σ 2 = (σ 2

η , σ 2
ηx , σ

2
z , σ 2

x )′, and τ 0.
In particular, we adopt a normal prior for γ : γ ∼N (γ0,Vγ ) with γ0 = 0 and Vγ = 1. These values
imply a weakly informative prior centered at 0. Moreover, we assume independent priors for φ, ϕ,
ζ and τ 0:

φ ∼N (φ0,Vφ)1(φ ∈R), ϕ ∼N (ϕ0,Vϕ)1(ϕ ∈R),
ζ ∼N (ζ 0,Vζ ), τ 0 ∼N (τ 00,Vτ 0 ),

where R denotes the stationarity region. The prior on the AR coefficients φ affects how persistent
the cyclical components are. We assume relatively large prior variances, Vφ = I4, so that a priori
φ can take on a wide range of values. The prior mean is assumed to be φ0 = (1.3,−0.7, 1.3,−0.7)′,
which implies that each of the two AR(2) processes has two complex roots, and they are relatively
persistent. Similarly, for the prior on ϕ, we set Vϕ = I2 with prior mean ϕ0 = (0.9, 0.9)′, which
implies that the two AR(1) processes are fairly persistent. Next, we assume that the priors on σ 2

z
and σ 2

x are inverse-gamma:

σ 2
z ∼ IG(νz, Sz), σ 2

x ∼ IG(νx, Sx).
We set νz = νx = 4, Sz = 6× 10−5, and Sx = 3× 10−5. These values imply prior means of σ 2

z
and σ 2

x to be, respectively, 2× 10−5 and Sx = 10−5.
For σ 2

η and σ 2
ηx , the error variances in the state equations (3) and (4), we follow the suggestion of

Frühwirth-Schnatter andWagner (2010) to use normal priors centered at 0 on the standard devia-
tions ση and σηx . Compared to the conventional inverse-gamma prior, a normal prior centered at 0
has the advantage of not distorting the likelihood when the true value of the error variance is close
to zero. In our implementation, we use the fact that a normal prior ση ∼N (0,Vση ) on the standard
deviation implies gamma prior on the error variance σ 2

η : σ 2
η ∼ G(1/2, 1/(2Vση )), where G(a, b)

denotes the gamma distribution with mean a/b. Similarly, we assume σ 2
ηx ∼ G(1/2, 1/(2Vσηx )).

We set Vση = 5× 10−6 and Vσηx = 5× 10−5.
Next, we outline the posterior simulator to estimate the model in equations (1)–(6)

with the priors described above. To that end, let τ = (τ1, τx,1, τ2, τx,2, . . ., τT , τx,T)′ and y=
(z1, x1, . . . , zT , xT)′. Then, posterior draws can be obtained by sequentially sampling from the
following conditional distributions:

1. p(τ , γ | y, φ, ϕ, ζ , σ 2, τ 0)= p(γ | y, φ, ϕ, ζ , σ 2, τ 0)p(τ | y, γ , φ, ϕ, ζ , σ 2, τ 0);
2. p(φ | y, τ , γ , ϕ, ζ , σ 2, τ 0);
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3. p(ϕ | y, τ , γ , φ, ζ , σ 2, τ 0);
4. p(σ 2 | y, τ , γ , φ, ϕ, ζ , τ 0);
5. p(ζ , τ 0 | y, τ , γ , φ, ϕ, σ 2).

We refer the readers to Appendix A.5 for implementation details of the posterior sampler.

4. Empirical results
In this section, we report parameter estimates of the bivariate unobserved components model
defined in equations (1)–(6). The dataset consists of the time series of the logarithm of (the inverse
of) RPI and TFP from 1959.II to 2019.II. RPI is computed as the investment deflator divided by
the consumption deflator, and it is easily accessible from the Federal Reserve Economic Database
(FRED). While the complete description of the deflators along with the accompanying details
of the computation of the series are found in DiCecio (2009), it is worth emphasizing that the
investment deflator corresponds to the quality-adjusted investment deflator calculated following
the approaches in Gordon (1990), Cummins and Violante (2002), and Fisher (2006). On the other
hand, we compute TFP based on the aggregate TFP growth, which is measured as the growth
rate of the business sector TFP corrected for capital utilization. The capital utilization-adjusted
aggregate TFP growth series is produced by Fernald (2014) and is widely regarded as the best
available measure of NT.2

First, we perform statistical break tests to verify, as has been established in the empir-
ical literature, that RPI experienced a break in its trend around early 1982. Following the
recommendations in Bai and Perron (2003), we find a break date at 1982.I in the mean of the
log difference of RPI as documented in Fisher (2006), Justiniano et al. (2011a, 2011b), and Benati
(2013). In addition, a consequence of our specification is that RPI and TFP must share a common
structural break. Consequently, we follow the methodology outlined in Qu and Perron (2007) to
test whether or not the trends in the series are orthogonal.3 The estimation results suggest that RPI
and TFP might share a common structural break at 1980.I. This break date falls within the con-
fidence interval of the estimated break date between the same two time series, [1973.I, 1982.III],
documented in Benati (2013). Therefore, the evidence from structural break tests does not rule
out the presence of a single break at 1982.I in the common stochastic trend component of RPI
and TFP.

To jumpstart the discussion of the estimation results, we provide a graphical representation of
the fit of our model as illustrated by the fitted values of the two series in Figure 1. It is clear from
the graph that the bivariate unobserved components model is able to fit both series well with fairly
narrow credible intervals.

We report the estimates of model parameters in Table 1 and organize the discussion of our
findings around the following two points: (1) the within-series relationship and (2) the cross-
series relationship. At the same time, we elaborate on the econometric ramifications of these two
points on the analysis of DSGE models.

4.1. The Within-Series Relationship in RPI and TFP
The within-series relationship is concerned with the relative importance of the permanent compo-
nent and the transitory component in (the inverse of) RPI and TFP. This relationship is captured
via the estimated values of (i) the drift parameters, ζ and ζx, (ii) the autoregressive parameters of
the permanent components in RPI and TFP, ϕμ and ϕμx , (iii) the autoregressive parameters of the
transitory components in RPI and TFP, φz,1, φz,2, φx,1, and φx,2, (iv) and the standard deviations
of the permanent and transitory components, ση, σηx , σz, and σx.
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Figure 1. Fitted values of ẑt = τt and x̂t = γ τt + τx,t . The shaded region represents the 5-th and 95-th percentiles.

First, it is evident from Figure 2 that the estimated trend in RPI, τt , is strongly trending upward,
especially after the break at 1982.I. In fact, the growth rate of τt has more than doubled after
1982.I: as reported in Table 1, the posterior means of ζ1 and ζ2 are 0.004 and 0.009, respectively.
This is consistent with the narrative that the decline in the mean growth of RPI has accelerated
in the period after 1982.I, and this acceleration has been facilitated by the rapid price decline
in information processing equipment and software. In contrast, the estimated trend τx,t shows
gradual decline after 1982.I—its growth rate decreases from 0.001 before the break to −0.003
after the break, although both figures are not statistically different from zero. Overall, it appears
that trends in both series are captured completely by the stochastic trend component in RPI, and
this piece of evidence provides additional support that GPT might be an important driver of the
growth in TFP in the USA.

Moving on to the estimated autoregressive parameters of the permanent component, ϕ̂μ =
0.101 and ϕ̂μx = −0.051, we note that growths in RPI and TFP do not appear to be as serially
correlated as reported in the empirical literature. For instance, Justiniano et al. (2011a, 2011b)
report a posterior median value of 0.287 for the investment-specific technological process and
0.163 for NT. With regard to the AR(2) processes that describe the transitory components in RPI
and TFP, the estimated autoregressive parameters indicate that these components are relatively
more persistent than the growth components of the series.

Furthermore, the estimated values of the variance of the innovations lead to some interesting
observations. The variance of the idiosyncratic growth rate in TFP, σ 2

ηx = 5.17× 10−5, is larger
than its counterpart for the transitory component, σ 2

x = 7.76× 10−6. On the other hand, the vari-
ance of the growth rate in RPI, σ 2

η = 5.51× 10−6, is smaller than the variance of its transitory
component, σ 2

z = 1.79× 10−5.
Overall, these results seem to indicate that (i) RPI and TFP appear to follow an ARIMA(1,1,0)

process, (ii) RPI and TFP growths are only weakly serially correlated, (iii) transitory components
in RPI and TFP are relatively more persistent than the growth components on these series, (iv)
TFP growth shocks generate more variability than shocks to the growth rate of RPI, and (v) shocks
to the transitory component of RPI are more volatile than shocks to the growth rate of RPI.
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Table 1. Posterior means, standard deviations, and 95% credible intervals of model parameters

Posterior mean Posterior std. dev. 95% credible interval

γ 0.478 0.549 (−0.508, 1.797)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζ1 0.004 0.0003 (0.004, 0.005)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζ2 0.009 0.0003 (0.008, 0.009)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζx,1 0.001 0.003 (−0.004, 0.006)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ζx,2 −0.003 0.005 (−0.014, 0.007)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕμ 0.101 0.169 (−0.087, 0.584)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕμx −0.051 0.072 (−0.212, 0.076)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φz,1 1.458 0.074 (1.308, 1.600)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φz,2 −0.568 0.084 (−0.731,−0.408)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φx,1 0.913 0.342 (0.178, 1.48)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φx,2 −0.240 0.263 (−0.676, 0.314)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2z 1.79× 10−5 4.31× 10−6 (1.01× 10−5, 2.61× 10−5)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2x 7.76× 10−6 3.99× 10−6 (3.09× 10−6, 1.81× 10−5)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2η 5.51× 10−6 3.43× 10−6 (1.85× 10−7, 1.26× 10−5)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2ηx 5.17× 10−5 7.75× 10−6 (3.56× 10−5, 6.64× 10−5)
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Figure 2. Posterior means of τt and τx,t . The shaded region represents the 16-th and 84-th percentiles.

Now, we discuss the implications of these findings on the analysis of business cycle models.
First, information about the process underlying RPI and TFP helps to reduce errors associated
with the specification of idiosyncratic trends in DSGE models. Macro variables such as output are
highly persistent. To capture this feature, researchers must typically take a stand on the spec-
ification of the trend in DSGE models. Since output typically inherits the trend properties of
TFP and/or RPI, having accurate information about the trend properties of TFP and/or RPI
should allow the researcher to minimize the possibility of trend misspecification which in turn

https://doi.org/10.1017/S1365100522000281 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100522000281


Macroeconomic Dynamics 1405

has significant consequences on estimation and inference. Specifically, DSGE models are typically
built to explain the cyclical movements in the data. Therefore, preliminary data transformation,
in the form of removing secular trend variations, are oftentimes required before the estima-
tion of the structural parameters. One alternative entails arbitrarily building into the model a
noncyclical component of NT and/or IST and filtering the raw data using the model-based spec-
ification. Therefore, trend misspecifications may lead to inappropriate filtering approaches and
erroneous conclusions. In fact, Singleton (1988) documents that inadequate filtering generally
leads to inconsistent estimates of the parameters. Similarly, Canova (2014) recently demonstrates
that the posterior distribution of the structural parameters vary greatly with the preliminary trans-
formations (linear detrending, Hodrick and Prescott filtering, growth rate filtering, and band-pass
filtering) used to remove secular trends. Consequently, this translates into significant differences
in the impulse and propagation of shocks. Furthermore, Cogley and Nason (1995b) show that it
is hard to interpret results from filtered data as facts or artifacts about business cycles as filtering
may generate spurious cycles in difference stationary and trend stationary processes. For example,
the authors find that a model may exhibit business cycle periodicity and comovement in filtered
data even when such phenomena are not present in the data.

Second, information about the process underlying RPI and TFP improves our understanding
of the analysis of macro dynamics. Researchers typically analyze the dynamics of output and other
macro variables along three dimensions over short horizons: the periodicity of output, comove-
ment of macro variables with respect to output, and the relative volatility of macro variables.
Specifically, in macro models, periodicity is usually measured by the autocorrelation function of
output, and Cogley and Nason (1993) and Cogley and Nason (1995a) show that the periodicity
of output is essentially determined by impulse dynamics. Several studies document that output
growth is positively correlated over short horizons, and standard macro models struggle to gener-
ate this pattern. Consequently, in models where technology followed an ARIMA (1,1,0) process,
output growth would inherit the AR(1) structure of TFP growth, and the model would be able to
match the periodicity of output in the data. This point is particularly important as it relates to the
responses of macro variables to exogenous shocks. Cogley andNason (1995a) highlight that macro
variables, and output especially, contain a trend-reverting component that has a hump-shaped
impulse response function. Since the response of output to technology shock, for instance, pretty
much matches the response of technology itself, Cogley and Nason (1995a) argue that exogenous
shocks must produce this hump-shaped pattern for the model to match the facts about autocorre-
lated output growth. Ultimately, if the goal of the researcher is to match the periodicity of output
in a way that the model also matches the time series characteristics of the impulse dynamics, then
the choice of the trend is paramount in the specification of the model.

In addition, information about the volatilities and persistence of the processes underlying
technology shocks may strengthen our inference on the relative importance of these shocks on
fluctuations. As demonstrated in Canova (2014), the estimates of structural parameters depend
on nuisance features such as the persistence and the volatility of the shocks, and misspecification
of these nuisance features generates biased estimates of impact and persistence coefficients and
leads to incorrect conclusions about the relative importance of the shocks.

4.2 The Cross-Series Relationship between (the Inverse of) RPI and TFP
We can evaluate the cross-series relationship through the estimated value of the parameter that
captures the extent of the relationship between the trends in RPI and TFP, namely, γ .

First, the positive value of γ̂ implies a positive long-run co-variation between (the inverse of)
RPI and TFP as established in Benati (2013). In addition, the estimated value of the parameter
γ , (γ̂ = 0.478), is significantly different from zero and quite large. This result supplements the
qualitative findings by providing a quantitative measure of scale differences in the trends of RPI
and TFP. From a econometric point of view, we may interpret γ̂ as the elasticity of TFP to IST
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changes. In that case, we may assert that, for the time period 1959.II to 2019.II considered in this
study, a 1% change in IST progress leads to a 0.478% increase in aggregate TFP. These observations
are consistent with the view that permanent changes in RPI, which may reflect improvements
in information communication technologies, might be representation of innovations in GPT. In
fact, using industry-level data, Cummins and Violante (2002) and Basu et al. (2003) find that
improvements in information communication technologies contributed to productivity growth
in the 1990s in essentially every industry in the USA. Moreover, Jorgenson et al. (2007) show that
much of the TFP gain in the USA in the 2000s originated in industries that are the most intensive
users of IT.

In addition, this finding contributes to the debate about the specification of common trends
and the source of business cycle fluctuations in DSGE models. In particular, Schmitt-Grohé and
Uribè (2011) and Benati (2013) explore the relationship between RPI and TFP through the lenses
of statistical tests of units root and co-integration, and the potential implications of such relation-
ship on the role of technology shocks in economic fluctuations. Using quarterly US data over the
period from 1948.I to 2006.IV , Schmitt-Grohé and Uribè (2011) find that RPI and TFP contain
a nonstationary stochastic component which is common to both series. In other words, TFP and
RPI are co-integrated, which implies that NT and IST should be modeled as containing a common
stochastic trend. Therefore, Schmitt-Grohé andUribè (2011) estimate a DSGEmodel that imposes
this result and identify a new source of business cycle fluctuations: shocks to the common stochas-
tic trend in neutral and investment-specific productivity. They find that the shocks play a sizable
role in driving business cycle fluctuations as they explain three-fourth of the variances of output
and investment growth and about one-third of the predicted variances of consumption growth
and hours worked. If such results were validated, they would reshape the common approach of
focusing on the importance of either NT or IST distinctively.

However, Benati (2013) expresses some doubt about the co-integration results in Schmitt-
Grohé and Uribè (2011). He claims that TFP and RPI are most likely not co-integrated, and he
traces the origin of this finding of co-integration to the use of an inconsistent criteria for lag order
selection in the Johansen procedure. When he uses the Schwartz information criterion (SIC) and
Hannah–Quinn (HQ) criterion, the Johansen test points to no co-integration. Yet, he establishes
that although the two series may not be co-integrated, they may still share a common stochastic
nonstationary component. Using an approach proposed by Cochrane and Sbordone (1988) that
searches for a statistically significant extent of co-variation between the two series’ long-horizon
differences, Benati (2013) suggests that the evidence from his analysis points toward a common
I(1) component that induces a positive co-variation between TFP and RPI at long horizons. Then,
he uses such restrictions in a vector autoregression (VAR) to identify common RPI and TFP com-
ponent shocks and finds that the shocks play a sizable role in the fluctuations of TFP, RPI, and
output: about 30% of the variability of RPI and TFP and 28% of the variability in output.

First, the results from our analysis complements the investigation in Schmitt-Grohé and Uribè
(2011) and Benati (2013). The relatively large estimate of γ validates the notion that NT and IST
should not be modeled in DSGE models as emanating from orthogonal processes. While the two
studies may disagree about the exact nature of the relationship between NT and IST, both share
the common view that their underlying processes are not independent of each other as shown by
the results herein, and disturbances to the process that joins them play a significant role in fluctu-
ations of economic activity. This indicates, obviously, that a proper accounting, based on the time
series properties of RPI and TFP, of the joint specification of NT and IST is necessary to address
succinctly questions of economic fluctuations as common trend misspecification provide inex-
act conclusions about the role of shocks in economic fluctuations. For instance, papers that have
approached the question about the source of fluctuations from the perspective of general equilib-
rium models have generated diverging results, partly because of the specification of NT and IST.
In Justiniano et al. (2011a), investment(-specific) shocks account for most of the business cycle
variations in output, hours, and investment (at least 50%), while NT shocks play a minimal role.
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On the hand, the findings in Smets and Wouters (2007) flip the script: the authors find that NT
(and wage mark up) shocks account for most of the output variations, while investment(-specific)
shocks play no role. Nonetheless, these two studies share the common feature that the processes
underlying NT and IST are orthogonal to each other. As we discussed above, when Schmitt-Grohé
and Uribè (2011) impose a common trend specification between the two types of technology, nei-
ther shocks matter for fluctuations: a new shock, the common stochastic trend shocks, emerges as
the main source of business cycle fluctuations. Our framework offers a structural way to assimilate
the common trend specification in DSGE models and evaluate the effects of such specifications
in fluctuations. The typical approach to trend specification in DSGE models is to build a non-
cyclical component into the model via unit roots in NT and/or IST and filtering the raw data
using the model-based transformation. However, this practice produces, in addition to inexact
results about sources of fluctuations, counterfactual trend implications because they incorporate
balanced growth path restrictions that are to some extent violated in the data. Therefore, Ferroni
(2011) and Canova (2014) recommend an alternative one-step estimation approach that allows to
specify a reduced-form representation of the trend component, which is ultimately combined to
the DSGE model for estimation. Our results about the time series characteristics of RPI and TFP
provide some guidance on the specification of such reduced-form models. Fernández-Villaverde
et al. (2016) recommend this alternative approach as one of the most desirable and promising
approach to modeling trends in DSDE models. Furthermore, our framework distances itself from
statistical tests and their associated issues of lag order and low power as the debate about the
long-run relationship between RPI and TFP has thus far depended on the selection of lag order in
the Johansen’s test. Also, our framework incorporates Schmitt-Grohé and Uribè (2011)’s result of
co-integration and Benati (2013)’s finding of co-variation as special cases.

Finally, our findings about the fact that TFP may contain two nonstationary components con-
tributes to the VAR literature about the identification of technology shocks and their role in
business cycle fluctuations. Specifically, using a bivariate system consisting of the log difference
of labor productivity and hours worked, Gali (1999) assesses the role of technology in generat-
ing fluctuations by identifying a (neutral) technology shock under the restriction (which could be
derived from most standard RBC models) that only such shocks may have a permanent effect on
the log level of labor productivity. An (implicit) underlying assumption of this long-run restric-
tion is that the unit root in labor productivity is driven exclusively by (neutral) technology. Fisher
(2006) extended Gali (1999)’s framework to show that IST shocks may also have a permanent
effect on the log level of labor productivity, and they play an significant role in generating fluctu-
ations in economic variables. While both authors consider labor productivity as the key variable
to their identification process, their argument may easily be applied to the case when we consider
TFP instead. In Appendix A.1, we demonstrate that if output is measured in consumption units,
only NT affects TFP permanently. However, when output is tabulated according to the Divisia
index, both NT and IST permanently affect TFP. Therefore, our UC framework provides a theo-
retical structure to derive sensible and equally valid long-run restrictions about RPI and TFP, in
the spirit of Gali (1999) and Fisher (2006), to identify NT and IST shocks in a VAR framework.

5. Model comparison
In this section, we explore the fit of our bivariate unobserved components model defined in
equations (1)–(6) to alternative restricted specifications that encompass the various assumptions
in the theoretical and empirical literature. Therefore, our model constitutes a complete labora-
tory that may be used to evaluate the plausibility of competing specifications and their probable
ramifications for business cycle analysis.

We adopt the Bayesian model comparison framework to compare various specifications via the
Bayes factor. More specifically, suppose we wish to compare model M0 against model M1. Each
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modelMi, i= 0, 1, is formally defined by a likelihood function p(y | θ i,Mi) and a prior distribution
on the model-specific parameter vector θ i denoted by p(θ i |Mi). Then, the Bayes factor in favor
ofM0 againstM1 is defined as:

BF01 = p(y |M0)
p(y |M1)

,

where p(y |Mi)=
∫
p(y | θ i,Mi)p(θ i |Mi)dθ i is the marginal likelihood under model Mi, i= 0, 1.

Note that the marginal likelihood is the marginal data density (unconditional on the prior distri-
bution) implied by model Mi evaluated at the observed data y. Since the marginal likelihood can
be interpreted as a joint density forecast evaluated at the observed data, it has a built-in penalty
for model complexity. If the observed data are likely under the model, the associated marginal
likelihood would be “large” and vice versa. It follows that BF01 > 1 indicates evidence in favor of
modelM0 againstM1, and the weight of evidence is proportional to the value of the Bayes factor.
For a textbook treatment of the Bayes factor and the computation of the marginal likelihood, see
Chan et al. (2019).

5.1. Testing γ = 0
In the first modified model, we impose the restriction that γ = 0, which essentially amounts to
testing the GPT theory. If the restricted model were preferred over the unrestricted model, then
the trends in RPI and TFP would be orthogonal, and the traditional approach of specifying NT
and IST would be well founded.

The posterior mean of γ is estimated to be about 0.48, and the posterior standard deviation is
0.55. Most of the mass of the posterior distribution is on positive values—the posterior probability
that γ > 0 is 0.88. To formally test if γ = 0, we compute the Bayes factor in favor of the baseline
model in equations (1)–(6) against the unrestricted version with γ = 0 imposed. In this case, the
Bayes factor can be obtained by using the Savage–Dickey density ratio p(γ = 0)/p(γ = 0 | y).4

The Bayes factor in favor of the baselinemodel is about 1.1, suggesting that even though there is
some evidence against the hypothesis γ = 0, the evidence is not strong. To better understand this
result, we plot the prior and posterior distributions of γ in Figure 3. As is clear from the figure,
the prior and posterior densities at γ = 0 have similar values. However, it is also apparent that
the data move the prior distribution to the right, making larger values of γ more likely under the
posterior distribution. Hence, there seems to be some support for the hypothesis that γ > 0. More
importantly, this result confirms the fact that γ �= 0, and the approach of modeling NT and IST
as following independent processes is clearly not supported by the data. As we amply discussed
in Section 4.2, such common trend misspecification yields incorrect restrictions about balanced
growth restrictions and invalid conclusions about the main sources of business cycle fluctuations.
Therefore, this suggest that business cycle researchers need to modify the specification of DSGE
models to consider the possibility of the existence of this long-run joint relationship observed in
the data and its potential effect on fluctuations.

5.2. Testing ϕμ = ϕμx = 0
Next, we test the joint hypothesis that ϕμ = ϕμx = 0. In this case, the restricted model would allow
the trend component to follow a random walk plus drift process such that the growths in RPI and
TFP are constant. This would capture the assumptions in Fisher (2006).

Again the Bayes factor in favor of the baseline model against the restricted model with ϕμ =
ϕμx = 0 imposed can be obtained by computing the Savage–Dickey density ratio p(ϕμ = 0, ϕμx =
0)/p(ϕμ = 0, ϕμx = 0 | y). The Bayes factor in favor of the restricted model with ϕμ = ϕμx = 0 is
about 14. This indicates that there is strong evidence in favor of the hypothesis ϕμ = ϕμx = 0. This
is consistent with the estimation results reported in Table 1—the estimates of ϕμ and ϕμx are both
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Figure 3. Prior and posterior distributions of γ .

small in magnitude with relatively large posterior standard deviations. This is an example where
the Bayes factor favors a simpler, more restrictive model.

Despite restricting ϕμ = ϕμx = 0, this restricted model is able to fit the RPI and TFP series very
well, as shown in Figure 4. This suggests that an ARIMA(0,1,0) specification for NT and IST would
also be a viable alternative in DSGE models. Nonetheless, an ARIMA(0,1,0) specification, which
implies a constant growth rate, would be incapable of generating the positive autocorrelated AR(1)
observed in output growth. As we mentioned in Section 4.1, Cogley and Nason (1995a) show
that output dynamics are essentially determined by impulse dynamics. Therefore, DSGE models
would be able to match the periodicity of output if the process of technology is simulated to have
a positively autocorrelated growth rate. In addition, Cogley and Nason (1995a) demonstrate that
an ARIMA(1,1,0) only would be needed to produce a hump-shaped response of output in order
for models to match these facts about autocorrelated output growth.

5.3. Testing ϕμx = σ 2ηx = 0
Now, we test the joint hypothesis that ϕμx = σ 2

ηx = 0. This restriction goes to the heart of the
debate between Schmitt-Grohé and Uribè (2011) and Benati (2013). If the restricted model held
true, then RPI and TFP would be co-integrated as argued by Schmitt-Grohé and Uribè (2011). On
the other hand, if the restrictions were rejected, we would end with a situation where RPI and TFP
are not co-integrated, but still share a common component as shown in Benati (2013).

Since zero is at the boundary of the parameter space of σ 2
ηx , the relevant Bayes factor can-

not be computed using the Savage–Dickey density ratio.5 Instead, we compute the log marginal
likelihoods of the baseline model and the restricted version with ϕμx = σ 2

ηx = 0. The marginal
likelihoods of the two models are obtained by using the adaptive importance sampling estimator
known as the cross-entropy method proposed in Chan and Eisenstat (2015).

The log marginal likelihood of the baseline model is 1684, compared to 1627 of the restricted
version. This means that the log Bayes factor in favor of the baseline model is 57, suggesting over-
whelming support for the unrestricted model. This shows that we can reject the joint hypothesis
ϕμx = σ 2

ηx = 0. This result along with the fact that γ > 0 implies a positive covariation between
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Figure 4. Fitted values of ẑt = τt and x̂t = γ τt + τx,t of the restrictedmodelwithϕμ = ϕμx = 0. The shaded region represents
the 5-th and 95-th percentiles.

RPI and TFP. While this conclusion is identical to the result in Benati (2013), our approach
sets itself apart in the sense that it provides a quantitative measure of the relationship between
the trends in RPI and TFP, and it offers an interpretation that may be easily traced to economic
theory. Furthermore, it strengthens the argument suggested by many studies that DSGE models
should be modified to incorporate the joint long-run relationship between NT and IST as mis-
specification may lead to misleading conclusions about sources of business cycle fluctuations. For
instance, while both Schmitt-Grohé and Uribè (2011) and Benati (2013) adopt different strategies,
the results in both studies appear to indicate (1) the presence of a common relationship between
NT and IST (the authors differ in their views about the nature of this common relationship), and
(2) the emergence of a new, common stochastic trend shocks, that play amore significant role than
each technology shocks in the business cycle fluctuations of macro variables. Schmitt-Grohé and
Uribè (2011) manage to incorporate this common relationship, in the form of a co-integration
assumption, in a DSGE model to gauge the role of the new shocks, but Benati (2013) uses the
co-variation result in a VAR setting. Since our framework delivers results which seems to align
with those in Benati (2013), we argue that our structural framework may help to guide the joint
co-variation specification in DSGE models, in the spirit of Ferroni (2011) and Canova (2014).

5.4. Testing ϕμ = ϕμx = 1
Lastly, we test the joint hypothesis that ϕμ = ϕμx = 1. This restriction would imply that the trend
components in RPI and TFP follow an ARIMA(0,2,0) process such that the growth rate of these
trends is integrated of order one.

Since the value 1 is at the boundary of the parameter space of both ϕμ and ϕμx , the relevant
Bayes factor cannot be computed using the Savage–Dickey density ratio. We instead compute
the log marginal likelihoods of the baseline model and the restricted version with ϕμ = ϕμx = 1,
again using the cross-entropy method in Chan and Eisenstat (2015). The former value is 1684
and the latter is 1034, suggesting overwhelming support for the baseline model. Hence, we can
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reject the joint hypothesis ϕμ = ϕμx = 1. These are consistent with the estimation results reported
in Table 1. Specifically, under the baseline model, ϕμ and ϕμx are estimated to be, respectively,
0.101 and −0.051, and both values are far from 1. These results are quite reassuring because if
the restricted model held true, then we may be tempted to impose an ARMA(0,2,0) specifica-
tion for NT and IST. However, this would be hard to reconcile with the fact that output growth
has been documented in many studies to follow a positively autocorrelated AR(1) process. Since
output dynamics are essentially determined by impulse dynamics, an ARMA(0,2,0) process for
technology would indicate that output growth is integrated of order one, violating that stylized
fact.

6. Conclusion
The aim of the paper is to evaluate the relationship between the RPI and TFP to inform the spec-
ification of NT and IST in DSGE models. Using the UC decomposition that allows us to separate
a trend component from a cyclical component in a time series, we specify a model that features a
common component between the trends component in RPI and TFP. Themain results of the anal-
ysis is that RPI and TFP may each be generated by an ARIMA(1,1,0) process, and the two series
share a common stochastic trend component that may drive the mean growth rate of aggregate
productivity in the USA. As documented in many studies, we view this common stochastic trend
component as capturing permanent changes in GPT from innovations in information and com-
munication technologies. In addition, our findings provide some guidance to the idiosyncratic
and joint specification of NT and IST in DSGE models. This may help to reduce misspecification
errors that contribute to misleading interpretations about the sources of business cycles and the
analysis of output dynamics.

Notes
1 We note that economic theory does not rule out the presence of correlation in transitory movements of two or more time
series. In fact, allowing corr(εz,t , εx,t) �= 0 would be a valuable exercise as it would allow us to capture the possibility of short-
to-medium horizon business cycle movements between RPI and TFP and potentially provide some insights into the cyclical
behavior of RPI and/or TFP. However, for our purpose to better understand the idiosyncratic and joint specification of NT
and IST, we focus on the modeling of the permanent components in RPI and TFP and leave this potential extension of the
transitory components to future research.
2 Weuse the vintage from September 2019 for our baseline estimation as older versions of the adjusted TFP series are typically
less refined. Some studies, such as Kurmann and Sims (2021), have argued that pre- and post-revisions of Fernald’s adjusted
TFP series, based on a switch in 2014 in detrending methods of hours per worker in the estimation of utilization, matter
for the identification of shocks. As a robustness check, we also estimate the model using the May 2014 vintage. Despite the
differences in vintage and sample period, the estimation results are mostly similar and all our conclusions remain the same.
These additional results are available upon requested. Different vintages of the adjusted TFP series are available on John
Fernald’s webpage http://www.frbsf.org/economic-research/economists/john-fernald/.
3 First, we test for the presence of a structural break in TFP following the recommendations in Bai and Perron (2003). We
find that the mean of the log difference in TFP exhibits a break at 1968.I; a date that is similar to that documented in Benati
(2013) who estimates the break date at 1968.II. Next, following the approach in Qu and Perron (2007), we regress a vector of
both a series of RPI and a series of TFP on a vector of constant, linear trends, and random errors. We use a trimming value
ε = 0.20 and allow up to three breaks.
4 Earlier work such as Everaert (2011) has used unobserved components models to test for cointegration with the frequentist
approach. In Appendix A.6, we provide Monte Carlo results to assess the empirical performance of this Bayesian testing
procedure using the Bayes factor. Overall, the Monte Carlo experiments indicate that this approach works reasonably well.
5 An alternative approach to test the nonstandard hypothesis σ 2

ηx = 0 is to use the non-centered parameterization of
Frühwirth-Schnatter andWagner (2010), that is, reparameterzing the model in terms of σηx . This approach has been adopted
in, for example, Berger et al. (2016) and Chan (2018). In our setting, however, the state equations (3) and (4) have a second-
order Markov structure with a deterministic trend component. As such, the non-centered parameterization approach, which
is designed for random walk state equations, cannot be directly applied.
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6 The Divisia index for output is � log YD
t = (1− γ )� log Ct + γ� log I∗t . Without loss of generality, we may normalize the

levels of log YD
t , log Ct , and log I∗t at period 0 to be zero and rearrange to obtain the expression for YD

t . We use the superscript
“D” to emphasize the dependence of output on the Divisia definition. Also, YD

t differs from Yt in the sense that the latter is
measured in consumption units.
7 We use JMulti to determine the optimal lag order for each variable. We set 10 as the maximum number of endogenous
variables. The results indicate that 1 or 2 might be optimal. We obtained the same results using codes provided by Benati
(2013).
8 Recall that the Bayes factor presents the weight of evidence for or against the null hypothesis and is not designed to have a
fixed rejection rate.
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A. Appendix

A.1. Model Economy
In this section, we use a neoclassical model similar to the structure in Greenwood et al. (1997a,
1997b), Oulton (2007), and Moura (2021) to derive our UC framework in equations (1)–(6).
Consider the following model:

Yt = Ct + It = ztKα
t
(
Xz
t ht
)1−α , (A.1)

I∗t = atXa
t It (A.2)

Kt+1 = (1− δ)Kt + I∗t . (A.3)

Equation (A.1) is the aggregate production function where output, (Yt), which can be used for
either consumption, (Ct), or gross investment, (It), is produced with capital, (Kt), and labor,
(ht) such that 0≤ ht ≤ 1. The production function is subjected to a stationary neutral techno-
logical shock, (at), and a nonstationary neutral technological shock, (Xz

t ). Equation (A.2) relates
investment in efficiency units, (I∗t ), to gross investment. The terms at and Xa

t denote, respec-
tively, stationary and nonstationary IST. Finally, equation (A.3) shows the evolution of the capital
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stock. It is important to note that output and gross investment are both measured in units of
consumption goods.

In this model economy, TFP and the RPI, denoted as PIt , are given, respectively, by:

TFPt = Yt

Kα
t h

1−α
t

= zt
(
Xz
t
)1−α (A.4)

PIt = 1
atXa

t
. (A.5)

Along a balanced growth path, the stochastic trend in Yt and Ct is given by Xz
t
(
Xa
t
) α
1−α , while

the stochastic trend in investment measured in efficiency units I∗t is Xz
t
(
Xa
t
) 1
1−α .

Using the standard Divisia definition of aggregate output, output, YD
t , is well approximated by

a share weighted index:6

YD
t = C1−γ

t I∗γ
t (A.6)

where γ is the current price share of investment in the value of output. Under this definition of
output, TFP is defined as:

TFPDt = YD
t

Kα
t h

1−α
t

(A.7)

Therefore, expressions (A.4) and (A.7) may be combined to yield

TFPDt = zt
(
Xz
t
)1−α YD

t
Yt

, (A.8)

To determine the stochastic balanced growth path in TFPDt , we start with expression (A.8) and
apply the logarithm on both sides:

log (TFPDt )= log (zt)+ (1− α) log (Xz
t )+ log (YD

t )− log (Yt),
then we take the first difference, and use the definition in (A.6) to get

log (TFPDt )− log (TFPDt−1)= (1− α)
(
log Xz

t − log Xz
t−1
)+ (1− γ )

(
log Ct − log Ct−1

)
+ γ

(
log I∗t − log I∗t−1

)− (log Yt − log Yt−1
)

= (1− α)
(
log Xz

t − log Xz
t−1
)

+ (1− γ )
[
log
(
Xz
t
(
Xa
t
) α
1−α

)
− log

(
Xz
t−1
(
Xa
t−1
) α
1−α

)]
+ γ

[
log
(
Xz
t
(
Xa
t
) 1
1−α

)
− log

(
Xz
t−1
(
Xa
t−1
) 1
1−α

)]
−
[
log
(
Xz
t
(
Xa
t
) α
1−α

)
− log

(
Xz
t−1
(
Xa
t−1
) α
1−α

)]
= (1− α)

(
log Xz

t − log Xz
t−1
)+ γ

[
log Xa

t − log Xa
t−1
]

where we use the fact that, along a balanced growth path, Yt and Ct grow at the same rate as
Xz
t
(
Xa
t
) α
1−α , while I∗t grows at the faster rate Xz

t
(
Xa
t
) 1
1−α . Then, using a simple change of variable

to specify technology so that it is Hicks neutral instead of Harrod neutral, that is, X̃z
t = (Xz

t
)1−α ,

we obtain
log (TFPDt )− log (TFPDt−1)=

(
log X̃z

t − log X̃z
t−1
)+ γ

[
log Xa

t − log Xa
t−1
]

(A.9)
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log (TFPDt )− log X̃z
t − γ log Xa

t = log (TFPDt−1)− log X̃z
t−1 − γ log Xa

t−1 (A.10)

TFPDt
X̃z
t
(
Xa
t
)γ = TFPDt−1

X̃z
t−1
(
Xa
t−1
)γ , (A.11)

or in other words, along the balanced growth path, TFPDt
X̃z
t (Xa

t )
γ is stationary. We may apply the same

logic to the relative price of investment, PIt , to show that PItXa
t is also stationary along the stochastic

balanced growth path. Let tfpDt and pIt denote stationary TFP and stationary RPI, respectively;
therefore, applying the logarithm and rearranging yields the system:

log PIt = log Xa
t + log pIt (A.12)

log TFPDt = γ log Xa
t + log X̃z

t + log tfpDt (A.13)

Suppose that we further assume that the growth rate of the nonstationary NT, and the nonsta-
tionary IST, denoted as μz

t ≡ � log X̃z
t and μa

t ≡ � log Xa
t , respectively, follow stationary AR(1)

processes, and the stationary components of TFP and RPI, log tfpDt and log pIt , follow AR(1) pro-
cesses as we specify in the paper. Therefore, equations (A.12) and (A.13) along with the assumed
specifications constitute the full characterization of our UC framework illustrated in equations
(1)–(6) within the manuscript.

We may also use our framework to derive expressions for RPI and TFP in terms of NT and IST
shocks to obtain sensible restrictions for the identification of these shocks in a VAR framework.
We will assume without loss of generality that both NT and IST follow a unit root process such
that X̃z

t = X̃z
t−1 exp (ε

z
t ) and Xa

t = Xa
t−1 exp (ε

a
t ). In that case, εzt and εat are the NT shocks and the

IST shocks, respectively.
For RPI, we apply the log to expression (A.5) and take the first difference to get

log PIt − log PIt−1 = − log Xa
t + log Xa

t−1 − log at + log at−1

log PIt − log PIt−1 = − log Xa
t + log Xa

t−1

� log PIt = −εat

Note that since at follows stationary process, its growth rate, log at − log at−1, may be assumed
to be approximately equal to zero.

We apply the same logic to TFP in the case when output is expressed in consumption units.
Specifically, applying the log to expression (A.4) and taking the first difference yields

log TFPt − log TFPt−1 = log X̃z
t − log X̃z

t−1 + log zt − log zt−1

log TFPt − log TFPt−1 = log X̃z
t − log X̃z

t−1
� log TFPt = εzt

where we assume again that the growth rate of zt is approximately equal to zero. Note that
technology is Hicks neutral, that is, X̃z

t = (Xz
t
)1−α .

In the case when output is measured via the Divisia index, we rely on expression (A.9) to obtain

log (TFPDt )− log (TFPDt−1)=
(
log X̃z

t − log X̃z
t−1
)+ γ

[
log Xa

t − log Xa
t−1
]

� log (TFPDt )= εzt + γ εat

In sum, the expressions for RPI and TFP in terms of the NT and IST shocks are given by:

� log (PIt)= −εat (A.14)
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Table 2. ADF test: testing the null hypothesis of the presence of a unit root

Test Variable Lags Test statistic Critical value Reject null

ADF Log RPI 1 −1.6893 −3.4310 No
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADF Log RPI 2 −1.7358 −3.4310 No
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADF Log RPI 5 −1.8142 −3.4313 No
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADF Log TFP 1 −2.5138 −3.4310 No
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADF Log TFP 2 −2.4844 −3.4310 No
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ADF Log TFP 5 −2.3264 −3.4313 No

Note: ADF stands for Augmented Dickey–Fuller test. RPI and TFP stand for relative price of investment and total factor
productivity, respectively. In all cases, themodel includes a constant and a time trend. The data series span from 1959.II to
2019.II. The lag order is selected according to the SIC and HQ criterion.

� log (TFPt)= εzt , with output in consumption units (A.15)

� log (TFPDt )= εzt + γ εat , with output via Divisia index. (A.16)

From expression (A.14), it is evident that a positive IST shock (εat > 0) has a permanent impact
on the log level of the relative price of investment. When output is measured in consumption
units, expression (A.15) shows that only NT affects the log level of TFP permanently. With Divisia
index output, both NT and IST affect TFP. Therefore, the definition of output matters for the
identification of NT shocks and IST in a bivariate system consisting of the log difference of RPI
and the log difference of TFP.

A.2. Common Trend in RPI and TFP
In this section, we empirically revisit two issues that have been explored in both Schmitt-Grohé
and Uribè (2011) and Benati (2013). The first is to determine whether RPI and TFP possess each
a stochastic nonstationary component, and the second is to assess whether these nonstationary
components are related. Therefore, we perform unit root tests and co-integration tests using US
data over the period 1959:Q2 to 2019.Q2 using the logarithm of RPI and the logarithm of TFP.

A.3. Unit Root Tests
We carry out Augmented–Dickey Fuller (ADF) tests that examine the null hypothesis that the
logarithms of RPI and TFP have a unit root. The lag order is chosen based on the Schwartz infor-
mation criterion (SIC) and Hannah–Quinn (HQ) criterion.7 The results of the tests are presented
in Table 2, and they clearly indicate that the tests fail to reject the null hypothesis of the presence
of a unit root in the series at the standard 5% confidence level.

An alternative to the ADF test is the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test
that evaluates the null hypothesis that the time series is stationary in levels. The lag length is still
selected according to the SIC and HQ criterion, and we allow for the possibility of a time trend in
the series. The results are illustrated in Table 3, and they are consistent with those obtained from
ADF tests: the KPSS rejects the null hypothesis of stationarity in the logarithm of the relative price
of investment and total factor productivity.

Overall, stationarity tests are unequivocal in terms of the univariate properties of RPI and TFP:
both time series contain a stochastic nonstationary component.
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Table 3. KPSS test: testing the null hypothesis of stationarity

Test Variable Lags Test statistic Critical value Reject null

KPSS Log RPI 1 2.9071 0.1460 Yes
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KPSS Log RPI 2 1.9482 0.1460 Yes
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KPSS Log RPI 5 0.9899 0.1460 Yes
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KPSS Log TFP 1 0.9144 0.1460 Yes
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KPSS Log TFP 2 0.6196 0.1460 Yes
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KPSS Log TFP 5 0.3238 0.1460 Yes

Note: RPI and TFP stand for relative price of investment and total factor productivity, respectively. In all cases, the model
includes a constant and time trend. The data series span from 1959.II to 2019.II. The lag order is selected according to the
SIC and HQ criterion.

Table 4. Johansen’s trace test for co-integration between RPI and TFP

Null Alternative Deterministic trend Lags p-Value

r= 0 r> 0 Yes 1 0.0845
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r= 0 r> 0 Yes 3 0.0975
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r= 0 r> 0 Yes 7 0.0236

Note: The co-integration tests are performed on the logarithms of the relative price of investment and total
factor productivity. The sample period is 1959.II to 2019.II. The variable r denotes the number of co-integrating
vectors. RPI and TFP stand for relative price of investment and total factor productivity, respectively, and the
model includes a constant and time trend. The lag order is selected according to the SIC and HQ criterion.

A.4. Co-integration between RPI and TFP
The results from the previous section clearly indicate that the time series of both RPI and TFP con-
tain a nonstationary stochastic component. With that information at hand, we assess the extent
to which these two non-stochastic components might be co-integrated. Specifically, we perform
the Johansen’s trace test that evaluates the null hypothesis that there is no co-integration relation-
ship between the two series. A rejection of this hypothesis would indicate that RPI and TFP are
driven by a single stochastic component. Consistent with the previous section, we still select the lag
length according to the SIC and HQ criterion, and the result points to 1 as the optimal lag order.
As discussed in Benati (2013), the lag order selection for VARs containing integrated variables
in the Johansen’s procedure may greatly affect the results of the test. Therefore, we also consider
lag orders of 7 and 3 as alternatives, as in Schmitt-Grohé and Uribè (2011) and Benati (2013),
respectively. A final and crucial component of the test is the specification of the data generating
process (DGP) for the co-integrated model as this step has great importance on the results of the
test. In other words, should a deterministic term, constant or linear term, be included in the DGP?
Such decisions are usually guided by the underlying process of the variables which may or may
not contain a drift term. Both the inverse of RPI and TFP appear to be trending upward; hence,
we consider the addition of a constant and linear term in the DGP. The results of the Johansen’s
trace tests are shown in Table 4.

The co-integration results are inconclusive. When the lag order is 7, the null hypothesis of
a zero co-integrating vector is rejected at the standard 5% confidence level, a result that echoes
those in Benati (2013) and Schmitt-Grohé and Uribè (2011). However, the test fails to reject the
null hypothesis of a zero co-integrating vector when a lag order of 1 or 3 is considered. Therefore,
it appears that it is impossible to claim with certainty that RPI and TFP are driven by a single
stochastic trend component.
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A.5. Estimation Details
In this appendix, we provide the estimation details of the bivariate unobserved components model
specified in the main text. For convenience, we reproduce the UC model below:

zt = τt + cz,t , (A.17)

xt = γ τt + τx,t + cx,t , (A.18)

where τt and τx,t are the trend components, whereas cz,t and cx,t are the transitory components.
The transitory components are assumed to follow the AR(2) processes below:

cz,t = φz,1cz,t−1 + φz,2cz,t−2 + εz,t , (A.19)

cx,t = φx,1cx,t−1 + φx,2cx,t−2 + εx,t , (A.20)

where εz,t ∼N (0, σ 2
z ) and εx,t ∼N (0, σ 2

x ), and the initial conditions cz,0, cx,0, cz,−1 and cx,−1 are
assumed to be zero. For the trend components, we model the first differences of �τt and �τx,t
as stationary processes, each with a break at t = TB with a different unconditional mean. More
specifically, consider

�τt = (1− ϕμ)ζ11(t < TB)+ (1− ϕμ)ζ21(t ≥ TB)+ ϕμ�τt−1 + ηt , (A.21)

�τx,t = (1− ϕμx)ζx,11(t < TB)+ (1− ϕμx)ζx,21(t ≥ TB)+ ϕμx�τx,t−1 + ηx,t , (A.22)

where 1(·) denotes the indicator function, ηt ∼N (0, σ 2
η ) and ηx,t ∼N (0, σ 2

ηx) are independent
of each other at all leads and lags. The initial conditions τ 0 = (τ0, τ−1, τx,0, τx,−1)′ are treated as
unknown parameters.

Section 3 in the main text outlines a five-block posterior simulator to estimate the above bivari-
ate unobserved components model. Below, we describe the implementation details of all the
steps.

Step 1. Since τ and γ enter the likelihood multiplicatively, we sample them jointly to improve
the efficiency of the posterior sampler. In particular, we first sample γ marginally of τ , followed by
drawing τ conditional on the sampled γ . The latter step is straightforward as the model specified
in (1)–(6) defines a linear state space model for τ . In what follows, we derive the full conditional
distribution of p(τ | y, γ , φ, ϕ, ζ , σ 2, τ 0). Then, we outline a Metropolis–Hastings algorithm to
sample γ marginally of τ .

To derive the conditional distribution p(τ | y, γ , φ, ϕ, ζ , σ 2, τ 0), note that by Bayes’ theorem
we have

p(τ | y, γ , φ, ϕ, ζ , σ 2, τ 0)∝ p(y | τ , γ , φ, σ 2)p(τ | ϕ, ζ , σ 2, τ 0),

where the conditional likelihood p(y | τ , γ , φ, σ 2) and the prior p(τ | ϕ, ζ , σ 2, τ 0) are, respec-
tively, defined by the observation equations (1), (2), (5), and (6) and the state equations
(3)–(4).

First, we derive the conditional likelihood p(y | τ , γ , φ, σ 2). Letting c=
(cz,1, cx,1, . . . , cz,T , cx,T)’ we can stack the observation equations (1)–(2) over t = 1, . . . , T to
get

y= 
γ τ + c,

where 
γ = IT ⊗
(
1 0
γ 1

)
. Here IT is the T-dimensional identity matrix and ⊗ is the Kronecker

product. Next, we stack (5)–(6) over t = 1, . . . , T to get

Hφc= ε,
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where ε = (εz,1, εx,1, . . . , εz,T , εx,T)′ and

Hφ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I2 0 0 0 · · · 0
A1 I2 0 0 · · · 0
A2 A1 I2 0 · · · 0
0 A2 A1 I2 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 A2 A1 I2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with A1 =

(
−φz,1 0
0 −φx,1

)
and A2 =

(
−φz,2 0
0 −φx,2

)
. Since the determinant of Hφ is one

for any φ, it is invertible. It follows that (c | φ, σ 2)∼N (0, (H′
φ�−1

ε Hφ)−1), where �ε =
diag(σ 2

z , σ 2
x , . . . , σ 2

z , σ 2
x ). It then follows that

(y | τ , γ , φ, σ 2)∼N (
γ τ , (H′
φ�−1

ε Hφ)−1). (A.23)

Next, we derive the prior p(τ | ϕ, ζ , σ 2, τ 0). To that end, construct the T × 1 vector of
indicators d0 = (1(1< TB), 1(2< TB), . . . , 1(T < TB))′ and similarly define d1. Moreover, let

μ̃τ = d0 ⊗
(

(1− ϕμ)ζ1
(1− ϕμx)ζx,1

)
+ d1 ⊗

(
(1− ϕμ)ζ2
(1− ϕμx)ζx,2

)
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1+ ϕμ)τ0 − ϕμτ−1

(1+ ϕμx)τx,0 − ϕμxτx,−1

−ϕμτ0

−ϕμxτx,0

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, we can stack the state equations (A.21)–(A.22) over t = 1, . . . , T to get

Hϕτ = μ̃τ + η,

where η = (η1, ηx,1, . . . , ηT , ηx,T)′ and

Hϕ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I2 0 0 0 · · · 0
B1 I2 0 0 · · · 0
B2 B1 I2 0 · · · 0
0 B2 B1 I2 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 B2 B1 I2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with B1 =

(
−(1+ ϕμ) 0

0 −(1+ ϕμx)

)
and B2 =

(
ϕμ 0
0 ϕμx

)
. Since the determinant ofHϕ is one for

any ϕ, it is invertible. It then follows that

(τ | ϕ, ζ , σ 2, τ 0)∼N (μτ , (H′
ϕ�−1

η Hϕ)−1), (A.24)
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whereμτ =H−1
ϕ μ̃τ and�η = diag(σ 2

η , σ 2
ηx , . . . , σ

2
η , σ 2

ηx ). Combining (A.23) and (A.24) and using
standard regression results (see, e.g., Chan et al. (2019), pp. 217–219), we have

(τ | y, γ , φ, ϕ, ζ , σ 2, τ 0)∼N (̂τ ,K−1
τ ),

where

Kτ =H′
ϕ�−1

η Hϕ + 
′
γH′

φ�−1
ε Hφ
γ , τ̂ =K−1

τ

(
H′

ϕ�−1
η Hϕμτ + 
′

γH′
φ�−1

ε Hφy
)
.

Since the precision matrix Kτ is banded—that is, it is sparse and its nonzero elements are
arranged along the main diagonal—one can sample from p(τ | y, γ , φ, ϕ, ζ , σ 2, τ 0) efficiently
using the precision sampler in Chan and Jeliazkov (2009).

Next, we outline a Metropolis–Hastings algorithm to sample γ marginally of τ . For that, we
need to evaluate the integrated likelihood:

p(y | γ , φ, ϕ, ζ , σ 2, τ 0)=
∫
R2T

p(y | τ , γ , φ, σ 2)p(τ | ϕ, ζ , σ 2, τ 0)dτ .

Traditionally, this is done by using the Kalman filter. However, it turns out that we can obtain
an analytical expression of the integrated likelihood and evaluate it efficiently using band matrix
routines. Using a similar derivation in Chan and Grant (2016), one can show that

p(y | γ , φ, ϕ, ζ , σ 2, τ 0)

= (2π)−T |�ε |− 1
2 |�η|− 1

2 |Kτ |− 1
2 e−

1
2

(
y′H′

φ�−1
ε Hφy+μ′

τH′
ϕ�−1

η Hϕμτ −τ̂ ′Kτ τ̂
)
. (A.25)

The above expression involves a few large matrices, but they are all banded. Consequently, it
can be evaluated efficiently using bandmatrix algorithms; see Chan andGrant (2016) for technical
details.

Finally, we implement a Metropolis–Hastings step to sample γ with the Gaussian proposal
N (γ̂ ,K−1

γ ), where γ̂ is the mode of log p(y | γ , φ, ϕ, ζ , σ 2, τ 0) and Kγ is the negative Hessian
evaluated at the mode.

Step 2. To sample φ, we write (A.19)–(A.20) as a regression with coefficient vector φ:

c=Xφφ + ε,

where c= (cz,1, cx,1, . . . , cz,T , cx,T)′ and Xφ is a 2T × 4 matrix consisting of lagged values of
(cz,t , cx,t). Then, by standard regression results, we have

(φ | y, τ , γ , ϕ, ζ , σ 2, τ 0)∼N (φ̂,K−1
φ )1(φ ∈R),

where

Kφ =V−1
φ +X′

φ�−1
ε Xφ , φ̂ =K−1

φ

(
V−1

φ φ0 +X′
φ�−1

ε c
)
.

A draw from this truncated normal distribution can be obtained by the acceptance–rejection
method, that is, keep sampling fromN (φ̂,K−1

φ ) until φ ∈R.

Step 3. Next, we simulate from p(ϕ | y, τ , γ , φ, ζ , σ 2, τ 0). As in Step 2, we first write (A.21)–
(A.22) as a regression with coefficient vector ϕ:

�τ = μϕ +Xϕϕ + η,
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where �τ = (�τ1,�τx,1, . . . ,�τT ,�τx,T)′,μϕ = (ζ11(1< TB)+ ζ21(1≥ TB), . . . , ζ11(T <

TB)+ ζ21(T ≥ TB))′ and

Xϕ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

�τ0 − ζ11(1< TB)− ζ21(1≥ TB) 0
0 �τx,0 − ζx,11(1< TB)− ζx,21(1≥ TB)
...

...

�τT−1 − ζ11(T < TB)− ζ21(T ≥ TB) 0
0 �τx,T−1 − ζx,11(T < TB)− ζx,21(T ≥ TB)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Again, by standard regression results, we have

(ϕ | y, τ , γ , φ, ζ , σ 2, τ 0)∼N (ϕ̂,K−1
ϕ )1(ϕ ∈R),

where

Kϕ =V−1
ϕ +X′

ϕ�−1
η Xϕ , ϕ̂ =K−1

ϕ

(
V−1

ϕ ϕ0 +X′
ϕ�−1

η (�τ − μϕ)
)
.

A draw from this truncated normal distribution can be obtained by the acceptance–rejection
method.

Step 4. To implement Step 4, note that σ 2
η , σ 2

ηx , σ
2
z , σ 2

x are conditionally independent given τ

and other parameters. Moreover, since the priors on σ 2
z and σ 2

x are inverse-gamma, so are the full
posterior conditional distributions:

(σ 2
z | y, τ , γ , φ, ϕ, ζ , τ 0)∼ IG

(
νz + T

2
, Sz + 1

2

T∑
t=1

ε2z,t

)
,

(σ 2
x | y, τ , γ , φ, ϕ, ζ , τ 0)∼ IG

(
νx + T

2
, Sx + 1

2

T∑
t=1

ε2x,t

)
.

For σ 2
η and σ 2

ηx , recall that they have gamma priors: σ 2
η ∼ G(1/2, 1/(2Vση )) and σ 2

ηx ∼
G(1/2, 1/(2Vσηx )). Hence, the full conditional density of σ 2

η is given by:

p(σ 2
η | y, τ , γ , φ, ϕ, ζ , τ 0)∝ (σ 2

η )
− 1

2 e
− 1

2Vση
σ 2

η × (σ 2
η )

− T
2 e

− 1
2σ2η

∑T
t=1 η2t ,

which is not a standard distribution. However, we can sample σ 2
η via a Metropolis–Hastings

step. Specifically, we first obtain a candidate draw σ 2∗
η from the proposal distribution

σ 2∗
η ∼ IG((T − 1)/2,

∑T
t=1 η2t /2). Then, given the current draw σ 2

η , we accept the candidate with
probability:

min

⎧⎨⎩1, e
1

2Vση
σ 2∗

η

e
1

2Vση
σ 2

η

⎫⎬⎭ .

Similarly, we can sample σ 2
ηx by first obtaining a candidate σ 2∗

ηx ∼ IG((T − 1)/2,
∑T

t=1 η2x,t/2).
Then, given the current σ 2

ηx , we accept the candidate with probability

min

⎧⎨⎩1, e
1

2Vσηx
σ 2∗

ηx

e
1

2Vσηx
σ 2

ηx

⎫⎬⎭ .
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Table 5. Frequencies (%) of rejecting the null hypothesis γ = 0 from the two hypothesis tests: a 95%
credible interval excluding 0 and a Bayes factor value larger than

√
10

True value CI excludes 0 BF >
√
10 indecisive BF < 1/

√
10

γ = 0 0.04 0.025 0.89 0.085
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ = 1 0.81 0.84 0.16 0

Step 5. Next, we jointly sample δ = (ζ ′, τ ′
0)

′ from its full conditional distribution. To that end,
we write (A.21)–(A.22) as a regression with coefficient vector δ:

Hϕτ =Xδδ + η,

where

Xδ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
d0 ⊗

(
1− ϕμ 0

0 1− ϕμx

)
d1 ⊗

(
1− ϕμ 0

0 1− ϕμx

)
1+ ϕμ −ϕμ 0 0

0 0 1+ ϕμx −ϕμx

−ϕμ 0 0 0
0 0 −ϕμx 0
0 0 0 0
...

...
...

...

0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then, by standard regression results, we have

(δ | y, τ , γ , φ, ϕ, σ 2)∼N (̂δ,K−1
δ ),

where

Kδ =V−1
δ +X′

δ�
−1
η Xδ , δ̂ =K−1

δ

(
V−1

δ δ0 +X′
δ�

−1
η Hϕτ

)
,

where Vδ = diag(Vζ ,Vτ0) and δ0 = (ζ ′
0, τ

′
00)

′.

A.6. A Monte Carlo Study
The section provides Monte Carlo results to assess the empirical performance of two Bayesian
procedures to test the null hypothesis that γ = 0. The first approach constructs a 95% credible
interval for γ , and the null hypothesis is rejected if the credible interval excludes 0. The second
approach computes the Bayes factor against the null hypothesis via the Savage–Dickey density
ratio p(γ = 0)/p(γ = 0 | y). Following Kass and Raftery (1995), we interpret a value of Bayes factor
larger than

√
10 as substantial evidence against the null hypothesis; a value less than 1/

√
10 is

viewed as substantial evidence in favor of the null hypothesis; and the test is indecisive for values
in between.

We first generate 200 datasets from the the unobserved components model in equations (1)–
(6) with γ = 0 and T = 500. The values of other parameter are set to be the same as the estimates
reported in Table 1. Given each dataset, we then estimate the model and conduct the two hypoth-
esis tests described above. The results are reported in Table 5. For the first hypothesis test based
on the credible interval, it works well and has about the right size. For the test based on the Bayes
factor, it rejects the null hypothesis γ = 0 for about 2.5% of the datasets, whereas it rejects the
alternative hypothesis γ �= 0 for about 8.5% of the datasets.8 That is, when the null hypothesis
is true, the Bayes factor favors the null hypothesis 3.4 times more frequently than the alternative
γ �= 0 (though it is indecisive for the majority of datasets.)
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Next, we repeat the Monte Carlo experiment, but now we set γ = 1. In this case, the hypothesis
test based on the credible interval rejects the null hypothesis for about 81% of the datasets. For the
test based on the Bayes factor, it rejects the null hypothesis for about 84% of the datasets and it
never rejects the alternative hypothesis γ �= 0. Overall, these Monte Carlo results show that both
hypothesis tests work reasonably well.

Cite this article: Chan JCC and Wemy E (2023). “An unobserved components model of total factor productivity and the
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