Background: It is well known that contaminated surfaces contribute to the transmission of pathogens in healthcare settings, necessitating the need for antimicrobial strategies beyond routine cleaning with avertant disinfectants. A recent publication demonstrated that application of a novel, continuously active antimicrobial surface coating in ICUs resulted in the reduction of healthcare-associated infections. Objective: We determined the general microbioburden and incidence of relevant pathogens present in patient rooms at 2 metropolitan hospitals before and after application of a continuously active antimicrobial surface coating. Methods: A continuously active antimicrobial surface coating was applied to patient rooms in intensive care units (ICUs) twice over an 18-month period and in non-ICUs twice over a 6-month study period. The environmental bioburden was assessed 8–16 weeks after each treatment. A 100-cm² area was swabbed from frequently touched areas in patient rooms: patient chair arm rest, bed rail, TV remote, and backsplash behind the sink. The total aerobic bacteria count was determined for each location by enumeration on tryptic soy agar (TSA); the geometric mean was used to compare bioburden before and after treatment. Each sample was also plated on selective agar for carbenem-resistant Enterobacteriaceae (CRE), vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and Clostridoides difficile to determine whether pathogens were present. Pathogen incidence was calculated as the percentage of total sites positive for at least 1 of the 4 target organisms. Results: Before application of the antimicrobial coating, total aerobic bacteria counts in ICUs were >1,500 CFU/100 cm², and at least 30% of the sites were positive for a target pathogen (ie, CRE, VRE, MRSA or *C. difficile*). In non-ICUs, the bioburden before treatment was at least 500 CFU/100 cm², with >50% of sites being contaminated with a pathogen. After successive applications of the surface coating, total aerobic bacteria were reduced by >80% in the ICUs and >40% in the non-ICUs. Similarly, the incidence of pathogen-positive sites was reduced by at least 50% in both ICUs and non-ICUs. Conclusions: The use of a continuously active antimicrobial surface coating provides a significant (*P < .01*) and sustained reduction in aerobic bacteria while also reducing the occurrence of epidemiologically important pathogens on frequently touched surfaces in patient rooms. These findings support the use of novel antimicrobial technologies as an additional layer of protection against the transmission of potentially harmful bacteria from contaminated surfaces to patients. Funding: Allied BioScience provided Funding: for this study. Disclosures: Valerie Beck reports salary from Allied BioScience. doi:10.1017/ice.2020.1105

Presentation Type: Poster Presentation

A Microbiome-Based Solution to Address Alarming Levels of Drug-Resistant Bacteria in the Newborn Infant Gut

Giorgio Casaburi, Evolve Biosystems, Inc; Rebbecca Duar, Evolve Biosystems, Inc; Bethany Henrick, Evolve Biosystems Inc.; Steven Frese, Evolve Biosystems Inc.

Background: Recent studies have focused on the early infant gut microbiome, indicating that antibiotic resistance genes (ARGs) can be acquired in early life and may have long-term sequelae. Limiting the spread of antimicrobial resistance without triggering the development of additional resistance mechanisms would be of immense clinical value. Here, we present 2 analyses that highlight the abundance of ARGs in preterm and term infants and a proof of concept for modulating the microbiome to promote early stabilization and reduction in ARGs in term infants. Methods: Large-scale metagenomic analysis was performed on 2,141 microbiome samples (90% from pre-term infants) from 10 countries; most were from the United States (87%) and were obtained from the Comprehensive Antibiotic Resistance Database (CARD). We assessed the abundance and specific types of ARGs present. In the second study, healthy, breastfed infants were fed *B. infantis EVC001* for 3 weeks starting at postnatal day 7. Stool samples were collected at day 21 and were processed utilizing shotgun metagenomics. Selected antimicrobial-resistant bacterial species were isolated, sequenced, and tested for minimal inhibitory concentrations to clinically relevant antibiotics. Results: In the first study, globally, 417 distinct ARGs were identified. The most abundant gene among all samples was annotated as *msrE*, a plasmid gene known to confer resistance to macrolide-lincosamide-streptogramin B (MLSB) antibiotics. The remaining most-abundant ARGs were efflux-pump genes associated with multidrug resistance. No significant association in antimicrobial resistance was found when considering delivery mode or antibiotic treatment in the first month of life. In the second study, the EVC001-fed group showed a significant decrease (90%) in ARGs compared to controls (*P < .0001*). ARGs that differed significantly between groups were predicted to confer resistance to β-lactams, fluoroquinolones, or multiple drug classes. Minimal inhibitory concentration assays confirmed resistance phenotypes among isolates. Notably, we found resistance to extended-spectrum β-lactamases among healthy, vaginally delivered breastfed infants who had never been exposed to antibiotics. Conclusions: In this study, we show that the term and preterm infant microbiome contains alarming levels of ARGs associated with clinically relevant antibiotics harbored by bacteria commonly responsible for nosocomial infections. Colonization of the breastfed infant gut by a single strain of *B. longum subsp infantis* had profound impacts on the fecal metagenome, including reduction in ARGs and reduction of potential pathogens. These findings highlight the importance of developing novel approaches to limit the spread of ARGs among clinically relevant bacteria and the relevance of an additional approach in the effort to solve AR globally. Funding: Evolve BioSystems provided Funding: for this study. Disclosures: Giorgio Casaburi reports salary from Evolve BioSystems. doi:10.1017/ice.2020.1106

Presentation Type: Poster Presentation

Accuracy of Infection Control Surveillance in Identifying Genomically Confirmed Cross Transmission Clusters

Kyle Hansen, PhD, Philips Healthcare; Richard T. Ellison, III, MD University of Massachusetts Medical School; Doyle V. Ward, PhD, University of Massachusetts Medical School, UMass Center for Microbiome Research; Devon J. Holler, BS, EMT, Philips Healthcare, Genomics for Infectious Disease (GHD), Cambridge, MA; Judy L. Ashworth, MScS, MT(ASCP), Philips Healthcare, Genomics for Infectious Disease (GHD), Cambridge, MA; Mary M. Fortunato-Habib, DNP, MS, RN,...
Background: Infection prevention surveillance for cross transmission is often performed by manual review of microbiologic culture results to identify geographically related clusters. However, the sensitivity and specificity of this approach remains uncertain. Whole-genome sequencing (WGS) analysis can help provide a gold-standard for identifying cross-transmission events. Objective: We employed a published WGS program, the Philips Intellisphere Epidemiology platform, to compare accuracy of two surveillance methods: (i) a virtual infection practitioner (VIP) with perfect recall and automated analysis of antibiotic susceptibility testing (AST), sample collection timing, and patient location data and (ii) a novel clinical matching (CM) algorithm that provides cluster suggestions based on a nuanced weighted analysis of AST data, timing of sample collection, and shared location stays between patients. Methods: WGS was performed routinely on inpatient and emergency department isolates of Enterobacter cloacae, Enterococcus faecium, Klebsiella pneumoniae, and Pseudomonas aeruginosa at an academic medical center. Single-nucleotide variants (SNVs) were compared within core genome regions on a per-species basis to determine cross-transmission clusters. Moreover, one unique strain per patient was included within each analysis, and duplicates were excluded from the final results. Results: Between May 2018 and April 2019, clinical data from 121 patients were paired with WGS data from 28 E. cloacae, 21 E. faecium, 61 K. pneumoniae, and 46 P. aeruginosa isolates. Previously published SNV relatedness thresholds were applied to define genomically related isolates. Mapping of genomic relatedness defined clusters as follows: 4 patients in 2 E. faecium clusters and 2 patients in 1 P. aeruginosa cluster. The VIP method identified 12 potential clusters involving 28 patients, all of which were “pseudoclusters.” Importantly, the CM method identified 7 clusters consisting of 27 patients, which included 1 true E. faecium cluster of 2 patients with genomically related isolates. Conclusions: In light of the WGS data, all of the potential clusters identified by the VIP were pseudoclusters, lacking sufficient genomic relatedness. In contrast, the CM method showed increased sensitivity and specificity: it decreased the percentage of pseudoclusters by 14% and it identified a related genomic cluster of E. faecium. These findings suggest that integrating clinical data analytics and WGS is likely to benefit institutions in limiting expenditure of resources on pseudoclusters. Therefore, WGS combined with more sophisticated surveillance approaches, over standard methods as modeled by the VIP, are needed to better identify and address true cross-transmission events.

Funding: This study was supported by Philips Healthcare. Disclosures: None

Doi: 10.1017/ice.2020.1107

Presentation Type: Poster Presentation

Comparative Antimicrobial Efficacy of Current Alcohol-Based Hand Rubs: Formulation, Dose, and Test Methods All Matter

James Arbogast, Gojo Industries, Inc.; Albert Parker, Center for Biofilm Engineering, Department of Mathematical Sciences Montana State University; William Jarvis, Jason and Jarvis Associates, LLC; David Macinga, GOJO Industries

Background: Alcohol-based hand rubs (ABHRs) are the primary form of hand hygiene in healthcare settings globally. Many developed countries, and most US hospitals utilize wall-mounted ABHR dispensers throughout the facility. The